JPS5854462B2 - electron beam deflector - Google Patents

electron beam deflector

Info

Publication number
JPS5854462B2
JPS5854462B2 JP11462878A JP11462878A JPS5854462B2 JP S5854462 B2 JPS5854462 B2 JP S5854462B2 JP 11462878 A JP11462878 A JP 11462878A JP 11462878 A JP11462878 A JP 11462878A JP S5854462 B2 JPS5854462 B2 JP S5854462B2
Authority
JP
Japan
Prior art keywords
deflector
electron beam
magnetic field
electrostatic
deflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11462878A
Other languages
Japanese (ja)
Other versions
JPS5541654A (en
Inventor
勝広 黒田
茂 守屋
良亘 竹内
明平 藤波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP11462878A priority Critical patent/JPS5854462B2/en
Publication of JPS5541654A publication Critical patent/JPS5541654A/en
Publication of JPS5854462B2 publication Critical patent/JPS5854462B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は、電子線描画装置などに用いられる電子線の走
査偏向器の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electron beam scanning deflector used in an electron beam drawing apparatus or the like.

電子線描画装置においで、試料面に電子線を垂直入射さ
せる電子光学系は、試料面の上下変動が生起しても位置
ずれを生じさせないため、電子線描画を行なう上で非常
に有効な手段である。
In an electron beam lithography system, the electron optical system that makes the electron beam perpendicularly enter the sample surface is a very effective means for electron beam lithography because it does not cause positional deviation even if the sample surface changes vertically. It is.

一般に、このような電子光学系を用いた方式は、第1図
に示されるように、テレセンドリンク方式といわれてい
る。
Generally, a method using such an electron optical system is called a telesend link method, as shown in FIG.

図1こおいて、レンズ3の焦点距離の位置に配置された
偏向器1により偏向された電子線2は、レンズ3を通っ
て光軸に平行に進む。
In FIG. 1, an electron beam 2 deflected by a deflector 1 placed at the focal length of a lens 3 passes through the lens 3 and travels parallel to the optical axis.

従って、試料面4に垂直入射される電子線2は、試料面
4が上下に変動しても位置ずれを生じない。
Therefore, the electron beam 2 that is perpendicularly incident on the sample surface 4 does not shift its position even if the sample surface 4 moves up and down.

従来のテレセンドリンク方式は、磁界型偏向器を1個用
いて構成しているのが普通であるが、近年、描画速度向
上のために、第2図に示すような磁界型偏向器11と静
電型偏向器12とを組み合わせて用いる構成のものが考
案されている。
The conventional telescend link method is usually constructed using one magnetic field type deflector, but in recent years, in order to improve the drawing speed, a magnetic field type deflector 11 and a static magnetic field type deflector as shown in Fig. 2 have been used. A configuration has been devised in which it is used in combination with an electric type deflector 12.

この場合、偏角収差の小さい磁界型偏向器11で大角偏
向を行ない、速度のはやい静電型偏向器12で小角偏向
を行なう。
In this case, the magnetic field type deflector 11 with small deviation angle aberration performs large-angle deflection, and the high-speed electrostatic type deflector 12 performs small-angle deflection.

図のように磁界型偏向器11の上方に静電型偏向器12
を配置したものの他に、その逆に配置された構成のもの
もある。
As shown in the figure, an electrostatic deflector 12 is placed above the magnetic field deflector 11.
In addition to those with the arrangement, there are also those with the arrangement reversed.

いずれにしろ、このような構成では、高速でかつ収差を
小さくできる利点を有する反面、本来のテレセンドリン
ク方式がくずれてしまう欠点を有する。
In any case, such a configuration has the advantage of being able to operate at high speed and reducing aberrations, but has the disadvantage that the original telesend link system is disrupted.

また、従来の静電偏向器は導電体でつくられているため
、磁界型偏向器を働らかせると導電体にエディ−カレン
ト(Eddy Current)が生じ必要な磁場を得
るのに時間がかかるなどの種々の欠点を有する。
In addition, since conventional electrostatic deflectors are made of conductors, when a magnetic field type deflector is activated, an eddy current is generated in the conductor and it takes time to obtain the necessary magnetic field. It has various disadvantages.

