JPS5854280A - Pressure compensating type flow regulation valve - Google Patents

Pressure compensating type flow regulation valve

Info

Publication number
JPS5854280A
JPS5854280A JP14931481A JP14931481A JPS5854280A JP S5854280 A JPS5854280 A JP S5854280A JP 14931481 A JP14931481 A JP 14931481A JP 14931481 A JP14931481 A JP 14931481A JP S5854280 A JPS5854280 A JP S5854280A
Authority
JP
Japan
Prior art keywords
pressure
spool
fluid
guide hole
land
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14931481A
Other languages
Japanese (ja)
Inventor
Masato Fukino
真人 吹野
Setsuyoshi Yanai
矢内 節佳
Masafumi Nakayama
雅文 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14931481A priority Critical patent/JPS5854280A/en
Publication of JPS5854280A publication Critical patent/JPS5854280A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/08Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used

Abstract

PURPOSE:To improve refinement of flow regulation in the regulation valve, described at the heading, which is used for controlling steering power of a power steering device or for other purposes by lessening a hydraulic pressure which is applied to a spool of a pressure compensating part. CONSTITUTION:While fluid having passed through a pressure reducing passage 14 runs through a spacing 16 between a throat 12d and the internal face 11d of a guide hole, the fluid is inverted by the throat 12d while guided by the internal face 11d of the guide hole, and then comes against an angular land 12c to apply a right pressure to a spool 12. The pressure is reversed to the hydraulic pressure of the fluid which acts on the spool 12 while flowing through the pressure reducing passage 14, on account of which the hydraulic pressure which acts on the spool 12 may be lessened. As the result, the pressure compensating function of keeping the differential pressures before and behind a variable throttle 8 at specified values may be reliably performed.

Description

【発明の詳細な説明】 本発明はパワーステアリングの操舵力伝達系を等に用い
られる圧力補償形流貴調整弁の改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a pressure compensating flow control valve used in a power steering power transmission system and the like.

パワーステアリング及びその操舵力制御装置は概ね第1
図の如くに構成され、エンジン駆動される定流量ポンプ
lと、パワーステアリング作動弁−と、パワーシリンダ
〜×3と、作動流体供給路ダ及び作動流体戻し姑!間を
短絡するバイパス路6に挿入した圧力補償部?及び可変
絞り部!よりなる圧力補償形波量調整弁りとを具える。
Power steering and its steering force control device are generally the first
It is constructed as shown in the figure, and includes an engine-driven constant flow pump l, a power steering operating valve, a power cylinder ~x3, a working fluid supply path, and a working fluid return! A pressure compensator inserted into the bypass path 6 that short-circuits between the two? And variable aperture part! A pressure compensation type wave amount adjustment valve is provided.

上記要素l〜jでパワーステアリングを構成し、ポンプ
/からの定流量QTの吐出流体に通路りより弁2を通流
後退路!を軽でポンプlに一体のリザーバタンク/θに
戻されている。ここで、ステアリングホイールに19舵
取操作すると、弁−が操炉介荷に応動し、その上流側、
即ち通路ダ中に圧力゛P1を生ぜしめ、この圧力をパワ
ーシリンダJの対応スル一方f)室内<導入して該パワ
ーシリンダ1作動せしめ、操舵力伝達系を舵取方向にパ
ワーアシストし、軽快な動力操向が可能である。ところ
で、上記114〜9で構成される掃舵力制御装gtけ、
可変絞り部rがサーボモータを介して車速に応じた開度
にされることから、これを経てポンプ吐出流体を車速忙
応じたIQだけ抜取り、′n余景Qc=QT−Qの流体
を弁−に向かわせ、操舵力を車速に応じた適切な値に制
御することができる。一方、圧力補償部2#−i可変絞
り部♂の前後圧P2、Psの差ΔP e P2 + p
sを一定値に保つために存在し、これにより可変絞り部
tを通る作動油抜取量Qt正圧力%による変化時も変ら
ず、可変絞り部lの開度に応じた値に保つよう機能して
操舵力を高精度に制御しようとするものである。
The above elements l to j constitute a power steering system, and a constant flow rate QT of fluid discharged from the pump is passed through the valve 2 through the retreat path! is returned to the reservoir tank/θ which is integrated into the pump l. Here, when the steering wheel is operated 19, the valve responds to the furnace operation load, and the upstream side
That is, a pressure P1 is generated in the passageway, and this pressure is introduced into the room through the corresponding power cylinder J, and the power cylinder 1 is activated to power-assist the steering force transmission system in the steering direction, thereby providing light steering. Power steering is possible. By the way, the sweeping force control device gt composed of the above-mentioned 114 to 9,
Since the variable throttle part r is opened according to the vehicle speed via the servo motor, the pump discharge fluid is extracted by the amount IQ corresponding to the vehicle speed, and the fluid of 'n side view Qc=QT-Q is applied to the valve. -, and the steering force can be controlled to an appropriate value according to the vehicle speed. On the other hand, the difference ΔP e P2 + p between the front and rear pressures P2 and Ps of the pressure compensation section 2#-i variable throttle section ♂
It exists to keep s at a constant value, so that it does not change even when the amount of hydraulic oil drawn through the variable throttle part t changes due to positive pressure %, and functions to keep it at a value that corresponds to the opening degree of the variable throttle part l. The aim is to control the steering force with high precision.

