JPS5854178B2 - Separation and recovery method of valuable metal components - Google Patents

Separation and recovery method of valuable metal components

Info

Publication number
JPS5854178B2
JPS5854178B2 JP51036051A JP3605176A JPS5854178B2 JP S5854178 B2 JPS5854178 B2 JP S5854178B2 JP 51036051 A JP51036051 A JP 51036051A JP 3605176 A JP3605176 A JP 3605176A JP S5854178 B2 JPS5854178 B2 JP S5854178B2
Authority
JP
Japan
Prior art keywords
tungsten
cobalt
chloride
sludge
metal components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51036051A
Other languages
Japanese (ja)
Other versions
JPS52120203A (en
Inventor
明美 加藤
登 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP51036051A priority Critical patent/JPS5854178B2/en
Publication of JPS52120203A publication Critical patent/JPS52120203A/en
Publication of JPS5854178B2 publication Critical patent/JPS5854178B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 本発明は超硬合金スクラップ及び/又は該合金の加工の
際発生するスラッジなどのタングステン、コバルト含有
物から有価金属成分を分離回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for separating and recovering valuable metal components from tungsten and cobalt-containing materials such as cemented carbide scrap and/or sludge generated during the processing of said alloy.

さらに詳しくは、タングステンカーバイド−コバルト(
以下W C−Coと略記する)系超硬合金スクラップ及
び/又は該合金の電解研削などの加工の際発生するスラ
ッジなどのタングステン、コバルト含有物からタングス
テン及びコバルトを回収する方法に関する。
For more details, see Tungsten Carbide-Cobalt (
The present invention relates to a method for recovering tungsten and cobalt from tungsten and cobalt-containing substances such as sludge generated during processing such as electrolytic grinding and/or electrolytic grinding of cemented carbide scrap (hereinafter abbreviated as W C-Co).

タングステンカーバイドは極めて硬いので各種の超硬工
具として多用されており、これにともなって、規格外品
及び使用済品などのスクラップが多量に発生している。
Since tungsten carbide is extremely hard, it is widely used in various types of carbide tools, and as a result, large amounts of scrap such as non-standard products and used products are generated.

又、超硬合金の加工は種々の方法で行われているが、近
時電解研削による方法が多用されるようになり、それに
つれて、そのスラッジの発生量も増大している。
Further, although cemented carbide is processed by various methods, recently electrolytic grinding has come into widespread use, and the amount of sludge produced has also increased accordingly.

従って、これらスクラップ及びスラッジから有価金属成
分の回収は資源の有効利用の面から重要であり、従来か
ら種々研究されている。
Therefore, the recovery of valuable metal components from these scraps and sludge is important from the standpoint of effective resource utilization, and various studies have been carried out heretofore.

本発明者らは、超硬合金スクラップ、スラッジなどのタ
ングステン及びコバルト含有物からタングステン、コバ
ルトなどを回収する方法につき従来からの種々の方法を
研究してきた。
The present inventors have studied various conventional methods for recovering tungsten, cobalt, etc. from tungsten and cobalt-containing materials such as cemented carbide scrap and sludge.

その結果、本発明者らは、該スクラップ及び/又はスラ
ッジなどをあらかじめ酸化処理し、ついである条件下で
塩素化することにより、極めて収率良く、かつ高純度で
タングステン塩化物及びコバルト塩化物を回収し得るこ
とを見出し本発明を完成した。
As a result, the present inventors were able to produce tungsten chloride and cobalt chloride with extremely good yield and high purity by pre-oxidizing the scrap and/or sludge and then chlorinating it under certain conditions. They discovered that it could be recovered and completed the present invention.

すなわち、本発明は、W C−Co系超硬合金スクラッ
プ及び/又は該合金の電解研削スラッジ等タングステン
、コバルト含有物を酸化し、ついで炭素質の存在下で塩
素化してタングステン塩化物及びコバルト塩化物を回収
することを特徴とするものである。
That is, the present invention oxidizes tungsten and cobalt-containing materials such as W C-Co cemented carbide scrap and/or electrolytic grinding sludge of the alloy, and then chlorinates it in the presence of carbonaceous material to produce tungsten chloride and cobalt chloride. It is characterized by collecting things.

WC−Co系超硬合金の電解研削スラッジを加熱脱水し
たものは、WC、C0WO4、Na2WO4などで権威
されている。
The sludge obtained by heating and dehydrating electrolytic grinding sludge of WC-Co cemented carbide is known as WC, COWO4, Na2WO4, etc.