本発明は、上記の点に着目してなされたものであり、磁
界型と静電型偏向器からなる電子線の走査偏向器におい
て、試料面の上下変動が生じても位置ずれを生じさせず
、かつ周波数特性のすぐれた電子線偏向器を提供するも
のである。
The present invention has been made with attention to the above points, and is an electron beam scanning deflector consisting of a magnetic field type deflector and an electrostatic type deflector, which does not cause positional deviation even if the sample surface changes vertically. , and provides an electron beam deflector with excellent frequency characteristics.

上記目的を達成するために、本発明では、磁界型偏向器
の内部もしくは近傍に静電型偏向器を配設して両偏向器
の偏向中心を一致せしめ、かつ周波数特性向上のため静
電型偏向器の偏向板には、絶縁体に非磁性導電物を塗布
したものを用いる。
In order to achieve the above object, in the present invention, an electrostatic deflector is disposed inside or near a magnetic field deflector to align the deflection centers of both deflectors, and an electrostatic deflector is provided in order to improve frequency characteristics. The deflection plate of the deflector is made of an insulator coated with a non-magnetic conductive material.

以下、本発明を実施例を参照して説明する。Hereinafter, the present invention will be explained with reference to Examples.

第3図は、本発明の一実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the present invention.

絶縁体21の板の表面に非磁性導電物22を塗布した静
電型偏向器と、偏向コイル23と磁性体(フェライト)
24とからなる磁界型偏向器とからなっている。
An electrostatic deflector in which a nonmagnetic conductive material 22 is coated on the surface of an insulator 21 plate, a deflection coil 23, and a magnetic material (ferrite).
It consists of a magnetic field type deflector consisting of 24.

静電型偏向器の絶縁体21の表面に非磁性導電物22を
塗布したものを用いるのは、磁界型偏向器のエディ−カ
レントによる磁場レスポンスの悪化を防止するためであ
る。
The reason why a non-magnetic conductive material 22 is applied to the surface of the insulator 21 of the electrostatic deflector is used to prevent deterioration of the magnetic field response due to the eddy current of the magnetic field deflector.

これによって、動特性(周波数特性)を向上させること
ができる。
Thereby, dynamic characteristics (frequency characteristics) can be improved.

本実施例では、静電型偏向器の方が磁界型偏向器の内部
に配置され、両者の偏向中心が一致するように構成され
ている。
In this embodiment, the electrostatic type deflector is arranged inside the magnetic field type deflector, and the deflection centers of both are arranged to coincide with each other.

図のように上、下対称形の場合は、各々の偏向器の機械
的中心を一致させればよい。
If the deflectors are symmetrical above and below as shown in the figure, the mechanical centers of each deflector may be aligned.

また、非対称の場合には、電場、磁場分布をもとめれば
偏向中心が知れるので、これによって両者の偏向中心を
一致させる。
In addition, in the case of asymmetrical polarization, the center of deflection can be found by determining the electric field and magnetic field distributions, so that the centers of both deflections can be made to coincide with each other.

静電型偏向器は高速、小角偏向に用い、電磁型偏向器は
低速、大角偏向に用いる。
Electrostatic deflectors are used for high-speed, small-angle deflections, and electromagnetic deflectors are used for low-speed, large-angle deflections.

これは、磁場レスポンスや収差の観点から各々の偏向器
の特徴をいかしたものである。
This takes advantage of the characteristics of each deflector from the viewpoint of magnetic field response and aberration.

偏向中心の一致は、いかなる偏向時にも偏向中心を固定
にできるためである。
The coincidence of the deflection centers is because the deflection centers can be fixed during any deflection.

このような電子線偏向器を有する偏向系を最終レンズの
焦点距離の位置に配置させることによって、試料面に上
下変動が生起しても位置ずれを生起することはなく、所
謂テレセンドリンク方式を維持できる。
By arranging the deflection system with such an electron beam deflector at the focal length of the final lens, no positional shift occurs even if vertical fluctuations occur on the sample surface, and the so-called telesend link method is maintained. can.