例えばこのような用途に4#される圧力補償形流量調整
弁デはその圧力補償部りを従来例えば第一図の如くに構
成していた0即ち、弁本体l/内にスプール/、2 t
−摺動自在に嵌会し、スプール/−の一端拡大部lコa
にばね13のばね力及び可変絞り部lの下流圧Ps1に
図中右向1!忙作用させ、スプール/2の他端ランド部
/2b及び拡大端部/2aに可変絞りして、弁本体/l
のスプールランドガイド孔//eL K環状#l//b
を形成して肩部/10を設定し、緯肩部とスプールラン
ド/コbの角部/、2Cとの間に存在する墳状の減圧通
路/*に、定流量ポンプlからの吐出流体の一部を矢2
で示すように通流させて圧力P1からP2へと減圧し、
その後可変絞りs、rv経てその開度により決まる流g
FQでリザーバタンク10に抜取り、このようにして流
量調整された残余流体を回路/j t−経て流体作動機
器(第1図の蝙合弁コ)に供給することができる。
For example, a pressure compensating flow rate regulating valve with 4 pins for such applications has its pressure compensating portion conventionally configured as shown in Figure 1.
- Slidably fitted, spool/- one end enlarged part l core a
The spring force of the spring 13 and the downstream pressure Ps1 of the variable restrictor l are applied to the right direction 1 in the figure! Apply a variable throttle to the other end land part /2b of the spool /2 and the enlarged end part /2a, and adjust the valve body /l.
Spool land guide hole //eL K annular #l //b
The discharge fluid from the constant flow pump l is placed in the mound-shaped decompression passage /* existing between the weft shoulder and the corner of the spool land /cob /, 2C. arrow 2
As shown in , the pressure is reduced from P1 to P2 by passing through it,
After that, the flow g is determined by the opening degree of the variable throttle s and rv.
The remaining fluid, which is drawn into the reservoir tank 10 by the FQ and whose flow rate has been adjusted in this way, can be supplied to the fluid operating equipment (the joint venture shown in FIG. 1) through the circuit.

かかる構成において、スプール7.2に作用する力の定
常的な釣合式を考えると、 k (Xl −X) s= #QV1a1111I+ 
A(P2−Ps)  −(/1で表わされ、上式中左辺
はばね/Jによゐばね力、右辺第1項は流体力%tlK
2項は流体圧P2,1)5による力を表わす0この式よ
り可変絞り部rの前後差圧ΔPは ΔP wax PI  −Ps となり、上式中右辺第1項は定数項である0しかして、
上式中右辺館1項及び1@3項は夫々変数項であり。
In such a configuration, considering the steady balance equation of the force acting on the spool 7.2, k (Xl −X) s= #QV1a1111I+
A(P2-Ps) - (/1, where the left side is the spring force due to spring /J, and the first term on the right side is the fluid force %tlK
The second term represents the force due to the fluid pressure P2, 1) 5. From this equation, the differential pressure ΔP across the variable restrictor r becomes ΔP wax PI - Ps, and the first term on the right side of the above equation is a constant term. ,
The 1st term and 1@3 term on the right side of the above equation are variable terms, respectively.