これらの成分中、タングステン、コバルトなどの有効成
分を塩素化して回収するには約80000以上の高温度
が必要である。
Among these components, high temperatures of about 80,000 ℃ or more are required to chlorinate and recover active ingredients such as tungsten and cobalt.

又このような高温度で塩素化すると、タングステン塩化
物、コバルト塩化物が同時に生成物として反応系外に析
出するので、これらを更にそれぞれに分離する工程が必
要となる。
Furthermore, when chlorination is carried out at such a high temperature, tungsten chloride and cobalt chloride are simultaneously precipitated out of the reaction system as products, so a further step is required to separate them into each other.

本発明者らは、タングステン、コバルト含有物を塩素化
する際、炭素質の存在下でこれを行うと、C0WO4、
N a 2 WO4は低い温度、例えば約500°Cで
も顕著に反応が進行するが、しかし、前記スクラップ及
びスラッジ構成成分の内、WCは炭素質の存在下でも尚
該低温度では塩素化されずに残存することを認め、前述
のとおり、前記スクラップ及び/又はスラッジをあらか
じめ酸化することにより、これらの構成成分中のWCを
タングステン酸化物として他の成分と同様に炭素質の存
在下、低温度で塩素化可能となるようにし、かつ、簡易
に、高純度のタングステン塩化物及びコバルト塩化物と
して分離回収し得たのである。
The present inventors found that when chlorinating tungsten and cobalt-containing materials in the presence of carbonaceous matter, COWO4,
The reaction of N a 2 WO 4 proceeds significantly even at low temperatures, for example about 500°C, but among the scrap and sludge constituents, WC is not chlorinated at such low temperatures even in the presence of carbonaceous matter. As mentioned above, by oxidizing the scrap and/or sludge in advance, WC in these components can be converted into tungsten oxide in the presence of carbonaceous materials at low temperatures. This made it possible to chlorinate the tungsten chloride and easily separate and recover it as high-purity tungsten chloride and cobalt chloride.

本発明で、タングステン、コバルト含有物の酸化温度は
、これに含まれるWCが容易に酸化物となる温度であれ
ば制限されないが、好ましくは400 ’C以上である
In the present invention, the oxidation temperature of the tungsten- and cobalt-containing material is not limited as long as the WC contained therein easily becomes an oxide, but is preferably 400'C or higher.

又、塩素化反応において塩素は、該反応が進行する上に
必要な量を供給すれば良い。
Further, in the chlorination reaction, chlorine may be supplied in an amount necessary for the reaction to proceed.

又、反応系に添加する炭素質は特に制限されるものでな
く、通常のコークスなどが用いられる。
Further, the carbonaceous substance added to the reaction system is not particularly limited, and ordinary coke or the like may be used.

又、その添加量は酸化処理したスラッジ等に対して10
〜50wt優が好ましい。
Also, the amount added is 10% to oxidized sludge, etc.
~50wt is preferable.

又、塩素化反応の温度はスラッジ等の全ての構成成分が
塩素化される温度すなわち、約350℃からコバルトの
塩化物の蒸気圧を無視し得る温度、例えば、約500℃
までの温度で行うことが好ましく、タングステンの塩化
物を分離回収後、更に塩化コバルトが気化する温度まで
塩素化物を昇温し2コバルトの塩化物を回収する。
In addition, the temperature of the chlorination reaction ranges from a temperature at which all components such as sludge are chlorinated, that is, about 350°C, to a temperature at which the vapor pressure of cobalt chloride can be ignored, for example, about 500°C.
After separating and recovering the tungsten chloride, the temperature of the chloride is further raised to a temperature at which cobalt chloride vaporizes, and cobalt 2 chloride is recovered.

タングステン塩化物は、WO2C12,WOCl4を含
む成分として得られるが、これらを更に前述したような
炭素質の存在下で、約700℃以上の温度で塩素と接触
させることによりWCl6に転換させることができる。
Tungsten chloride is obtained as a component containing WO2C12 and WOCl4, but it can be converted to WCl6 by contacting these with chlorine at a temperature of about 700°C or higher in the presence of carbonaceous substances as described above. .

