JPS5854401B2 - Temperature conversion setting circuit - Google Patents

Temperature conversion setting circuit

Info

Publication number
JPS5854401B2
JPS5854401B2 JP15400576A JP15400576A JPS5854401B2 JP S5854401 B2 JPS5854401 B2 JP S5854401B2 JP 15400576 A JP15400576 A JP 15400576A JP 15400576 A JP15400576 A JP 15400576A JP S5854401 B2 JPS5854401 B2 JP S5854401B2
Authority
JP
Japan
Prior art keywords
temperature
voltage
setting circuit
conversion setting
variable resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15400576A
Other languages
Japanese (ja)
Other versions
JPS5377573A (en
Inventor
博 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15400576A priority Critical patent/JPS5854401B2/en
Publication of JPS5377573A publication Critical patent/JPS5377573A/en
Publication of JPS5854401B2 publication Critical patent/JPS5854401B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は湯温等の温度変化を抵抗値の変化に変換する感
温抵抗素子を備えた温度変換設定回路に関し、その目的
とするところは湯温等を自動的に制御する自動温度制御
器においてオーバシュートを引き起こすことのない温度
変換設定回路を安価に提供することにある。
[Detailed Description of the Invention] The present invention relates to a temperature conversion setting circuit equipped with a temperature-sensitive resistance element that converts temperature changes such as water temperature into changes in resistance value. An object of the present invention is to provide an inexpensive temperature conversion setting circuit that does not cause overshoot in an automatic temperature controller.

従来から第6図に示すように直流電源1、抵抗2、可変
抵抗3、感温抵抗素子4を直列接続した温度変換設定回
路5が提案されているが、この回路5を例えばガス湯沸
器に適用しようとすれば次のような問題が生じる。
Conventionally, a temperature conversion setting circuit 5 has been proposed in which a DC power supply 1, a resistor 2, a variable resistor 3, and a temperature-sensitive resistance element 4 are connected in series as shown in FIG. If you try to apply it, the following problems will arise.

つまり、この回路5をガス湯沸器に適用した場合には可
変抵抗3が湯温を設定するもの、また感温抵抗素子4が
湯温を検出するものになり、この両者の差は出力端子6
から電圧値として表われる。
In other words, when this circuit 5 is applied to a gas water heater, the variable resistor 3 is used to set the water temperature, and the temperature-sensitive resistance element 4 is used to detect the water temperature, and the difference between the two is determined by the output terminal. 6
It is expressed as a voltage value.

そして、この電圧値を比例微分し、この比例微分値によ
ってバーナの燃焼量を制御し、これによって湯温を設定
温度に保とうとする。
Then, this voltage value is proportionally differentiated, and the combustion amount of the burner is controlled by this proportionally differentiated value, thereby attempting to maintain the water temperature at a set temperature.

しかしながら、このように出力端子6に表われた電圧を
微分するものについては、設定温度を可変した時に大き
なオーバシュートを引き起こしてしまう。
However, such a device that differentiates the voltage appearing at the output terminal 6 causes a large overshoot when the set temperature is varied.

これを具体的にのべると、湯温を40℃から60℃に変
更しようとして可変抵抗3を操作すると、この時には出
力端子6の電圧が瞬時に変わるのでその微分値は非常に
大きなものとなり、この結果湯温は6゛0°Cをはるか
に超して80℃にも達してしまう。
To put this into concrete terms, when variable resistor 3 is operated to change the water temperature from 40°C to 60°C, the voltage at output terminal 6 changes instantaneously, and its differential value becomes extremely large. As a result, the temperature of the hot water far exceeds 60°C and reaches 80°C.

ところが、このようなオーバシュートを知らない使用者
はこの湯を60℃と信んして使い、この結果火傷をする
恐れがある。
However, users who do not know about such overshoot may use this hot water believing that it is 60°C, which may result in burns.