本発明では、静電型偏向器における絶縁体21としてデ
ルリン、ガラス、テフロン等を用い、非磁性導電物22
にはネサコーティング、銅メッキ、金メッキ等を用い、
また、磁界型偏向器における磁性体24として、フェラ
イト等を用いる。
In the present invention, Delrin, glass, Teflon, etc. are used as the insulator 21 in the electrostatic deflector, and the non-magnetic conductor 22
using Nesa coating, copper plating, gold plating, etc.
Furthermore, ferrite or the like is used as the magnetic material 24 in the magnetic field type deflector.

本発明により周波数特性がどのように向上するかを以下
に示す。
How the frequency characteristics are improved by the present invention will be shown below.

最初に、従来のように静電偏向板に導体(銅板)を用い
たとする。
First, assume that a conductor (copper plate) is used for the electrostatic deflection plate as in the conventional case.

この銅板の厚みを、今1間(一般によく使用されている
値)とすると、この場合の電磁偏向の周波数特性は、f
oご1.3k Hzとなり、目標値の2X10’の精度
内(これは5關のステップ偏向で0.1μmの精度を意
味する。
Assuming that the thickness of this copper plate is 1 inch (a commonly used value), the frequency characteristics of electromagnetic deflection in this case are f
The frequency is 1.3 kHz, which is within the target accuracy of 2×10' (this means an accuracy of 0.1 μm with a step deflection of 5 steps).

)におさめるために必要な時間tは、約1.4TLB、
となる。
) is approximately 1.4TLB,
becomes.

ここで、上記のfCは、時定数τ、透磁率μ、導電率σ
および導体の厚みdによって与えられる次式から求めら
れる。
Here, the above fC is the time constant τ, magnetic permeability μ, and electrical conductivity σ
and the thickness d of the conductor.

すなわち、τ =μ・σ・d2 fc=0.16/τ ここで、μ二4π・10−7〔g−8ec−1・m−1
〕、σ二108〔g−1・m−1〕である。
That is, τ = μ・σ・d2 fc=0.16/τ Here, μ24π・10−7 [g−8ec−1・m−1
], σ2108 [g-1·m-1].

また、上述の時間tは、e−’A = 2 X 10−
5から求められる。
Moreover, the above-mentioned time t is e-'A = 2 X 10-
It is found from 5.

これに対して、本発明の場合には、静電偏向板として絶
縁体に厚さ30μm以下の銅メッキを施したものを用い
たとすると、上式から電磁偏向の周波数特性はf。
On the other hand, in the case of the present invention, if an insulator plated with copper to a thickness of 30 μm or less is used as the electrostatic deflection plate, the frequency characteristic of electromagnetic deflection is f from the above equation.

::1.4kHzとなり、目標値の2×10−5の精度
内におさめるために必要な時間tは、1.2μSでよい
ことになる。
::1.4 kHz, and the time t required to keep the target value within the accuracy of 2×10 −5 may be 1.2 μS.

このことから、電子線描画装置などのように高速偏向が
要求される場合に、本発明を適用して得られる効果は非
常に大きい。
From this, when high-speed deflection is required, such as in an electron beam lithography system, the effect obtained by applying the present invention is very large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、テレセンドリンク方式の電子光学系を説明す
る図、第2図は、従来の電子線偏向器の一例を示す図、
および第3図は、本発明の電子線偏向器の一実施例を示
す図である。 図において、11・・・・・・磁界型偏向器、12・・
・・・・静電型偏向器、21・・・・・・絶縁体、22
・・・・・・非磁性導電物、23・・・・・・偏向コイ
ル、24・・・・・・磁性体。
FIG. 1 is a diagram illustrating a telesend link type electron optical system, and FIG. 2 is a diagram illustrating an example of a conventional electron beam deflector.
and FIG. 3 are diagrams showing an embodiment of the electron beam deflector of the present invention. In the figure, 11... Magnetic field type deflector, 12...
... Electrostatic deflector, 21 ... Insulator, 22
...Nonmagnetic conductive material, 23 ... Deflection coil, 24 ... Magnetic material.