つてほぼ一定に保たれ、従来の圧力補償形流量調整弁は
可変絞夛部rに流れる流体抜取量をポンプ吐出圧PI 
K影響されることなく可変絞9部lの一度により一義的
に決定される値忙保って前記所2定の流量調整機能を遂
行することができる0しかし、それ以外の作動条件下で
は上記変数項が上述したように無視できるmK小さく保
たれ得す、大きな値となってしまい、これらv数項の影
響を受けて差圧ΔPが一定値に保たれ得なくなる0この
ことは差圧−の変化分だけ可変絞り部tによる流体抜取
量Qが同じ可変絞り部開度でも岬#−を生ずることを意
味し、正確な流量調整機能を得難かった0 この誤差が、圧力補償形流景調整弁を用いた装置にどの
ような不具合を及ぼすかを、第1図のノくワーステア−
リングの例につき次に説明する。先ず、第1図は可変絞
9部rの開口面積変化に対する流体抜取量Q及び補償圧
力(差圧)ΔPの変化特性を示す0この特性図から明ら
かなように、可変絞り部♂の開口面積が増加するにつれ
当然のことながら流体抜取量QはQl、Q2で示すよう
に増大するが、これ忙ともなう上記誤差によって差圧Δ
PはΔP1.ΔP2で示すように一足に保几れ得ず、可
変絞シ部rが開口面積を増大するにつれ低下してしまう
・この低下王台、は圧力P1が低い場合^P1の如き程
度であるものの、圧力P1の増加につれΔP2の如く釦
大きくなってゆき、かかる差圧ΔPの低下は流体抜取量
Qを可変絞り部lの開口面積に正11に対応させ得なく
し、特に可変絞り部/17)開口面積が大きくなる領域
でQl、Qlの如く流体抜取量Qが可変絞り部?の開口
WU積に対応したリニヤ特性から下方(対応した値以下
)K大きくずれるO又この傾向は圧力P1が低い場合(
Qlで示す)より圧力P1が高い場合(Qlで示す)の
方が顕著となる。
The conventional pressure-compensated flow rate regulating valve adjusts the amount of fluid drawn into the variable restrictor r to the pump discharge pressure PI.
However, under other operating conditions, the above-mentioned variable As mentioned above, the mK term can be kept small and negligible, but it becomes a large value, and the differential pressure ΔP cannot be kept at a constant value due to the influence of these v number terms. This means that the differential pressure - This means that even if the variable throttle opening amount Q is the same as the amount of fluid withdrawn by the variable throttle part t, a cape #- occurs, making it difficult to obtain an accurate flow rate adjustment function. Figure 1 shows the type of malfunction that can occur in equipment that uses valves.
An example of a ring will now be described. First, Figure 1 shows the change characteristics of the fluid withdrawal amount Q and the compensation pressure (differential pressure) ΔP with respect to the change in the opening area of the variable throttle part 9r.As is clear from this characteristic diagram, the opening area of the variable throttle part ♂ Naturally, the fluid withdrawal amount Q increases as shown by Ql and Q2 as .
P is ΔP1. As shown by ΔP2, it cannot be maintained at a constant rate, and as the opening area of the variable diaphragm r increases, it decreases. Although this decrease is as low as ^P1 when the pressure P1 is low, As the pressure P1 increases, the size of the button increases as shown in ΔP2, and such a decrease in the differential pressure ΔP makes it impossible to make the fluid withdrawal amount Q correspond to the opening area of the variable throttle part l, and especially the variable throttle part/17) opening. Is there a constriction part where the fluid withdrawal amount Q is variable like Ql and Ql in the area where the area becomes large? There is a large downward deviation (below the corresponding value) from the linear characteristic corresponding to the opening WU product of O. This tendency also occurs when the pressure P1 is low (
This is more noticeable when the pressure P1 is higher (indicated by Ql) than in the case where the pressure P1 is higher (indicated by Ql).

