JPS5854482B2 - Manufacturing method of temperature-sensitive resistor ceramic element - Google Patents

Manufacturing method of temperature-sensitive resistor ceramic element

Info

Publication number
JPS5854482B2
JPS5854482B2 JP9917979A JP9917979A JPS5854482B2 JP S5854482 B2 JPS5854482 B2 JP S5854482B2 JP 9917979 A JP9917979 A JP 9917979A JP 9917979 A JP9917979 A JP 9917979A JP S5854482 B2 JPS5854482 B2 JP S5854482B2
Authority
JP
Japan
Prior art keywords
temperature
sensitive resistor
ceramic element
resistor ceramic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9917979A
Other languages
Japanese (ja)
Other versions
JPS5623703A (en
Inventor
二郎 寺田
恒治 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9917979A priority Critical patent/JPS5854482B2/en
Publication of JPS5623703A publication Critical patent/JPS5623703A/en
Publication of JPS5854482B2 publication Critical patent/JPS5854482B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 この発明は感温抵抗体磁器素子の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a temperature-sensitive resistor ceramic element.

従来から知られているCo−Mn−Ni酸化物系サーミ
スタ材料は、300℃以下の温度で使用されており、高
温度で使用可能な感温抵抗体材料としては、zrO2−
Y2O2系 レビューオブサイエンテツクインストルメ
ンツ40[4]544−549(1969) が知ら
れている。
Conventionally known Co-Mn-Ni oxide thermistor materials are used at temperatures below 300°C, and zrO2- is a temperature-sensitive resistor material that can be used at high temperatures.
Y2O2 series Review of Scientific Instruments 40 [4] 544-549 (1969) is known.

しかしながら、この感温材料においても、寿命特性の安
定性にな訃解決すべき課題が残っている。
However, even with this temperature-sensitive material, there are still problems to be solved regarding the stability of life characteristics.

この原因は、高温度において、感温抵抗体磁器素子が、
還元あるいは酸化され、またその他のガスにより影響を
受けるということである。
The reason for this is that at high temperatures, the temperature-sensitive resistor ceramic element
This means that it can be reduced or oxidized, and can be affected by other gases.

したがって、この発明の目的は、300℃以上の高温で
使用可能で、しかも寿命特性の安定した感温抵抗体磁器
素子を作成することができる感温抵抗体磁器素子の製造
方法を提供することである。
Therefore, an object of the present invention is to provide a method for manufacturing a temperature-sensitive resistor ceramic element that can be used at high temperatures of 300° C. or higher and has stable life characteristics. be.

この発明の感温抵抗体磁器素子の製造方法は、スピネル
構造をもつMgCr2O4とルチル構造をもつTiO2
との混合組成を主成分とした成形体を加圧しながら14
908C〜1000℃の温度で焼結することにより感温
抵抗体磁器素子を作製するので、得られた感温抵抗体磁
器素子が300℃以上の高温で使用可能となり、かつ感
温抵抗体磁器素子が緻密になって機械的強度および熱的
応答性が向上し、その結果耐ガス性が生じ、したがって
様様な雰囲り下において寿命特性が安定し、さらに薄く
加工することが容易になるという効果がある。
The method for manufacturing a temperature-sensitive resistor ceramic element of the present invention includes MgCr2O4 having a spinel structure and TiO2 having a rutile structure.
14 while pressurizing a molded body whose main component is a mixed composition of
Since the temperature sensitive resistor ceramic element is produced by sintering at a temperature of 908C to 1000C, the obtained temperature sensitive resistor ceramic element can be used at high temperatures of 300C or higher, and the temperature sensitive resistor ceramic element can be used at high temperatures of 300C or higher. becomes denser, improving mechanical strength and thermal responsiveness, resulting in gas resistance, stable life characteristics under various atmospheres, and easier processing into thinner layers. There is.

このような感温抵抗体磁器素子は、自動車の排気ガスを
完全燃焼させるための媒体マフラの温度制御(約800
℃)用等に使用できる。
Such a temperature-sensitive resistive ceramic element is used to control the temperature of a medium muffler (approximately 800 m
℃), etc.

