JPS585446A - Air-fuel ratio controller of engine - Google Patents

Air-fuel ratio controller of engine

Info

Publication number
JPS585446A
JPS585446A JP56104223A JP10422381A JPS585446A JP S585446 A JPS585446 A JP S585446A JP 56104223 A JP56104223 A JP 56104223A JP 10422381 A JP10422381 A JP 10422381A JP S585446 A JPS585446 A JP S585446A
Authority
JP
Japan
Prior art keywords
fuel
intake air
air temperature
combustion
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56104223A
Other languages
Japanese (ja)
Other versions
JPS6343576B2 (en
Inventor
Misao Fujimoto
藤本 操
Yoshikuni Yada
矢田 佳邦
Akitake Ishii
石井 彰壮
Shigeki Imazu
今津 茂樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP56104223A priority Critical patent/JPS585446A/en
Priority to US06/368,355 priority patent/US4485625A/en
Publication of JPS585446A publication Critical patent/JPS585446A/en
Publication of JPS6343576B2 publication Critical patent/JPS6343576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1528Digital data processing dependent on pinking for turbocompressed engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent abnormal combustion due to rapid explosion, by increasing a feed of fuel to a combustion chamber in an engine when intake air temperature reaches a high temperature range at least a prescribed level for a combustion speed to abnormally increase. CONSTITUTION:An injection quantity of fuel from a fuel injection valve 9, on the basis of the basic injection quantity in a basic injection quantity decision circuit 14 of a fuel feed controller 10, is corrected by a correction amount decision circuit 16 and adder subtractor circuit 15 in accordance with a detection value of an intake air temperature sensor 11. When intake air temperature is not higher than a prescribed value T, an injection quantity of fuel is decreased in accordance with a temperature rise to hold air-fuel ratio to a constant value, however, in a high temperature range at least the prescribed value T where a combustion speed tends to abnormally increase, the injection quantity of fuel is reversely increased in accordance with a temperature rise, and the air-fuel ratio is changed to the direction for a mixture to become rich. In this way, the speed of combustion is suppressed to prevent abnormal combustion.

Description

【発明の詳細な説明】 本発明は吸気温度に応じて空燃比を制御するエンジンの
空燃比制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control device for an engine that controls the air-fuel ratio according to intake air temperature.

一般に自動車等のエンジンの燃焼状態は、吸気温度によ
って変化する。この吸気温度と燃焼状態との関係につき
、広く知られている現象としては、吸気温度が高くなる
と、燃焼室内の充填効率が低下し、かつ、吸入空気の密
度の低下により混合気の空燃比が過濃となることに起因
して、燃焼室内での混合気の燃焼性が悪くなって出力が
低下する。
Generally, the combustion state of an engine such as an automobile changes depending on the intake air temperature. Regarding the relationship between the intake air temperature and the combustion state, a widely known phenomenon is that when the intake air temperature increases, the charging efficiency in the combustion chamber decreases, and the air-fuel ratio of the mixture decreases due to the decrease in the density of the intake air. Due to the excessive enrichment, the combustibility of the air-fuel mixture within the combustion chamber deteriorates, resulting in a decrease in output.

さらに、混合気過濃により燃費が悪化する傾向もある。Furthermore, fuel efficiency tends to deteriorate due to an overly rich mixture.

また、反対に吸気温度が低くなると、混合気が薄くなる
ととIくより失火が生じ易くなる傾向がある。このため
、従来、エンジンの燃焼室への供給燃料を吸気温度に応
じて制御する場合は、特開昭51−10227号公報に
みられるように、吸気温度が高くなると燃料供給量を減
少させ、吸気温度が低くなると燃料供給量を増加させる
ことにより、吸気温度の変化に対して空燃比を理論空燃
比付近に保つように制御していた。
On the other hand, when the intake air temperature becomes low and the air-fuel mixture becomes lean, misfires tend to occur more easily. For this reason, conventionally, when controlling the fuel supplied to the combustion chamber of an engine according to the intake air temperature, as seen in Japanese Patent Laid-Open No. 10227/1982, the amount of fuel supplied is reduced as the intake air temperature increases, By increasing the amount of fuel supplied when the intake air temperature becomes low, the air-fuel ratio is controlled to be maintained near the stoichiometric air-fuel ratio in response to changes in the intake air temperature.