そこで本発明は可変抵抗にコンデンサを並列接続すると
いう簡単な構成により上記従来の欠点を解消しようとす
るとともに、自動温度制御系の応答速度を改善しようと
するものである。
Therefore, the present invention attempts to eliminate the above-mentioned conventional drawbacks by using a simple configuration in which a capacitor is connected in parallel to a variable resistor, and also attempts to improve the response speed of an automatic temperature control system.

以下、本発明の一実施例を添付図面にもとづいて説明す
る。
Hereinafter, one embodiment of the present invention will be described based on the accompanying drawings.

第1図において、7は温度変換設定回路で、この回路7
は直流電源8、抵抗9、可変抵抗10、サーミスタ等の
温度検出素子としての感温抵抗素子11を直列接続する
とともに、上記可変抵抗10にコンデンサ12を並列接
続して構成した。
In FIG. 1, 7 is a temperature conversion setting circuit, and this circuit 7
A DC power supply 8, a resistor 9, a variable resistor 10, and a temperature sensitive resistance element 11 as a temperature detecting element such as a thermistor are connected in series, and a capacitor 12 is connected in parallel to the variable resistor 10.

つまり、本発明の温度変換設定回路7は従来の温度変換
設定回路5にコンデンサ12を並列接続したものである
が、このコンデンサ12を設置dたことにより出力端子
13には次のような電圧が表われるようになった。
In other words, the temperature conversion setting circuit 7 of the present invention has a capacitor 12 connected in parallel to the conventional temperature conversion setting circuit 5, but by installing this capacitor 12, the following voltage is applied to the output terminal 13. began to appear.

先ず、温度設定のために可変抵抗10の抵抗値をR1か
らR2(R1<R2)にステップ的に可変した場合につ
いてのべる。
First, a case will be described in which the resistance value of the variable resistor 10 is varied stepwise from R1 to R2 (R1<R2) for temperature setting.

この場合、コンデンサ12の両端に表われる電圧は次の
(1,)式の電圧■1から(n)式の電圧■2に適当な
時定数をもって徐々に上昇する。
In this case, the voltage appearing across the capacitor 12 gradually increases from the voltage (1) of the following equation (1,) to the voltage (2) of the equation (n) with an appropriate time constant.

この結果、出力端子13に表われる電圧は当然次の(I
II)式の電圧■3から(IV)式の電圧■4に一次遅
れの状態で徐々に上昇することになる。
As a result, the voltage appearing at the output terminal 13 is naturally the following (I
The voltage gradually increases from the voltage ■3 in the formula II) to the voltage ■4 in the formula (IV) with a first-order lag.

但し、(nl)式、0式のR3,R4,Eは上記(L)
式、 (II)式を準用する。
However, R3, R4, and E of formula (nl) and formula 0 are the above (L)
Formula (II) is applied mutatis mutandis.

次に、感温抵抗素子11の抵抗値がR11からR4□(
R+x <R42)にステップ的に変化した場合につい
てのべる。
Next, the resistance value of the temperature-sensitive resistance element 11 is changed from R11 to R4□(
The following describes the case where R+x <R42) changes in a stepwise manner.

この場合、感温抵抗素子11の抵抗値がR4□の時コン
デンサ12の両端に表われる電圧■、は次の(V)弐の
ようになる。
In this case, when the resistance value of the temperature-sensitive resistance element 11 is R4□, the voltage ■ appearing across the capacitor 12 becomes as follows (V)2.

但しくV)式(7)R,、R3,Eハ上記(1)弐〜(
■)式を準用する。
However, V) Formula (7) R,, R3, Ec above (1) 2~(
■) Apply the formula mutatis mutandis.

その後、感温抵抗素子11の抵抗f直がR4□からR4
□に変化すると、この感温抵抗素子11の両端に表われ
る電圧■6は次の(9)式のように上昇するが、この時
コンデンサ12の両端の電圧■、は瞬時には下降しない
After that, the resistance f of the temperature-sensitive resistance element 11 changes from R4□ to R4
When the voltage changes to □, the voltage 6 appearing across the temperature sensitive resistance element 11 rises as shown in the following equation (9), but at this time the voltage 2 across the capacitor 12 does not drop instantaneously.