このように1誤差のため流体抜取量Qが可変絞り部lの
開口面積に対応し得す、これに対応した値より少なくな
ると、可変絞り部rを構成するスプール等の変位量と流
体抜取量Qとの関係がリニヤでなくなり、これを補正ス
るため当該スプール等を駆動して可変絞9部rの開口面
積を決定するサーボモータの制御回路が複雑になってし
まう0又、上述のように流体抜取量が圧力P1によって
も誤差を生ずると、可変赦夛部rの開口面積を虞る車速
に対応した一定値忙保っていても、舵取操作中前述した
ように圧力P1が遂−変化し良場合、これによって同じ
操舵力に保たれなければならない同一車速での走行中で
あるにもかかわらず、流体抜取量Qが圧力P1の変化忙
よ)遂−変化してしまい、結果として弁−に向う流体Φ
が変化して操舵力が変化し、高精度な操舵力制御が不可
能になるOここで、上記誤差について考察するに、この
誤差の原因となる前記(4式中右辺第、2項、第3項の
X%v1は、減圧通路/4tK流れる流体にベルヌーイ
の式を適用して求まる次式 Q wx Ot(1χJ玉が5万 ρ ρV、’ □φP* −P2 で表わされ、これら式を(コ)式に代入してが求まる。
In this way, due to one error, the fluid withdrawal amount Q can correspond to the opening area of the variable throttle section l, and if it becomes less than the corresponding value, the displacement amount of the spool etc. that constitutes the variable throttle section r and the fluid withdrawal amount The relationship with Q is no longer linear, and in order to correct this, the control circuit of the servo motor that drives the spool etc. to determine the opening area of the variable diaphragm 9 section r becomes complicated. If an error occurs in the amount of fluid withdrawn due to the pressure P1, the opening area of the variable relief part r may be kept at a constant value corresponding to the vehicle speed. If the change is good, the amount of fluid withdrawn Q will change (due to the change in pressure P1) even though the vehicle is running at the same speed and the steering force must be maintained at the same level. Fluid Φ toward the valve
changes, the steering force changes, and highly accurate steering force control becomes impossible. Here, considering the above error, the above (the right-hand side, second term, and The third term, X%v1, is obtained by applying Bernoulli's equation to the fluid flowing through the decompression passage/4tK, using the following equation: Substitute into equation (k) to find.

この(1)式中の変数項(誤差項)、即ち右辺第1項及
び第3項についてその影II1度を検討するに%q及び
(Pl−P2 )が大きくなると誤差項の卸値が大きく
なって差圧ΔPK大きな誤差を生じ、しかもこの場合第
3項による誤差が支配的に大きくなることが上記け)式
から判る。このこと力)ら差圧ΔPの誤差を小さくして
圧力補償形流量調整弁の流量調整精度を高めるには第3
項に対する対策が有効であΣこと明らかで、この目的の
えめKは■面積大を大きくすること、■前記−)式中ρ
QV+(2)φ及び(り式中Q■φJコρ(Pl−P2
) で表わされる流体力を小さくすることの一点が必要
である0しかし、■の対策では1面積大を大きくする外
弁が全体的に大型となり、従って弁を大型忙せずに流量
調整精度を高めるには■の対策が最も有効である。
Examining the influence of the variable terms (error terms) in equation (1), that is, the first and third terms on the right-hand side, we find that as %q and (Pl-P2) increase, the wholesale value of the error term increases. It can be seen from the above equation (2) that a large error occurs in the differential pressure ΔPK, and in this case, the error due to the third term becomes dominantly large. This is the third method to reduce the error in the differential pressure ΔP and increase the flow rate adjustment accuracy of the pressure compensation type flow rate adjustment valve.
It is clear that the countermeasure for the term Σ is effective, and the measures K for this purpose are: ■ Increasing the area size, ■ Said -) In the equation, ρ
QV+(2)φ and (in the formula Q■φJkoρ(Pl-P2
) It is necessary to reduce the fluid force represented by To increase this, the most effective measure is ■.