ところが、前述のように吸気温度が上昇するほど燃焼性
が低下するという傾向は、ある程度までの吸気温度域で
見られ葛稿象であって、吸気温度がこれ以上にさらに高
くなると、混合気が急激な爆発的燃焼を起す異常燃焼(
デトネーシせン)を生じ易くなるということが、新たに
実験により見出された。この現象が生ずる原因としては
、次のようなことが考えられる。すなわち、吸気温度が
変化したとき、その温度変化だけを考えれば、温度の上
昇は燃焼速度を促進する要因となり、一方、前述の温度
上昇に伴う充填効率の低下等は燃焼速度を遅くする要因
となる。そして、ある程度までの吸気温度域では、吸気
温度が上昇するにつれ、温度上昇そのものによる影響よ
りも充填効率の低下による影響の方がエンジンの燃焼状
態に大きく作用することにより、燃焼速度が遅れる傾向
が生ずるが、吸気温度ひいては燃焼室内の温度が極度に
高くなると、温度上昇そのものによる影響が燃焼状態に
より大きく作用する。その結果、このような高温度域で
異常に燃焼速度が速められるものと思われる。
However, as mentioned above, the tendency that combustibility decreases as the intake air temperature rises is a phenomenon that can be seen within a certain range of intake air temperatures, and as the intake air temperature rises higher than this, the air-fuel mixture deteriorates. Abnormal combustion that causes sudden explosive combustion (
It has been newly discovered through experiments that detonation (detonation) is more likely to occur. Possible causes of this phenomenon are as follows. In other words, when the intake air temperature changes, if we consider only the temperature change, the increase in temperature will be a factor that accelerates the combustion rate, while the aforementioned decrease in charging efficiency accompanying the temperature increase will be a factor that slows down the combustion rate. Become. In the intake air temperature range up to a certain level, as the intake air temperature rises, the effect of the reduction in charging efficiency has a greater effect on the combustion state of the engine than the effect of the temperature rise itself, and the combustion speed tends to be delayed. However, when the intake air temperature and therefore the temperature inside the combustion chamber become extremely high, the effect of the temperature rise itself becomes more significant on the combustion state. As a result, it is thought that the combustion rate is abnormally accelerated in such a high temperature range.

従って、従来のように吸気温度が上昇したとき燃料供給
量を減少させて空燃比をほぼ一定に保つようにする制御
では、却って上記の異常燃焼が生じ易くなり、これによ
り、ピストンに過度の高温、高圧がかかってピストンが
溶けたり破壊されたりする等の虞れがあった。とくに吸
気過給を行う場合にこのような傾向が顕著であった。な
お、前記の特開昭51−10227号公報に示された制
御与 手段によると、温度上昇につれて燃料供給量を減少させ
る補正が吸気温度20℃以上では働かないようにしてい
るが、これは、上記制御手段が主として吸気温度が低い
ときの失火を防止するためのもので、吸気温度2−6℃
以上では補正の必要がないという発想に基づくものであ
る。しかし、吸気温度20℃以上で燃料供給量が一定に
保たれるだけでは、吸気温度が著しく高くなったときの
異常燃焼を防止することができない。
Therefore, conventional control that reduces the amount of fuel supplied to keep the air-fuel ratio almost constant when the intake air temperature rises is more likely to cause the above-mentioned abnormal combustion, which can cause the piston to experience an excessively high temperature. There was a risk that the piston would melt or be destroyed due to high pressure. This tendency was particularly noticeable when intake supercharging was performed. According to the control means disclosed in the above-mentioned Japanese Unexamined Patent Publication No. 51-10227, the correction for reducing the fuel supply amount as the temperature rises does not work when the intake air temperature is 20° C. or higher. The above control means is mainly used to prevent misfires when the intake air temperature is low, and the intake air temperature is 2-6℃.
The above is based on the idea that there is no need for correction. However, simply keeping the amount of fuel supplied constant at an intake air temperature of 20° C. or higher does not prevent abnormal combustion when the intake air temperature becomes significantly high.