得られた塩化物は、金属タングステン及び金属コバルト
又はこれらを含む有用化合物の原料として利用できる。
The obtained chloride can be used as a raw material for metallic tungsten, metallic cobalt, or useful compounds containing these.

本発明は、極めて温和な条件で、又、高い回収率で、か
つ、高純度のタングステン塩化物及びコバルト塩化物を
回収できる。
The present invention can recover highly purified tungsten chloride and cobalt chloride under extremely mild conditions and at a high recovery rate.

次に実施例で本発明を詳述する。Next, the present invention will be explained in detail with reference to Examples.

実施例 1 WC−Co未電解研削スラッジは、約3000Cに加熱
して水分などを除去し、CoWO4; 69%。
Example 1 WC-Co non-electrolytic grinding sludge was heated to about 3000C to remove water and the like, resulting in CoWO4; 69%.

Na2WO4;20%、 WCloo % 、 C:
1%の構成成分のものを用いた。
Na2WO4; 20%, WCloo%, C:
The one containing 1% of the constituent components was used.

上記スラッジを空気中、約500°Cで酸化し、その1
0gを石英ボートに取り、約2gのコークス粉を混入し
て、アルゴン置換した反応器で500℃に加熱し、10
0m1/分で3時間塩素ガスを流通させた。
The above sludge was oxidized in air at about 500°C, part 1
0g was placed in a quartz boat, mixed with approximately 2g of coke powder, heated to 500°C in a reactor purged with argon, and heated for 10 minutes.
Chlorine gas was passed through at 0 m1/min for 3 hours.

その結果、反応器に連結した加熱部外の室温と同温度に
保った受器に9.89のタングステン塩化物を得た。
As a result, 9.89 tungsten chloride was obtained in the receiver which was kept at the same temperature as the room temperature outside the heating section connected to the reactor.

化学分析の結果、WO2C12;98多、WOCl4;
2係、を含むものであり、Wはほぼ100φ回収できた
As a result of chemical analysis, WO2C12; 98%, WOCl4;
2, and approximately 100φ of W could be recovered.

次いで、塩素ガスを止め100 TiI4分でアルゴン
ガスを流通させながら750℃で4時間加熱したところ
、2.9gの塩化コバルトを得た。
Next, the chlorine gas was stopped and the mixture was heated at 750° C. for 4 hours while flowing argon gas for 4 minutes to obtain 2.9 g of cobalt chloride.

したがって、コバルトはほぼ100%回収できた。Therefore, almost 100% of cobalt could be recovered.

実施例 2 実施例1で用いた反応器にコークスを充填した反応器を
連結し、塩素ガスとともに生成タングステン塩素化物を
これに流通させるようにした以外は、実施例1に準じて
塩素化を行った。
Example 2 Chlorination was carried out in the same manner as in Example 1, except that a reactor filled with coke was connected to the reactor used in Example 1, and the produced tungsten chloride was passed through it together with chlorine gas. Ta.

尚、コークス充填層は900℃に保った。Incidentally, the coke packed bed was maintained at 900°C.

得られた生成物はWCA 6で13.6gを得た。The resulting product was 13.6 g in WCA 6.

実施例 3 WC−Co系合金スクラップをアルゴン雰囲気中、18
00〜2000 ’Cで1時間加熱し、これを粉砕して
原料とした。
Example 3 WC-Co alloy scrap was heated to 18% in an argon atmosphere.
The mixture was heated at 00 to 2000'C for 1 hour and pulverized to obtain a raw material.

成分は次のとおりであった。W: 87.0%、Co
: 5.9%、C: 5.9%。
The ingredients were as follows. W: 87.0%, Co
: 5.9%, C: 5.9%.

ついで、これを空気中で90000で酸化し、この1(
Bi’をコークス粉2gと混合し、実施例1と同じ条件
で塩素化した。
Next, this was oxidized in air at 90000C to form this 1(
Bi' was mixed with 2 g of coke powder and chlorinated under the same conditions as in Example 1.

その結果、タングステン塩化物11.6.9を得た。As a result, tungsten chloride 11.6.9 was obtained.

このものの化学分析の結果、WO2C12;98φ。As a result of chemical analysis of this product, WO2C12; 98φ.

WOCA、; 2%を含むものであった。It contained 2% WOCA.

ついで、実施例1と同様に昇温しで1.1gの塩化コバ
ルトを得た。
Then, the temperature was raised in the same manner as in Example 1 to obtain 1.1 g of cobalt chloride.