以下実施例について説明する。Examples will be described below.

出発原料として純度99.99%以上のMgO。MgO with a purity of 99.99% or more as a starting material.

Cr2O3、TiO2を所定の組成で配合し、湿式混合
した後、乾燥およびプレス成形(750kg/= )し
た。
Cr2O3 and TiO2 were blended in a predetermined composition and wet mixed, then dried and press-molded (750 kg/=).

この成形物を、300 kg/iの圧力を印加しながら
、1350℃の温度で2時間焼成して第1図に示すよう
な感温抵抗体磁器素子本体1を得た。
This molded product was fired at a temperature of 1350° C. for 2 hours while applying a pressure of 300 kg/i to obtain a temperature-sensitive resistor ceramic element body 1 as shown in FIG.

この感温抵抗体磁器素子本体1の寸法は直径6mrrt
、厚み0.5gmであった。
The dimensions of this temperature-sensitive resistor ceramic element body 1 are 6 mrrt in diameter.
, thickness was 0.5 gm.

このようにして得た感温抵抗体磁器素子本体1の上下面
にRu02系ペーストを1000℃で焼付けて電極2を
形成し、さらに、太さQ、151mの白金ワイヤ3をR
n Oz系ペーストを用いて1000℃で電極2に取付
けて感温抵抗体磁器素子を製造した。
Electrodes 2 are formed by baking Ru02 paste at 1000°C on the upper and lower surfaces of the temperature-sensitive resistor ceramic element body 1 obtained in this way, and platinum wires 3 with a thickness of Q and 151 m are attached to the R
A temperature-sensitive resistor ceramic element was manufactured by attaching it to the electrode 2 at 1000° C. using nOz-based paste.

なお、この場合、特別な製造技術は必要としなかった。Note that in this case, no special manufacturing technology was required.

この感温抵抗体磁器素子において、次表に示すように、
MgCr204とTiO2の組成割合が順次異なる試料
1〜10を作成した。
In this temperature-sensitive resistor ceramic element, as shown in the following table,
Samples 1 to 10 were prepared with sequentially different composition ratios of MgCr204 and TiO2.

これらの試料1〜10について抵抗計を用いて抵抗の温
度変化を室温から1ooo℃にわたって測定した。
For these samples 1 to 10, temperature changes in resistance were measured from room temperature to 100° C. using a resistance meter.

その結果を次表に示す。The results are shown in the table below.

表においては、400℃、SOO℃における抵抗値とそ
れらの温度間におけるB定数を示している。
The table shows the resistance values at 400° C. and SOO° C. and the B constant between those temperatures.

ただし、B定数はR=R□ exp(B/T)で規定さ
れるもので、Rは温度Tにおける抵抗値、Tは絶対温度
、Roは定数である。
However, the B constant is defined by R=R□exp(B/T), where R is the resistance value at temperature T, T is the absolute temperature, and Ro is a constant.

また、同様に試料1〜10について負荷寿命特性を測定
した。
In addition, the load life characteristics of Samples 1 to 10 were similarly measured.

この測定は、試料を800℃に保※く持し、直流電圧I
V、3V、6Vを印加して抵抗値の時間変化を測定し、
1000時間経過後の抵抗変化率 を算出するもので、その値を表に示している。
This measurement is performed by keeping the sample at 800°C and applying a DC voltage of I
Apply V, 3V, and 6V and measure the change in resistance value over time.
The rate of change in resistance after 1000 hours is calculated, and the values are shown in the table.

ただし、Rtは1000時間経過後の抵抗値、R8は初
期抵抗値である。
However, Rt is the resistance value after 1000 hours, and R8 is the initial resistance value.

この表かられかるように、MgCr204とTiO2の
混合割合によって動作温度付近、たとえば800℃に釦
いて抵抗値が101.Qオーダーから103gオーダー
に変化し、B定数が5000〜9000と大幅に変化し
ている。
As can be seen from this table, depending on the mixing ratio of MgCr204 and TiO2, the resistance value will be 101. It changes from Q order to 103 g order, and the B constant changes significantly from 5000 to 9000.