但しくVl1式のR1,R3,Eは上記(1)弐〜(I
V)式を準用する。
However, R1, R3, and E of the Vl1 formula correspond to the above (1) 2 to (I
V) Apply the formula mutatis mutandis.

このため、感温抵抗素子11の抵抗値がR21からR4
□に変化した瞬時においては出力端子13の電圧V7は
次の浦式のように上昇する。
Therefore, the resistance value of the temperature-sensitive resistance element 11 changes from R21 to R4.
At the moment when the voltage changes to □, the voltage V7 at the output terminal 13 rises as shown in the following Ura equation.

但しくVID式のR1,R3,Eは上記(1式〜曲)式
を準用する。
However, for R1, R3, and E of the VID formula, the above formulas (1 to 2) apply mutatis mutandis.

その後、時間の経過とともにコンデンサ12が放電し、
この結果電圧■5が次の(nx)式のようになると出力
端子13に表われていた電圧v7はこの降下につれて次
の(IX)式まで降下する。
After that, the capacitor 12 discharges over time,
As a result, when the voltage 5 becomes as shown in the following equation (nx), the voltage v7 appearing at the output terminal 13 drops to the following equation (IX) as this voltage drops.

但しくaX)式と(ω式のR3,Eは上記(I)弐〜潤
式を準用する。
However, for R3 and E of the aX) formula and the (ω formula), the above (I) Ni~Jun formula is applied mutatis mutandis.

つまり、このように感温抵抗素子11の抵抗値がR4□
からR42にステップ的に変化した時には出力端子13
に表われる電圧■7は微分的に変化することとなった。
In other words, the resistance value of the temperature-sensitive resistance element 11 is R4□
When there is a step change from R42 to R42, the output terminal 13
The voltage (■7) appearing in was changed differentially.

上記説明から、明らかなように本発明の温度変換設定回
路7はコンデンサ12を付加するだけで可変抵抗10の
抵抗値を変化させた時には出力端子13には一次遅れ波
形の電圧、また感温抵抗素子11の抵抗値が変化した時
には出力端子13に微分波形の電圧を得ることができた
From the above description, it is clear that the temperature conversion setting circuit 7 of the present invention has a first-order delayed waveform voltage at the output terminal 13 when the resistance value of the variable resistor 10 is changed by simply adding the capacitor 12, and also a temperature-sensitive resistor. When the resistance value of the element 11 changed, a differential waveform voltage could be obtained at the output terminal 13.

このため、この温度変換設定回路7を例えばガス湯沸器
に活用する場合には上記微分波形を増幅し、この増幅値
によってバーナの燃焼量を制御すれば良く、この時には
従来のようなオーバシュートは引き起こすことはない。
Therefore, when this temperature conversion setting circuit 7 is used in a gas water heater, for example, it is sufficient to amplify the above-mentioned differential waveform and control the combustion amount of the burner using this amplified value. will not cause it.

つまり、従来の温度変換設定回路5であれば可変抵抗3
によって設定温度を可変した時に大きな微分値が表われ
、この結果オーバシュートを引き起こしていた。
In other words, in the case of the conventional temperature conversion setting circuit 5, the variable resistor 3
When the set temperature was varied, a large differential value appeared, resulting in overshoot.

ところが、本発明の温度変換設定回路7では可変抵抗1
0によって設定温度を可変した時には一次遅れ波形の電
圧が表われるので、これによってオーバシュートを引き
起こすことはない。
However, in the temperature conversion setting circuit 7 of the present invention, the variable resistor 1
When the set temperature is varied by 0, a first-order delayed waveform voltage appears, so this does not cause overshoot.