一方、差圧ΔPを高目に設定すれば、前記誤差項による
影響が少ないが、圧力補償形流量調整弁を第1図に示す
ように操舵力制御装置に用いる場合、それも以下の理由
からままならない@即ち・可変絞り部♂による流体抜取
量Qが零の時、弁λでの圧力損失は一般的に−〜り即/
cR2程度であるが、流体抜取量Qを大きく・すればす
る程圧力損失は小さくなるため、CC)時にも圧力補償
部2が前記所定の圧力補償を行ない得るようにするため
には、差圧ΔPを小さく設定せざるを得ない0従来の圧
力補償形流量調整弁はこのような用途に供する場合、上
述の如く設定差圧入Pが小さいこともあって益々流量調
整精度が悪くな夛、このことは、パワーステアリング油
圧系の圧力P1がかなシ広範囲に変化し、その全油圧領
#忙亘り圧力補償機症を要求されることから、一層顕著
になっていた。
On the other hand, if the differential pressure ΔP is set high, the influence of the error term is small, but when a pressure compensation type flow rate regulating valve is used in a steering force control device as shown in Fig. 1, this is also possible for the following reasons. In other words, when the amount of fluid withdrawn by the variable restrictor ♂ is zero, the pressure loss at the valve λ is generally -
The pressure loss is approximately cR2, but the larger the fluid withdrawal amount Q is, the smaller the pressure loss is. ∆P must be set small.When using conventional pressure compensation type flow rate adjustment valves for such applications, the accuracy of flow rate adjustment becomes increasingly poor due to the small set differential pressure P as described above. This has become even more remarkable since the pressure P1 of the power steering hydraulic system changes over a wide range and pressure compensation is required throughout its entire hydraulic range.

本発明は上述の一点から、圧力補償部のスプールKかか
る流体力を軽減してこれが流量調整精度[4える影響を
少なくし、全体的に大型にした夛。
Based on the above points, the present invention reduces the fluid force applied to the spool K of the pressure compensator, thereby reducing the influence on the flow rate adjustment accuracy, and increasing the overall size.

補償圧力を高くしなくても高精度な流量調整機卵管果た
し得るよう改良した圧力補償形流量Ill整弁を提供し
ようとするものである。
It is an object of the present invention to provide a pressure-compensated flow rate Ill valve that is improved so that a highly accurate flow rate regulator can be achieved without increasing the compensation pressure.

以下、図示の実施例により本発明の詳細な説明するO 第3図は本発明−実施のamで1図中第一図におけると
同様の部分を同一符号にて示す。
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments. FIG. 3 shows an embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals.

本発明において社、スプール12のランド角部/20に
隣接するくびれ部/Jdを骸ランド角部から遠去かるに
りれ直径が漸増する円錐状となし、このくびれ部1AY
rランド12bKttしては図示例の如くξれに近付く
忙つれ/26の如く徐々忙拡径し、ランド角部/−20
と同径になった処で仁れに連なるように一体化する0こ
の代9に円錐形くびれ部lコdは、その最小径端をその
ままランドl−bに対し一体化し、このくびれ部最小径
端とランド角部lコ0との間に急激な段差を設定しても
よい。
In the present invention, the constriction part /Jd adjacent to the land corner part /20 of the spool 12 is formed into a conical shape whose diameter gradually increases as it goes away from the land corner part, and this constriction part 1AY
As for the r land 12bKtt, as shown in the example shown in the figure, the radius gradually expands as shown in the ξ angle /26, and the land corner part /-20
The conical constriction part d is integrated with the land l-b at the point where the diameter becomes the same as that of the conical constriction part l-b. A sharp step may be set between the small diameter end and the land corner lco0.

そして、くびれ部/J(1をこれとの間に隙間を持って
包囲するスプールランドガイド孔//aの内周面は//
dで示すように、少なくとも円錐形くびれ部/Sの相当
長さに亘夛これと対向する部分において、該円錐形くび
れ部と同方向に傾斜させる。
The inner peripheral surface of the spool land guide hole //a that surrounds the constricted part /J(1 with a gap between it) is //
As shown by d, at least a considerable length of the conical constriction part /S is inclined in the same direction as the conical constriction part in a portion facing the conical constriction part.