第2図は、常温における組成割合と抵抗値の特性を示し
ている。
FIG. 2 shows the characteristics of composition ratio and resistance value at room temperature.

この第2図によると、組成割合によって抵抗値を自由に
変化させられることがわかる。
According to FIG. 2, it can be seen that the resistance value can be freely changed depending on the composition ratio.

一方、SOO℃常用の高温度用感温抵抗体磁器素子とし
ては、抵抗変化率が10%以下であることが望寸しい。
On the other hand, as a high temperature temperature sensitive resistor ceramic element commonly used at SOO°C, it is desirable that the resistance change rate be 10% or less.

たとえば、表でB定数9272゜800℃での抵抗4.
0X102ρを持つ試料5の組成の感温抵抗体磁器素子
で800°Cにおける抵抗値が1000時間経過後に5
%上昇したとすると、実際温度は測定温度より約10℃
低くなるのみであり、1000時間経過後のこの程度の
変化は、実用上全く問題とならない。
For example, in the table, the B constant is 9272° and the resistance at 800°C is 4.
The resistance value at 800°C of the temperature sensitive resistor ceramic element having the composition of sample 5 with 0x102ρ is 5 after 1000 hours.
% rise, the actual temperature is approximately 10℃ higher than the measured temperature.
This change after 1000 hours does not pose any practical problem.

このように、表の直流負荷寿命特性をみてもわかるよう
に直流電圧6v以下では、すべての組成で、上述の条件
を満足しており、これら混合物系全体にわたって低温か
ら高温度領域オで使用可能であった。
As can be seen from the DC load life characteristics in the table, all compositions satisfy the above conditions at DC voltages of 6V or less, and all of these mixture systems can be used in low to high temperature ranges. Met.

そして、焼成を加圧しながら行なっているので、非常に
緻密な素子が得られた。
Since the firing was carried out under pressure, a very dense element was obtained.

そのため、機械的強度が向上し、捷た熱的応答性が非常
に良くなった。
As a result, the mechanical strength was improved and the thermal response to bending became very good.

また、緻密なため、耐ガス(酸化、還元、硫化性ガス)
性を有した。
Also, because it is dense, it is resistant to gases (oxidation, reduction, and sulfidation gases).
It had sex.

しかも、非常に薄く加工することが容易になった。Moreover, it has become easy to process it into a very thin layer.

そして、(1−x)MgCr2O4XTlO2(x=0
.000.1〜0.99 )の組成全域で、その効果が
あった。
And (1-x)MgCr2O4XTlO2(x=0
.. This effect was found over the entire composition range (000.1 to 0.99).

なお、焼成温度があ1り高すぎる場合には、結晶の粒成
長が大きく、機械的強度が悪かった。
In addition, when the firing temperature was too high, the grain growth of the crystals was large and the mechanical strength was poor.

寸た、焼成温度が低くすぎる場合には、焼結性が悪く、
しかも感温抵抗特性および機械的強度も低かった。
On the other hand, if the firing temperature is too low, the sinterability will be poor.
Furthermore, the temperature-sensitive resistance characteristics and mechanical strength were also low.

以上のような理由により14900C〜1ooo℃の温
度で加圧焼成して製造するとよい。
For the above-mentioned reasons, it is preferable to perform pressure firing at a temperature of 14900C to 100C.

なお、感温抵抗体磁器素子本体1にMgO。Note that the temperature-sensitive resistor ceramic element body 1 is made of MgO.

Al2O3p 5n02 p Cr2O3t Fe2O
3s Ni0tSi02 t Ba1t Zn0t Z
rO2t HfO2,MnO2。
Al2O3p 5n02p Cr2O3t Fe2O
3s Ni0tSi02t Ba1t Zn0t Z
rO2t HfO2, MnO2.