本発明はこれらの事情に鑑み、吸気温度が著しく高くな
ったときに、積極的に燃料供給量を増量して空燃比を濃
くする方向に制御し、これによって、高温度域での異常
燃焼を防止し、過度の高温、高圧によるエンジンの破損
を防いで適正、安全な運転状態を維持することのできる
エンジンの空燃比制御装置を提供せんとするものである
In view of these circumstances, the present invention actively increases the amount of fuel supplied to enrich the air-fuel ratio when the intake air temperature becomes significantly high, thereby preventing abnormal combustion in the high temperature range. It is an object of the present invention to provide an air-fuel ratio control device for an engine that can maintain proper and safe operating conditions by preventing damage to the engine due to excessive high temperature and pressure.

以下、本発明を図示せる実施例に依拠して説明する。The present invention will be described below with reference to illustrative embodiments.

第1図において、1はエンジン本体、2は吸気通路、6
は排気通路である0また、4はエンジンの出力を高める
ためのターボ過給機で、吸気通路2に設けたブロア5と
、排気通路乙に設けたタービン6と、該ブロア5とター
ビン6とを連動連結する回転軸7とを有し、排気通路6
内の排気ガス流によってタービン6が回転せしめられ、
これに連動してブロア5が回転することにより吸気過給
を行うようにしている。上記ブロア5より下流の吸気通
路2には、アクセル等に連動する絞り弁8を設けている
In Fig. 1, 1 is the engine body, 2 is the intake passage, and 6 is the engine body.
0 is an exhaust passage 0 Also, 4 is a turbo supercharger for increasing the output of the engine, which includes a blower 5 provided in the intake passage 2, a turbine 6 provided in the exhaust passage B, and the blower 5 and turbine 6. and a rotating shaft 7 that interlocks and connects the exhaust passage 6.
The turbine 6 is rotated by the exhaust gas flow within the
In conjunction with this, the blower 5 rotates to perform intake supercharging. The intake passage 2 downstream of the blower 5 is provided with a throttle valve 8 that is linked to an accelerator or the like.

また、燃料供給装置として、当実施例では燃料噴射方式
によるものを用いており、上記絞り弁8より下流の吸気
通路2に燃料噴射弁9を装備し、これに対して、該噴射
弁9からの燃料噴射量を電気的に制御する燃料供給制御
装置10を設けている0この燃料供給制御装置10は、
吸気量とエンジン回転数とに応じて燃料の基本噴射量を
決定し、さらに、吸気温センサー11により検出される
吸気温度に応じて燃料噴射量を補正、制御するようにし
ている。とくに本発明では、吸気温度が燃焼速度の異常
に速くなる所定値以上の高温度域に達したとき、燃料供
給量を増量するように燃料供給制御装置10を構成して
いる。上記吸気温センサー11は、検出温度を電気信号
に変えて取出すもので、エンジン本体1の燃焼室内の吸
気温度と一定の対応関係を有する吸気通路2内の所定箇
所での吸気温度を検出するようにしており、該吸気温セ
ンサー11による検出信号は上記燃料供給制御装置10
に入力される。また、12は前記ブロア5より上流の吸
気通路2内に設けた吸気流量検出用のエアフロメータ、
13は該エアフロメータ12の回動量を検出するポテン
ショメータであって、該ポテンショメータ16による検
出信号、および図外のエンジン回転数検出器によるエン
ジン回転数検出信号も、燃料供給制御装置10に入力さ
れる。
In this embodiment, a fuel injection system is used as the fuel supply device, and a fuel injection valve 9 is installed in the intake passage 2 downstream of the throttle valve 8. This fuel supply control device 10 is provided with a fuel supply control device 10 that electrically controls the fuel injection amount of
The basic injection amount of fuel is determined according to the intake air amount and the engine speed, and the fuel injection amount is further corrected and controlled according to the intake air temperature detected by the intake air temperature sensor 11. In particular, in the present invention, the fuel supply control device 10 is configured to increase the amount of fuel supplied when the intake air temperature reaches a high temperature range equal to or higher than a predetermined value where the combustion rate becomes abnormally high. The intake air temperature sensor 11 converts the detected temperature into an electric signal and extracts it, and is designed to detect the intake air temperature at a predetermined point in the intake passage 2 that has a certain correspondence with the intake air temperature in the combustion chamber of the engine body 1. The detection signal from the intake air temperature sensor 11 is transmitted to the fuel supply control device 10.
is input. Further, 12 is an air flow meter for detecting an intake flow rate provided in the intake passage 2 upstream of the blower 5;
13 is a potentiometer that detects the amount of rotation of the air flow meter 12, and a detection signal from the potentiometer 16 and an engine rotation speed detection signal from an engine rotation speed detector (not shown) are also input to the fuel supply control device 10. .