かかる本発明の圧力補償形流量調整弁は、定流量ポンプ
/からの流体を一部減圧通路/4tに通過後可変絞り部
tを経てリザーバタンク10K抜取シ、可変絞)部lの
前後差圧を設定値に保って流体抜取−1t−可変絞ヤ部
ttV開ロ面積により決定する流量調整機能を従来と同
様忙果たし得る・ところで本発明においては、減圧通路
14tYr通過後の流体が円錐状くびれ部/λd及びテ
ーパ付スプールランドガイド孔内周面//aと゛の間の
隙間/4を通る時、矢aで示す如く円錐状くびれ部/J
IJKよシ反転された後テーパ付スプールランドガイド
孔内周面//dKより案内され麿から再度スプール/−
2に、詳しくはそのランド角部/20f(衝突して、該
スプールに図中右向きの力を及ばず。この力は、減圧通
路/4tに通過する流体がスプール/JK及ぼす図中左
向きの流体力と逆の向きであシ、これを軽減又は相殺す
る。このため、スプール/−に働く流体力は全体的に小
さくなるか、又は零とな9、結果として前記−)式中の
誤差項を小さくでき、可変絞シ部rの前後差圧を設定値
に保つ圧力補衝機能を高精度忙果たし得てこれに左右さ
れる流量調整機能を高精度に遂行可能である0 かくして本発明圧力補償形流量調整弁はスプール/λの
くびれ部/j及び仁れを包囲するスプールランドガイド
孔内周面//dtl−上述の形状とし、減圧通路/4t
K通過後の流体がスプールノコに減圧連絡/ダを開く方
向の力を及埋すようにしたから、減圧通路/g[通過中
の流体がスプール12に及ぼす減圧通路閉方向の流体力
を上記の力によシ軽減又は相殺でき、当該流体力によっ
て従来生じていた流量調整機能の誤差をはとんどなくせ
、全体として大型化したり、可変絞り部lの前後差圧を
太きくすることなしに高精度な流量調整機能を遂行可能
であ゛る。
In the pressure compensation type flow rate regulating valve of the present invention, a part of the fluid from the constant flow pump passes through the pressure reducing passage/4t and then extracts the reservoir tank 10K through the variable throttle part t. By keeping the fluid at the set value, the flow rate adjustment function determined by the opening area of the variable throttle part ttV can be carried out in the same way as in the past.In the present invention, the fluid after passing through the pressure reducing passage 14tYr has a conical constriction. When passing through the gap /4 between part /λd and the inner peripheral surface of the tapered spool land guide hole //a and ゛, the conical neck part /J as shown by arrow a.
After being reversed from the IJK, the tapered spool land guide hole inner circumferential surface // is guided from the dK and the spool is re-routed from Maro.
2, more specifically, the land corner / 20f (collides with the spool and does not exert a force to the right in the figure. This force is caused by the flow of fluid passing through the decompression passage / 4t to the left on the spool / JK in the figure). It is applied in the opposite direction to the physical force, reducing or canceling it. Therefore, the fluid force acting on the spool/- becomes smaller overall or becomes zero, and as a result, the error term in the above equation (-) can be made small, and the pressure compensation function that keeps the differential pressure across the variable throttle part r at the set value can be performed with high precision, and the flow rate adjustment function that depends on this can be performed with high precision. The compensation type flow rate adjustment valve has the shape described above on the inner peripheral surface of the spool land guide hole surrounding the constriction part /j and the groove of the spool /λ, and the pressure reduction passage /4t
Since the fluid after passing through K exerts a force on the spool saw in the direction of opening the vacuum connection/da, the fluid force in the direction of closing the vacuum passage that the fluid passing through is applied to the spool 12 as described above. It can be reduced or canceled out by the force, and the error in the flow rate adjustment function that conventionally occurred due to the fluid force can be almost eliminated, without increasing the overall size or increasing the differential pressure across the variable throttle part l. It is possible to perform a highly accurate flow rate adjustment function.

