JPS5853914B2 - Enzyme immobilization method - Google Patents

Enzyme immobilization method

Info

Publication number
JPS5853914B2
JPS5853914B2 JP55077503A JP7750380A JPS5853914B2 JP S5853914 B2 JPS5853914 B2 JP S5853914B2 JP 55077503 A JP55077503 A JP 55077503A JP 7750380 A JP7750380 A JP 7750380A JP S5853914 B2 JPS5853914 B2 JP S5853914B2
Authority
JP
Japan
Prior art keywords
enzyme
immobilization
immobilized
reagent
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55077503A
Other languages
Japanese (ja)
Other versions
JPS572683A (en
Inventor
史朗 南海
研一 中村
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55077503A priority Critical patent/JPS5853914B2/en
Publication of JPS572683A publication Critical patent/JPS572683A/en
Publication of JPS5853914B2 publication Critical patent/JPS5853914B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 本発明は、酵素利用反応における酵素の有効利用を図る
ため、連続使用、繰り返し使用の可能な酵素固定化体を
得る方法に関し、特に固定化酵素の活性向上を目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining an immobilized enzyme that can be used continuously and repeatedly in order to effectively utilize enzymes in enzyme-utilizing reactions. do.

近年、酵素固定化技術の進展に伴い、固定化酵素を利用
したセンサー、あるいは薬品製造など酵素の有する特異
的触媒作用の工業的有効利用が試みられている。
In recent years, with the progress of enzyme immobilization technology, attempts have been made to make effective industrial use of the specific catalytic action of enzymes, such as sensors using immobilized enzymes or drug production.

この中で用いられる酵素の固定化法としては、高分子マ
トリックス中に固定化する包括法、固定化担体に直接化
学結合する担体結合法、酵素相互を架橋固定化する架橋
法などが知られている。
The enzyme immobilization methods used in this process include the entrapment method in which the enzymes are immobilized in a polymer matrix, the carrier binding method in which the enzymes are directly chemically bonded to the immobilization carrier, and the crosslinking method in which the enzymes are cross-linked and immobilized to each other. There is.

具体的には、種々の有機高分子、あるいはガラスピーズ
、カーボンなどをはじめとする無機物を担体として用い
、これらの担体上に上記固定化法を利用して酵素を固定
化する。
Specifically, various organic polymers or inorganic substances such as glass beads and carbon are used as carriers, and the enzyme is immobilized on these carriers using the above immobilization method.

担体結合法では酵素と担体を直接結合させるため使用中
に酵素が脱落することはないが、固定化に際しての種々
の反応、操作が複雑であり、適用加能な担体も限定され
る。
In the carrier binding method, the enzyme is directly bound to the carrier, so the enzyme does not fall off during use, but the various reactions and operations during immobilization are complicated, and the types of carriers that can be applied are limited.

また包括法では、3次元樹脂マトリックス中に酵素を閉
じ込めるなどの方法により固定化する。
In the entrapment method, the enzyme is immobilized by a method such as confinement in a three-dimensional resin matrix.

この固定化法では酵素と担体の結合を伴わないため、固
定化にともなう酵素活性の低下は少ない。
Since this immobilization method does not involve binding of the enzyme to a carrier, there is little decrease in enzyme activity due to immobilization.

しかし反面、連続使用、繰り返し使用に伴う酵素の脱離
は避けられない。
However, on the other hand, desorption of enzymes due to continuous and repeated use is unavoidable.

これに対し架橋法では、例えばグルタルアルデヒドなど
の固定化試薬を用いて酵素相互あるいは酵素と担体の間
に架橋反応を行わしめ、不溶固定化する。
On the other hand, in the cross-linking method, a cross-linking reaction is carried out between the enzymes or between the enzyme and the carrier using an immobilizing reagent such as glutaraldehyde, thereby immobilizing the enzyme in solubility.

具体的には、使用する固定化担体の表面を塗布あるいは
浸漬法などにより酵素溶液で被覆し、必要ならば乾燥し
、次にグルタルアルデヒドなどの固定化試薬溶液を添加
して架橋反応を行わせ、酵素を架橋不溶化する。
Specifically, the surface of the immobilization carrier to be used is coated with an enzyme solution by coating or dipping, dried if necessary, and then an immobilization reagent solution such as glutaraldehyde is added to perform a crosslinking reaction. , to crosslink and insolubilize the enzyme.

グルタルアルデヒドとしては数饅水溶液が一般に使用さ
れるが、固定化試薬濃度が高いと架橋反応が急激に進み
酵素の活性が失われる。
Generally, an aqueous solution of glutaraldehyde is used, but if the concentration of the immobilizing reagent is high, the crosslinking reaction will proceed rapidly and the activity of the enzyme will be lost.

また逆に固定化試薬濃度が低いと反応速度が遅く、この
間に未反応の酵素が添加した固定化試薬溶液に溶解する
On the other hand, if the concentration of the immobilized reagent is low, the reaction rate is slow, and during this time unreacted enzyme is dissolved in the added immobilized reagent solution.