第2図は上記燃料供給制御装置10の回路構成を示し、
該燃料供給制御装置10は、基本噴射量決定回路14と
、加減算回路15と、補正量決定回路16と、増巾回路
17とからなる0上記基本噴射量決定回路14は、前記
ポテンショメータ13から送られる検出信号およびエン
ジン回転数の検出信号に基づき、吸気流量およびエンジ
ン回転数に応じた適当な基本噴射量を設定するようにし
ている。また、加減算回路15は、補正量決定回路16
から送られる補正信号に応答して、基本噴射量決定回路
14において設定された基本噴射量を増加または減少す
るものである。補正量決定回路16は、前記吸気温セン
サー11の出力を受け、吸気温度が前記の所定値以上の
高温度域に達したとき燃料噴射量を増加させる補正信号
を上記加減算回路15に送るようにしている。実施例で
は、第6図のグラフに示すように、吸気温度が所定値1
番(達するまでの温度域にあるとき、温度上昇lこ伴い
、吸入空気の密度の低下により自然的に混合気が濃くな
る分に見合うだけ燃料供給量を減少させ、吸気温度が所
定値T以上の高温度域に達したとき、温度上昇につれて
燃料供給量を増加させるように、補正量決定回路16お
よび加減算回路15を構成している。つまり、空燃比で
みれば、第4図のグラフに実線Aで示すように、吸気温
度が所定値Tに達するまでは°空燃比をほぼ理論空燃比
(14,7)と一致する一定値に保ち、吸気温度が所定
値Tを越えるとしだいに空燃比が小さくなる(混合気が
濃くなる)方向に制御している。上記所定値Tは、燃焼
速度が異常に速くなりはじめる限界温度を意味し、平常
の吸気温度と比べるとかなり高く、例えばエンジン回転
数250orpmの場合に85℃程度である。なお、前
記増巾回路17は、加減算回路15の出力を燃料噴射弁
9の制御に適当な電圧レベルにまで増巾するものである
FIG. 2 shows the circuit configuration of the fuel supply control device 10,
The fuel supply control device 10 includes a basic injection amount determining circuit 14 , an addition/subtraction circuit 15 , a correction amount determining circuit 16 , and an amplification circuit 17 . Based on the detected signal and the engine speed detection signal, an appropriate basic injection amount is set according to the intake air flow rate and the engine speed. The addition/subtraction circuit 15 also includes a correction amount determining circuit 16.
The basic injection amount set in the basic injection amount determining circuit 14 is increased or decreased in response to a correction signal sent from the basic injection amount determining circuit 14. The correction amount determining circuit 16 receives the output of the intake air temperature sensor 11, and sends a correction signal to the addition/subtraction circuit 15 to increase the fuel injection amount when the intake air temperature reaches a high temperature range equal to or higher than the predetermined value. ing. In the embodiment, as shown in the graph of FIG.
When the temperature is within the temperature range up to 1, the fuel supply amount is reduced to compensate for the natural mixture richness caused by the decrease in the density of the intake air as the temperature rises, and the intake air temperature exceeds the predetermined value T. The correction amount determination circuit 16 and the addition/subtraction circuit 15 are configured to increase the fuel supply amount as the temperature rises when the temperature reaches a high temperature range. As shown by solid line A, until the intake air temperature reaches a predetermined value T, the air-fuel ratio is kept at a constant value that approximately matches the stoichiometric air-fuel ratio (14,7), and when the intake air temperature exceeds the predetermined value T, the air-fuel ratio is gradually reduced. The fuel ratio is controlled in the direction of decreasing (the mixture becomes richer).The predetermined value T means the limit temperature at which the combustion speed begins to become abnormally high, and is considerably higher than the normal intake air temperature. When the rotational speed is 250 rpm, the temperature is about 85° C. The amplification circuit 17 amplifies the output of the addition/subtraction circuit 15 to a voltage level suitable for controlling the fuel injection valve 9.