Claims (1)

【特許請求の範囲】 1 磁界型偏向器の内部に静電型偏向器を配置してなる
電子線偏向器において、該静電型偏向器を、絶縁体の表
面に非磁性導電物を塗布しで構成したことを特徴とする
電子線偏向器。 2、特許請求の範囲第1項記載の電子線偏向器において
、前記磁界型偏向器と前記静電型偏向器の偏向中心を一
致せしめて構成したことを特徴とする電子線偏向器。
[Claims] 1. In an electron beam deflector in which an electrostatic deflector is arranged inside a magnetic field deflector, the electrostatic deflector is formed by coating the surface of an insulator with a non-magnetic conductive material. An electron beam deflector characterized by comprising: 2. An electron beam deflector according to claim 1, characterized in that the deflection centers of the magnetic field type deflector and the electrostatic type deflector are made to coincide with each other.
JP11462878A 1978-09-20 1978-09-20 electron beam deflector Expired JPS5854462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11462878A JPS5854462B2 (en) 1978-09-20 1978-09-20 electron beam deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11462878A JPS5854462B2 (en) 1978-09-20 1978-09-20 electron beam deflector

Publications (2)

Publication Number Publication Date
JPS5541654A JPS5541654A (en) 1980-03-24
JPS5854462B2 true JPS5854462B2 (en) 1983-12-05

Family

ID=14642597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11462878A Expired JPS5854462B2 (en) 1978-09-20 1978-09-20 electron beam deflector

Country Status (1)

Country Link
JP (1) JPS5854462B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585952A (en) * 1981-07-03 1983-01-13 Hitachi Ltd Charged-particle focusing deflecting device
FR2584234B1 (en) * 1985-06-28 1988-12-09 Cameca INTEGRATED CIRCUIT TESTER WITH ELECTRON BEAM
JPH078850B2 (en) * 1986-09-18 1995-02-01 三菱油化株式会社 Process for producing pentaerythritol-tetrakis (3-alkylthio-propionate)
JPH08124505A (en) * 1994-10-27 1996-05-17 Nikon Corp Electromagnetic lens and manufacture thereof

Also Published As

Publication number Publication date
JPS5541654A (en) 1980-03-24

Similar Documents

Publication Publication Date Title
US5831270A (en) Magnetic deflectors and charged-particle-beam lithography systems incorporating same
US3930181A (en) Lens and deflection unit arrangement for electron beam columns
US3801792A (en) Electron beam apparatus
US2901627A (en) Method of and apparatus for the electronic magnification of objects
US3911321A (en) Error compensating deflection coils in a conducting magnetic tube
US4445041A (en) Electron beam blanker
US2454345A (en) Cathode-ray deflection tube with electron lenses
JPS5871545A (en) Variable forming beam electron optical system
US4117339A (en) Double deflection electron beam generator for employment in the fabrication of semiconductor and other devices
US2547994A (en) Electronic microscope
US4251728A (en) Compensated magnetic deflection coil for electron beam lithography system
US4546258A (en) Charged particle beam apparatus
JPS61101944A (en) Charged particle beam focusing system
JPS5854462B2 (en) electron beam deflector
US4798953A (en) Electronic beam device for projecting an image of an object on a sample
US4710672A (en) Picture display device
JP2946537B2 (en) Electron optical column
JPS6330734B2 (en)
JP2886277B2 (en) Electron beam exposure equipment
US2727182A (en) Image transformer with electronoptical image projection
GB832500A (en) Improvements relating to electron optical apparatus
KR20040034600A (en) Slit lens arrangement for particle beams
JPS5944743B2 (en) Irradiation electron lens system for scanning electron microscopes, etc.
US3814936A (en) Mass spectrometers and mass spectrometry
US2898467A (en) Electron oscillograph