なお、上述した例で蝶ポンプ/からの流体を単一ボート
を経て環状溝//b内に流入させ、その後減圧通路/(
tに向かわせる構成にしたが、筑り図(al及び第ダ図
也)に示す如く環状溝//b 17)底部に開口する覆
数個(図示例でtitコ個)のボート/7./♂を円周
方向等間隔に配して設け、これらボートを経てポンプ/
からの流体を環状溝//b内に流入させるようにすれば
、この流入流体がスプールランド/2bの径方向に及ぼ
す力が全周に亘り均等となり。
Note that in the above example, the fluid from the butterfly pump / flows into the annular groove // b through a single boat, and then flows into the vacuum passage / (
As shown in the Chikuri diagram (al and d), there is an annular groove//b 17) Several boats (tit in the illustrated example) opening at the bottom of the boat/7. /♂ are arranged at equal intervals in the circumferential direction, and the pump /♂ is provided through these boats.
By allowing the fluid from to flow into the annular groove //b, the force exerted by this inflow fluid in the radial direction of the spool land /2b becomes uniform over the entire circumference.

スプール/、2 Y!″こじることがなく、これと弁本
体/lとの間の摩擦力を減じ得てスプール/2の移動時
に生ずるヒステリシスを減らすことができ、流量調整精
度を更に向上させることができる。   ゛
Spool/, 2 Y! ``It does not twist and can reduce the frictional force between it and the valve body/l, reducing the hysteresis that occurs when the spool/2 moves, and further improving the accuracy of flow rate adjustment.''

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は圧力補償形流量調整弁の応用例を示す操舵力制
御装置付パワーステアリングのシステム図、第一図は従
来の圧力補償形流量調整弁を示す縦断側面図、第3図は
本発明の圧力補償形流量lil整弁を示すll1tlf
T側面図、第7図(alは本発明流量調整弁の他の例を
示・す11!3図と同様の縦断側面図。 第4を図中1#i第り図(alのI−1断面図、第5図
は館、2図に示す従来形流量−整弁の作用尋性図である
。 /・一定流量ポンプ、り・・・圧力補償部、t・・・可
!絞り部、/θ・・・リザーバタンク、/I・・・弁体
、//&、・・スプールランドガイド孔、//b・・・
甲状溝、//C・= N m s tia・・・テーパ
付スプールランドガイド孔内周面、12・・・スプール
、/λa・・・鉱夫端部、/Jb・・・スプールランド
、/2o・・・ランド角部、/2d・・・円錐状くびれ
部、/J・・・ばね、/グ・・・波圧通路、/!・・・
流体作動機器接続回路、/6・・・隙間、/7. //
・・・流体流入ボート。
Fig. 1 is a system diagram of a power steering system with a steering force control device showing an application example of a pressure-compensated flow regulating valve, Fig. 1 is a vertical side view showing a conventional pressure-compensated flow regulating valve, and Fig. 3 is a diagram of the present invention. ll1tlf indicating the pressure compensated flow rate lil valve
T side view, Fig. 7 (al is a vertical sectional side view similar to Fig. 11 to 3 showing another example of the flow rate regulating valve of the present invention. 1 is a sectional view, and FIG. 5 is a diagram showing the action characteristics of the conventional flow rate-valve control shown in FIG. , /θ...Reservoir tank, /I...Valve body, //&,...Spool land guide hole, //b...
Thyroid groove, //C・=N m s tia...Inner peripheral surface of tapered spool land guide hole, 12...Spool, /λa...Miner end, /Jb...Spool land, /2o ...Land corner, /2d...Conical constriction, /J...Spring, /G...Wave pressure passage, /! ...
Fluid operating device connection circuit, /6... gap, /7. ///
...Fluid inflow boat.