しかも、感温抵抗素子11が湯温を検出してその抵抗値
を変化した時には微分波形の電圧が表われるのでこの微
分波形の電圧によって湯温は適宜正確に検出されること
になり、この結果湯温は可変抵抗の抵抗値で設定した設
定温度に保たれることになる。
Moreover, when the temperature-sensitive resistance element 11 detects the water temperature and changes its resistance value, a voltage with a differential waveform appears, so the water temperature can be appropriately and accurately detected by the voltage of this differential waveform. The water temperature will be maintained at the set temperature set by the resistance value of the variable resistor.

第2図は本発明の第2の実施例を示し、この実施例では
感温抵抗素子11に直線性を持たせるためにこの感温抵
抗素子11に抵抗14を並列接続した。
FIG. 2 shows a second embodiment of the present invention, in which a resistor 14 is connected in parallel to the temperature-sensitive resistance element 11 in order to provide the temperature-sensitive resistance element 11 with linearity.

また、第3図は本発明の第3の実施例を示し、この実施
例では抵抗15,16を加えてブリッジ回路を構成し、
その出力は出力端子13,13’から取出した。
Further, FIG. 3 shows a third embodiment of the present invention, in which resistors 15 and 16 are added to constitute a bridge circuit,
The output was taken out from output terminals 13, 13'.

なお、上記各実施例では可変抵抗10を単体で用いた例
を説明したが、第4図、第5図に示すようにこの可変抵
抗10に抵抗17を直列接続したり、並列接続したりし
ても良い。
In addition, in each of the above embodiments, an example was explained in which the variable resistor 10 was used alone, but as shown in FIGS. 4 and 5, the resistor 17 may be connected in series or in parallel with the variable resistor 10. It's okay.

以上のように本発明によれば可変抵抗にたった1個のコ
ンデンサを並列接続するだけで可変抵抗の抵抗値変化に
対してはその出力端子から一次遅れ電圧、また感温抵抗
素子の抵抗値変化に対してはその出力端子から微分電圧
が得られることになる。
As described above, according to the present invention, by simply connecting only one capacitor in parallel to a variable resistor, a change in the resistance value of the variable resistor can be responded to by a first-order lag voltage from its output terminal, or a change in the resistance value of the temperature-sensitive resistor element. A differential voltage can be obtained from its output terminal.

このため、これを湯沸器に適用した場合には可変抵抗の
抵抗値変化、つまり設定温度の変更時に従来のようにオ
ーバシュートを引き起こすことはなく設定温度どおりの
湯を得ることができるとともに、湯温か急激に変化した
場合、その微分値が出力されるので速やかな訂正動作が
でき、応答速度が速くなる。
Therefore, when this is applied to a water heater, it is possible to obtain hot water at the set temperature without causing an overshoot when changing the resistance value of the variable resistor, that is, when changing the set temperature, as in the case of conventional methods. If the water temperature suddenly changes, the differential value is output, allowing quick correction and faster response.

したがって、使用者の使い勝つては非常に良くなり、し
かもオーバシュートによって高温となった湯によって火
傷をおこすことはなくなる。
Therefore, it is very easy for the user to use, and moreover, there is no risk of burns caused by hot water due to overshoot.