次に、この空燃比制御装置の作用を説明する。Next, the operation of this air-fuel ratio control device will be explained.

燃料供給量すなわち前記燃料噴射弁9からの燃料噴射量
は、燃料供給制御装置10における前記基本噴射量決定
回路14によって決定される基本噴射量をもとに、前記
補正回路16および加減算回路15により吸気温度に応
じて補正される。そして、前述のように、吸気温度が所
定値T以下の範囲では、温度上昇に伴って燃料噴射量が
減少することにより空燃比が一定値に保たれるが、燃焼
速度の異常に速くなる傾向が生ずる所定値T以上の高温
度域では、逆に温度上昇に伴って燃料噴射量がしだいに
増加し、空燃比が混合気の濃くなる方向に変化する。こ
れにより、上記高温度域では燃焼速度が抑制され、異常
燃焼(デトネーション)が防止されることとなる。
The fuel supply amount, that is, the fuel injection amount from the fuel injection valve 9 is determined by the correction circuit 16 and the addition/subtraction circuit 15 based on the basic injection amount determined by the basic injection amount determination circuit 14 in the fuel supply control device 10. It is corrected according to the intake air temperature. As mentioned above, when the intake air temperature is below the predetermined value T, the air-fuel ratio is maintained at a constant value by decreasing the fuel injection amount as the temperature rises, but the combustion rate tends to become abnormally fast. In a high temperature range above a predetermined value T where . As a result, the combustion rate is suppressed in the high temperature range, and abnormal combustion (detonation) is prevented.

この制御作用を従来技術と比較して説明すると、従来で
は、吸気温度の変化に対して常に空燃比を一定の理論空
燃比(14,7)付近に保つか、吸気温度20℃以上で
燃料供給量の補正を行わないようにしている程度にすぎ
ない。ところが、第4図に二点鎖線Bで示す、ように高
温度域でも空燃比を一定に保つようにすると、前述の温
度上昇そのものによる影響が一層顕著に表われ、却って
異常燃焼を助長してしまう。また、ある程度の温度以上
で讐−籾供給量の補正を行わないようにした場合、吸気
温度が高くなると吸入空気の密度の低下により自然的に
多少は空燃比が小さくなるが、これでも、本来的に高温
度域で温度上昇そのものによる影響がより大きく作用し
て異常燃焼が生じ易くなるという現象を防止し得るもの
ではない。これに対して本発明では、高温度域で積極的
に燃料供給量を増加させることにより、燃焼速度が異常
に高くなる現象を防止するに充分な程度に、空燃比を小
さくしているのである。
To explain this control action in comparison with the conventional technology, in the past, the air-fuel ratio was always kept around a constant stoichiometric air-fuel ratio (14,7) in response to changes in the intake air temperature, or fuel was supplied when the intake air temperature was 20°C or higher. This is just a matter of not making any amount corrections. However, if the air-fuel ratio is kept constant even in the high temperature range, as shown by the two-dot chain line B in Figure 4, the effect of the temperature increase itself becomes even more pronounced, and on the contrary, it encourages abnormal combustion. Put it away. In addition, if the amount of rice supplied is not corrected above a certain temperature, the air-fuel ratio will naturally become smaller due to the decrease in the density of the intake air as the intake air temperature increases, but even with this, the air-fuel ratio will naturally decrease. However, it is not possible to prevent the phenomenon that abnormal combustion is more likely to occur due to the influence of the temperature rise itself being greater in the high temperature range. In contrast, in the present invention, by actively increasing the amount of fuel supplied in the high temperature range, the air-fuel ratio is reduced to a sufficient degree to prevent the phenomenon of abnormally high combustion speed. .