W、Coの回収率はほぼ100%であった。The recovery rate of W and Co was almost 100%.

Claims (1)

【特許請求の範囲】[Claims] 1 タングステンカーバイド−コバルト系超硬合金スク
ラップ及び/又は該合金の電解研削スラッジなどのタン
グステン、コバルト含有物をあらかじめ酸化し、ついで
炭素質の存在下350〜500度°Cで塩素化すること
を特徴とする有価金属成分の分離回収方法。
1. Tungsten and cobalt-containing materials such as tungsten carbide-cobalt cemented carbide scrap and/or electrolytic grinding sludge of the alloy are oxidized in advance, and then chlorinated at 350 to 500 degrees Celsius in the presence of carbonaceous material. A method for separating and recovering valuable metal components.
JP51036051A 1976-04-02 1976-04-02 Separation and recovery method of valuable metal components Expired JPS5854178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51036051A JPS5854178B2 (en) 1976-04-02 1976-04-02 Separation and recovery method of valuable metal components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51036051A JPS5854178B2 (en) 1976-04-02 1976-04-02 Separation and recovery method of valuable metal components

Publications (2)

Publication Number Publication Date
JPS52120203A JPS52120203A (en) 1977-10-08
JPS5854178B2 true JPS5854178B2 (en) 1983-12-03

Family

ID=12458905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51036051A Expired JPS5854178B2 (en) 1976-04-02 1976-04-02 Separation and recovery method of valuable metal components

Country Status (1)

Country Link
JP (1) JPS5854178B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159788A (en) * 2012-02-01 2013-08-19 Jx Nippon Mining & Metals Corp Method of producing tungsten oxide, and method of producing tungsten employing the same
JP2015044739A (en) * 2014-10-27 2015-03-12 Jx日鉱日石金属株式会社 Method of producing tungsten oxide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728197A (en) * 1996-07-17 1998-03-17 Nanodyne Incorporated Reclamation process for tungsten carbide/cobalt using acid digestion
JP6036126B2 (en) * 2012-10-02 2016-11-30 住友電気工業株式会社 Method for producing tungsten oxide and method for producing tungsten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159788A (en) * 2012-02-01 2013-08-19 Jx Nippon Mining & Metals Corp Method of producing tungsten oxide, and method of producing tungsten employing the same
JP2015044739A (en) * 2014-10-27 2015-03-12 Jx日鉱日石金属株式会社 Method of producing tungsten oxide

Also Published As

Publication number Publication date
JPS52120203A (en) 1977-10-08

Similar Documents

Publication Publication Date Title
US5695734A (en) Process for the separation of carbon nanotubes from graphite
TW200936508A (en) Method of reclaiming ruthenium from waste containing ruthenium
JP2562985B2 (en) Method for obtaining uranium from oxides using the chloride method
FR2665182A1 (en) PROCESS FOR THE RECOVERY OF TITANIUM CONTENT
JPS5854178B2 (en) Separation and recovery method of valuable metal components
JPS60500171A (en) Improvements in entrained downflow chlorination of fine titanium-containing materials
JPS6191335A (en) Method for recovering platinum group metal
US3977864A (en) Process for selectively chlorinating the titanium content of titaniferous materials
GB2395203A (en) Making activated particulate platinum metals
JP5223085B2 (en) Separation and purification of rare metals by chloride volatilization method
US3729544A (en) Separation of iron by chlorination of a ferro-alloy
JP2002316822A (en) Method for recovering tantalum/niobium from carbide- base raw material containing tantalum/niobium
US2760857A (en) Production and purification of titanium
US2913379A (en) Separation process
JP2004292912A (en) Method for recovering high purity rhodium from rhodium-containing metal waste or the like
US3249399A (en) Process for chlorination of electrolytic copper refinery slimes
US4406866A (en) Recovery of refractory metal values from scrap cemented carbide
US20110052481A1 (en) Method of treating metalliferrous materials
JPH029094B2 (en)
JPH01502916A (en) Method for producing and purifying Group 4B transition metal-alkali metal-fluoride salt
JPS5815447B2 (en) Tungsten Enkabutsuno Seizouhouhou
JPH0320445B2 (en)
JPS6148506A (en) Refining method of fine particle by gaseous phase process
Borchers et al. Extractive metallurgy of tantalum
SU823295A1 (en) Method of processing dust-like tungsten-containing wastes