Claims (1)

【特許請求の範囲】[Claims] 1、弁本体と、これに摺動自在に嵌合したスプールとを
具え、該スプールのランド角部と前記弁本体のスツール
ランドガイド孔に設定した肩部との間の減圧通路に定流
量ポンプからの吐出流体を通流後、可変絞p部を経て所
定量抜取って残余吐出流体を前記減圧通路の上流側より
流体作動機器に供給すると共に1前記スプールの移動に
より前記減圧通路の開口面積を加減して可変絞り部の前
後差圧を一定忙保つようKした圧力補償形波量調整弁に
おイテ、前記スプールのランド角部に隣接するくびれ部
t#クランド部から遠去かるにつれ[@が画壇する円錐
状となし、該くびれ部をこれとの間に隙間を持って包囲
する前記スプールランドガイド孔の内周面を前記円錐状
くびれ部と同方向忙テーバ付としたことを特徴とする圧
力補償形波量調整弁。
1. Comprising a valve body and a spool slidably fitted to the valve body, a constant flow pump is installed in the pressure reducing passage between the land corner of the spool and the shoulder set in the stool land guide hole of the valve body. After passing the discharged fluid from the spool, a predetermined amount is extracted through the variable throttle part P, and the remaining discharged fluid is supplied to the fluid operating equipment from the upstream side of the pressure reduction passage, and the opening area of the pressure reduction passage is increased by moving the spool. The pressure compensation type wave amount adjusting valve is designed to maintain a constant differential pressure across the variable restrictor by adjusting the pressure. The spool land guide hole has a conical shape with an @ mark, and the inner peripheral surface of the spool land guide hole surrounding the conical constriction with a gap therebetween is tapered in the same direction as the conical constriction. Pressure compensated wave amount adjustment valve.
JP14931481A 1981-09-24 1981-09-24 Pressure compensating type flow regulation valve Pending JPS5854280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14931481A JPS5854280A (en) 1981-09-24 1981-09-24 Pressure compensating type flow regulation valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14931481A JPS5854280A (en) 1981-09-24 1981-09-24 Pressure compensating type flow regulation valve

Publications (1)

Publication Number Publication Date
JPS5854280A true JPS5854280A (en) 1983-03-31

Family

ID=15472409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14931481A Pending JPS5854280A (en) 1981-09-24 1981-09-24 Pressure compensating type flow regulation valve

Country Status (1)

Country Link
JP (1) JPS5854280A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454336A2 (en) * 1990-04-27 1991-10-30 Ford Motor Company Limited Variable-orifice, servo-solenoid valve for a variable-assist power steering system
CN111140682A (en) * 2018-11-06 2020-05-12 宁波方太厨具有限公司 Automatic water supply valve for heating loop

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454336A2 (en) * 1990-04-27 1991-10-30 Ford Motor Company Limited Variable-orifice, servo-solenoid valve for a variable-assist power steering system
CN111140682A (en) * 2018-11-06 2020-05-12 宁波方太厨具有限公司 Automatic water supply valve for heating loop

Similar Documents

Publication Publication Date Title
US4611621A (en) Pressure control valve and oil supply device using said valve
JP5710621B2 (en) Fuel flow meter with improved regulator device
US3850405A (en) Contaminant resistant valve
JPS6088283A (en) Flow-rate controller for power steering apparatus
US3156262A (en) Flow control valves
US11353120B2 (en) Regulating device for pump pressure and pump volumetric flow rate, having concentric control slide valves
JPS5854280A (en) Pressure compensating type flow regulation valve
JPS6059441B2 (en) Valve and workport compensator so that workport fluid is compensated
US5038822A (en) Flow rate control valving apparatus
JP2014211232A (en) Flow rate control valve structure assembly
EP0733182B1 (en) Control valve
US4254687A (en) Flow control valve
US5327720A (en) Differential pressure regulator valve
JP2017535734A (en) Electronically controlled valve assembly
US4505293A (en) Fluid flow control valve
US5080129A (en) Pilot operated pressure reducing valve
JPH01503729A (en) Load detection circuit of load-responsive directional control valve
US4519417A (en) Devices for controlling flow of fluid under pressure
US3926213A (en) Flow control device
JPS63211409A (en) Pressure control valve
JPS5857571A (en) Pressure compensation type flow control valve
JPH0359307B2 (en)
JP3304651B2 (en) Servo piston mechanism
US4836089A (en) Series spool pressure regulator arrangement for a double-acting hydraulic actuator
JPH02163503A (en) Load pressure compensation type logic valve control circuit