もっとも、燃焼速度を抑制するには、空燃比を理論空燃
比よりも大きくする(混合気を薄くする)方向に変化さ
せる方法も考えられるが、混合気を薄くすれば失火が生
じ易い。これと比べると、混合気を濃くする側には、失
火防止の点からもがなり大きく空燃比を変化させること
が許される。そこで、本発明では、高温度域で混合気を
濃くする方向に制御しているのである。
However, in order to suppress the combustion speed, it is possible to change the air-fuel ratio to be larger than the stoichiometric air-fuel ratio (to make the air-fuel mixture leaner), but if the air-fuel mixture is made leaner, misfires are likely to occur. Compared to this, in order to enrich the air-fuel mixture, a large change in the air-fuel ratio is allowed in order to prevent misfires. Therefore, in the present invention, the air-fuel mixture is controlled to become richer in the high temperature range.

とくに、過給機によって吸気過給を行うエンジンにあっ
ては、本来的に高温度域での異常燃焼が生じ易いため、
本発明装置がより有効なものとなる。
In particular, engines that perform intake supercharging using a supercharger are inherently prone to abnormal combustion in high temperature ranges.
The device of the present invention becomes more effective.

なお、本発明装置の具体的構造は前記実施例に限定され
ず、本発明の要旨を逸脱しない範囲で種々変更可能であ
る。例えば、燃料供給装置としては、図例の噴射式のも
のに代えて気化器式のものを用いてもよく、この場合、
気化器への燃料供給通路に流量調節可能な弁を設け、こ
の弁を吸気温度に応じて燃料供給制御装置により制御す
ればよい。また、前記実施例では、吸気温度が所定値1
以上のとき燃料供給量を温度上昇に応じて連続的に増加
させるようにしているが、吸気温度が所定値以上のとき
段階的に供給燃料を所要量増加させてもよい。
It should be noted that the specific structure of the device of the present invention is not limited to the above-mentioned embodiments, and can be modified in various ways without departing from the gist of the present invention. For example, a carburetor type fuel supply device may be used instead of the injection type shown in the figure, and in this case,
A valve capable of adjusting the flow rate may be provided in the fuel supply passage to the carburetor, and this valve may be controlled by a fuel supply control device according to the intake air temperature. Further, in the above embodiment, the intake air temperature is set to the predetermined value 1.
In the above case, the amount of fuel supplied is continuously increased in accordance with the temperature rise, but the required amount of supplied fuel may be increased in stages when the intake air temperature is equal to or higher than a predetermined value.

以上説明したように、本発明は、吸気温センサーの出力
を受ける燃料供給制御装置により、吸気温度が燃焼速度
の異常に速くなる所定値以上の高温度域に達したとき、
燃料供給量を増加させて積極的に空燃比を小さくする方
向に制御しているため、上記高温度域において燃焼速度
が抑制され、燃料の急激な爆発による異常燃焼を防止し
得、異常燃焼によるエンジンダメージを防いでエンジン
の安全性、耐久性を格段に高めることができるものであ
る。
As explained above, according to the present invention, when the intake air temperature reaches a high temperature range above a predetermined value where the combustion rate becomes abnormally high, the fuel supply control device receives the output of the intake air temperature sensor.
Since the fuel supply amount is increased and the air-fuel ratio is actively controlled in the direction of decreasing, the combustion speed is suppressed in the above-mentioned high temperature range, and abnormal combustion due to sudden explosion of fuel can be prevented, and abnormal combustion due to abnormal combustion can be prevented. This prevents engine damage and greatly increases engine safety and durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略図、第2図は燃料
供給制御装置の回路構成を示すブロック図、第6図は本
発明装置の制御作用に基づく吸気温度と燃料供給量との
関係を示すグラフ、第4図は同制御作用に基づく吸気温
度と空燃比との関係を示すグラフである。 1・・・エンジン本体、9・・・燃料噴射弁、10・・
・燃料供給制御装置、11・・・吸気温センサー。 特許出願人 東洋工業株式会社 第  1  図 第  2  図 第  3  図 第  4  図
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing the circuit configuration of the fuel supply control device, and Fig. 6 shows the relationship between intake air temperature and fuel supply amount based on the control action of the device of the present invention. FIG. 4 is a graph showing the relationship between intake air temperature and air-fuel ratio based on the same control action. 1... Engine body, 9... Fuel injection valve, 10...
- Fuel supply control device, 11... intake temperature sensor. Patent applicant: Toyo Kogyo Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、吸気温度を検出する吸気温センサーと、該吸気温セ
ンサーの出力を受けて、吸気温度が燃焼速度の異常に速
くなる所定値以上の高温度域に達したときエンジンの燃
焼室への、燃料供給量を増加する燃料供給制御装置とを
備えて成ることを特徴とするエンジンの空燃比制御装置
1. An intake air temperature sensor that detects the intake air temperature, and upon receiving the output of the intake air temperature sensor, when the intake air temperature reaches a high temperature range above a predetermined value where the combustion rate is abnormally high, 1. An air-fuel ratio control device for an engine, comprising: a fuel supply control device that increases the amount of fuel supplied.
JP56104223A 1981-04-15 1981-07-02 Air-fuel ratio controller of engine Granted JPS585446A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56104223A JPS585446A (en) 1981-07-02 1981-07-02 Air-fuel ratio controller of engine
US06/368,355 US4485625A (en) 1981-04-15 1982-04-14 Control means for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56104223A JPS585446A (en) 1981-07-02 1981-07-02 Air-fuel ratio controller of engine