さらに、本発明の構成は上述のごとくたった1個のコン
デンサを付加するだけであるので安価に提供でき、しか
もこのように構成が簡単であるので誤動作や故障がきわ
めて少なくなる。
Furthermore, since the configuration of the present invention requires only one additional capacitor as described above, it can be provided at a low cost, and since the configuration is simple, malfunctions and failures are extremely reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例にかかる温度変換設定回
路の回路図、第2図は本発明の第2の実施例にかかる温
度変換設定回路の回路図、第3図は本発明の第3の実施
例にかかる温度変換設定回路の回路図、第4図は本発明
の第4の実施例にかかる温度変換設定回路の要部回路図
、第5図は本発明の第5の実施例にかかる温度変換設定
回路の要部回路図、第6図は従来の温度変換設定回路の
回路図である。 8・・・・・・直流電源、9・・・・・・抵抗、10・
・・・・・可変抵抗、11・・・・・・感温抵抗賽子、
12・・・・・・コンデンサ。
FIG. 1 is a circuit diagram of a temperature conversion setting circuit according to a first embodiment of the present invention, FIG. 2 is a circuit diagram of a temperature conversion setting circuit according to a second embodiment of the present invention, and FIG. 3 is a circuit diagram of a temperature conversion setting circuit according to a second embodiment of the present invention. 4 is a circuit diagram of a temperature conversion setting circuit according to a third embodiment of the present invention, FIG. 4 is a circuit diagram of a main part of a temperature conversion setting circuit according to a fourth embodiment of the present invention, and FIG. A main part circuit diagram of the temperature conversion setting circuit according to the embodiment, and FIG. 6 is a circuit diagram of a conventional temperature conversion setting circuit. 8...DC power supply, 9...Resistor, 10.
...Variable resistance, 11...Temperature-sensitive resistance dice,
12... Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電源と可変抵抗と自動温度制御器の温度検出器
である感温抵抗素子とを直列に接続するとともに、上記
可変抵抗にコンデンサを並列接続した温度変換設定回路
1. A temperature conversion setting circuit in which a DC power supply, a variable resistor, and a temperature-sensitive resistance element, which is a temperature detector of an automatic temperature controller, are connected in series, and a capacitor is connected in parallel to the variable resistor.
JP15400576A 1976-12-20 1976-12-20 Temperature conversion setting circuit Expired JPS5854401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15400576A JPS5854401B2 (en) 1976-12-20 1976-12-20 Temperature conversion setting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15400576A JPS5854401B2 (en) 1976-12-20 1976-12-20 Temperature conversion setting circuit

Publications (2)

Publication Number Publication Date
JPS5377573A JPS5377573A (en) 1978-07-10
JPS5854401B2 true JPS5854401B2 (en) 1983-12-05

Family

ID=15574821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15400576A Expired JPS5854401B2 (en) 1976-12-20 1976-12-20 Temperature conversion setting circuit

Country Status (1)

Country Link
JP (1) JPS5854401B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169353U (en) * 1982-05-07 1983-11-11 株式会社日立ホームテック Control circuit of proportional control valve

Also Published As

Publication number Publication date
JPS5377573A (en) 1978-07-10

Similar Documents

Publication Publication Date Title
JPS5854401B2 (en) Temperature conversion setting circuit
JP2681569B2 (en) Intake air flow rate detection device for internal combustion engine
JP3554430B2 (en) Combustion appliance temperature detection circuit
US2857104A (en) Feedback network for control systems
JPS5928333Y2 (en) differential fire detector
JPH0247493Y2 (en)
JPH0220607Y2 (en)
JPS609909Y2 (en) Differential heat sensor
JPS57187551A (en) Apparatus for controlling temperature of water heater
JPS5934412Y2 (en) Hot water temperature control device
JPS5966649A (en) Hot water temperature thermostat circuit of hot water boiler
JPH05296963A (en) Absolute humidity detecting device
JPH0141886B2 (en)
JPS5875663A (en) Thermostat circuit for hot water temperature in water heater
JPH0517688Y2 (en)
JPH0411166Y2 (en)
GB1298203A (en) Temperature compensator bridge circuit
JPS62297626A (en) Safety device for hot water temperature sensor of water heater
JPS5934411Y2 (en) Hot water temperature control device
JPS62119322A (en) Method of controlling burner
JPH0749533Y2 (en) Heater burnout detection circuit for temperature controller
JPS6019001B2 (en) safety control device
JP2509090Y2 (en) Heat sensor
JPS59195701A (en) Controlling method of liquid temperature
JPS598725B2 (en) Automatic operation device for ventilation fans