C1te、 Coo、In2O3s TiO2などのそ
の他の金属酸化物を添加することによりB定数や素子抵
抗値などを制御することができ、感温抵抗草子としての
特性を改善することができた。
By adding other metal oxides such as C1te, Coo, In2O3s TiO2, etc., the B constant, element resistance value, etc. could be controlled, and the characteristics as a temperature-sensitive resistor could be improved.

また、実施例の寸法、形状等については前述のものに限
定されるものではない。
Furthermore, the dimensions, shapes, etc. of the embodiments are not limited to those described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の斜視図、第2図はMgCr
2 o4によびTiO2の組成割合と抵抗値の特性図で
ある。 1・・・・・・感温抵抗体磁器素子本体。
Fig. 1 is a perspective view of an embodiment of the present invention, and Fig. 2 is a perspective view of an embodiment of the present invention.
2 is a characteristic diagram of the composition ratio of TiO2 and the resistance value. 1... Temperature-sensitive resistor ceramic element body.

Claims (1)

【特許請求の範囲】[Claims] 1 (1−x ) MgCr2O4+ xT i02
(xo、oooi〜0.99)の組成を主成分とする
成形体を加圧しながら1490°C〜1ooo℃の温度
で焼結することを特徴とした感温抵抗体磁器素子の製造
方法。
1 (1-x) MgCr2O4+ xT i02
1. A method for producing a temperature-sensitive resistor ceramic element, comprising sintering a molded body mainly having a composition of (xo, oooi to 0.99) at a temperature of 1490° C. to 100° C. while pressurizing.
JP9917979A 1979-07-31 1979-07-31 Manufacturing method of temperature-sensitive resistor ceramic element Expired JPS5854482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9917979A JPS5854482B2 (en) 1979-07-31 1979-07-31 Manufacturing method of temperature-sensitive resistor ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9917979A JPS5854482B2 (en) 1979-07-31 1979-07-31 Manufacturing method of temperature-sensitive resistor ceramic element

Publications (2)

Publication Number Publication Date
JPS5623703A JPS5623703A (en) 1981-03-06
JPS5854482B2 true JPS5854482B2 (en) 1983-12-05

Family

ID=14240417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9917979A Expired JPS5854482B2 (en) 1979-07-31 1979-07-31 Manufacturing method of temperature-sensitive resistor ceramic element

Country Status (1)

Country Link
JP (1) JPS5854482B2 (en)

Also Published As

Publication number Publication date
JPS5623703A (en) 1981-03-06

Similar Documents

Publication Publication Date Title
JPS6054259B2 (en) Moisture sensitive ceramic
US4086556A (en) Humidity sensitive ceramic resistor
US3928837A (en) Ceramic oxide resistor element
JPH05314817A (en) Nonreducing dielectric ceramic composition
US3044968A (en) Positive temperature coefficient thermistor materials
US4162631A (en) Rare earth or yttrium, transition metal oxide thermistors
JPS6022302A (en) Oxide semiconductor for thermistor
JP2841395B2 (en) Method for manufacturing NTC thermistor
JPS5854482B2 (en) Manufacturing method of temperature-sensitive resistor ceramic element
JPS6161344B2 (en)
US4231254A (en) Rare earth or yttrium, transition metal oxide thermistors
JPH0766007A (en) Thermistor for high temperature
SU801117A1 (en) Resistive material
US4232441A (en) Method for preparing rare earth or yttrium, transition metal oxide thermistors
JP3393261B2 (en) Porcelain composition for thermistor
JPS5934141A (en) Electric resistance material sensitive to air fuel ratio
JP2002329602A (en) Method of manufacturing negative temperature coefficient thermistor device
JPS5811082B2 (en) Temperature and humidity detection element
CA1133231A (en) Rare earth or yttrium, transition metal oxide thermistors
SU551308A1 (en) Ceramic material
JPS5928861B2 (en) gas detection element
JPH0133921B2 (en)
JPH0543161B2 (en)
JPS61119002A (en) Thermosensitive resistor
JPS6030082B2 (en) Manufacturing method of moisture sensing element