Publications (2)

Publication Number Publication Date
JPS585446A true JPS585446A (en) 1983-01-12
JPS6343576B2 JPS6343576B2 (en) 1988-08-31

Family

ID=14374956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56104223A Granted JPS585446A (en) 1981-04-15 1981-07-02 Air-fuel ratio controller of engine

Country Status (1)

Country Link
JP (1) JPS585446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603453A (en) * 1983-06-21 1985-01-09 Mitsubishi Motors Corp Engine controller

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915824A (en) * 1972-06-12 1974-02-12
JPS5110227A (en) * 1974-07-14 1976-01-27 Nippon Denso Co DENSHISHIKINENRYOFUNSHASEIGYOSOCHI

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915824A (en) * 1972-06-12 1974-02-12
JPS5110227A (en) * 1974-07-14 1976-01-27 Nippon Denso Co DENSHISHIKINENRYOFUNSHASEIGYOSOCHI

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603453A (en) * 1983-06-21 1985-01-09 Mitsubishi Motors Corp Engine controller
JPH0526022B2 (en) * 1983-06-21 1993-04-14 Mitsubishi Motors Corp

Also Published As

Publication number Publication date
JPS6343576B2 (en) 1988-08-31

Similar Documents

Publication Publication Date Title
JPS595775B2 (en) Boost pressure control device for supercharged engines
JPS6329098B2 (en)
US4501240A (en) Idling speed control system for internal combustion engine
JP7147377B2 (en) Evaporative fuel processing device
US4304210A (en) System and method for controlling EGR in internal combustion engine
US4485625A (en) Control means for internal combustion engines
JPH01318722A (en) Control device for supercharging pressure of internal combustion engine with supercharger
JPH0158334B2 (en)
JPS585446A (en) Air-fuel ratio controller of engine
JPH01147127A (en) Cylinder number control type traction controller
JPS585471A (en) Firing timing controller for engine
JP3382019B2 (en) Gas engine control unit
US6708103B2 (en) Method, computer program, and control and/or regulating device for operating an internal combustion engine
JPS63285240A (en) Fuel control device for internal combustion engine
JP2001193534A (en) Engine control device
JPS60178933A (en) Supercharging pressure control device for exhaust turbosupercharger
JPS62225745A (en) Air-fuel ratio control device for engine
JPH01271659A (en) Device for controlling idling speed of engine
JPH0586934A (en) Transient fuel quantity corrector for engine
JP2757199B2 (en) Knock control device for internal combustion engine
JPS59126041A (en) Internal-combustion engine
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JP3319770B2 (en) Rotational speed control device for constant-speed rotary spark ignition type internal combustion engine
JPH03286161A (en) Air-fuel ratio controller for engine
JP2003148216A (en) Air-fuel ratio control apparatus for internal combustion engine