固定化においては、酵素はある程度以上の濃度であるこ
とが必要であり、添加した固定化試薬溶液のために酵素
濃度が低下することは反応を進行させる上で大変不利な
ことである。
In immobilization, the concentration of the enzyme needs to be above a certain level, and a decrease in the enzyme concentration due to the added immobilization reagent solution is very disadvantageous for the reaction to proceed.

これらの点からも明らかであるが、この方法により担体
表面を固定化(不溶化)酵素からなる膜で均一に覆うこ
とはほとんど不可能である。
As is clear from these points, it is almost impossible to uniformly cover the surface of the carrier with a film made of immobilized (insolubilized) enzyme using this method.

すなわち、固定化反応(架橋反応)を行わせる際に、固
定化試薬を溶液状態で作用させる、つまり固定化試薬を
液相から供給する方法であるため、上記に述べた問題は
避けられない。
That is, when performing the immobilization reaction (crosslinking reaction), the above-mentioned problems are unavoidable because the immobilization reagent is applied in a solution state, that is, the immobilization reagent is supplied from the liquid phase.

そこで、本発明者らは各種固定化法の問題点を解決すべ
く検討を重ねた結果、酵素と架橋反応する固定化試薬を
気相から供給する固定法を見い出した。
Therefore, the present inventors conducted repeated studies to solve the problems of various immobilization methods, and as a result, discovered an immobilization method in which an immobilization reagent that crosslinks with the enzyme is supplied from the gas phase.

その特徴は、グルタルアルデヒドなどの固定化試薬を作
用させて酵素と担体、あるいは酵素相互を架橋固定化す
る際に、固定化試薬を気相から供給しつつ固定化反応を
行わせる点にある。
Its feature is that when an immobilization reagent such as glutaraldehyde is applied to cross-link and immobilize the enzyme and the carrier, or between the enzymes, the immobilization reaction is carried out while the immobilization reagent is supplied from the gas phase.

すなわち、固定化試薬を一度、気体状態にした後、酵素
溶液で被覆し、必要ならばさらに乾燥させた担体表面へ
供給することにより良好に酵素の固定化ができる。
That is, the enzyme can be effectively immobilized by once converting the immobilization reagent into a gaseous state, coating it with an enzyme solution, and supplying it to the surface of the carrier, which has been further dried if necessary.

そこでこの固定化法について、固定化酵素の活性向上の
観点からさらに種々検討を試みたところ、非酸素雰囲気
下で固定化反応を行うことにより、優れた酵素活性を有
する酵素固定化体を得ることができることが判明した。
Therefore, we further investigated this immobilization method from the perspective of improving the activity of the immobilized enzyme, and found that by performing the immobilization reaction in a non-oxygen atmosphere, we could obtain an immobilized enzyme with excellent enzyme activity. It turned out that it can be done.

すなわち、アルゴンや窒素などの不活性ガス雰囲気下、
あるいは減圧下において固定化試薬を気相から供給して
固定化を進行させることにより、固定化に伴う酵素の活
性低下を大幅に減することができた。
That is, under an inert gas atmosphere such as argon or nitrogen,
Alternatively, by supplying the immobilization reagent from the gas phase under reduced pressure to advance the immobilization, it was possible to significantly reduce the decrease in enzyme activity associated with immobilization.

この様な効果が得られる理由については明らかではない
が、酵素活性に影響を及ぼす固定化反応に反応系中の酸
素が何らかのかたちで関与していることが考えられ、こ
のため反応系雰囲気中の酸素濃度を減じた条件下で上記
効果が得られるものと思われる。
The reason for this effect is not clear, but it is thought that oxygen in the reaction system is involved in some way in the immobilization reaction that affects enzyme activity. It is thought that the above effects can be obtained under conditions where the oxygen concentration is reduced.

そして、さらに本発明の固定化法においては、固定化反
応に関与する固定化試薬の濃度を容易にその蒸気圧で制
御できるため、酵素の微妙な活性変化に重大な影響を及
ぼす固定化反応の進行度合いを容易に調節できる。
Furthermore, in the immobilization method of the present invention, the concentration of the immobilization reagent involved in the immobilization reaction can be easily controlled by its vapor pressure, so that the immobilization reaction, which has a significant effect on subtle changes in the activity of the enzyme, can be easily controlled. You can easily adjust the progress rate.

以上のごとく、本発明の酵素固定化法においては、非酸
素雰囲気と固定化試薬の気相からの供給の2つの反応条
件を組み合わせることにより、高い酵素活性を有する酵
素固定化体を得ることができるものである。
As described above, in the enzyme immobilization method of the present invention, it is possible to obtain an immobilized enzyme with high enzyme activity by combining two reaction conditions: a non-oxygen atmosphere and supply of the immobilization reagent from the gas phase. It is possible.

以下、本発明をその実施例により説明する。Hereinafter, the present invention will be explained with reference to examples thereof.

第1図は、ネサガラス電極表面に本発明の方法により酵
素を固定化し、基質濃度測定用の酵素電極を構成した一
例を断面膜弐図で示したものである。
FIG. 1 is a cross-sectional membrane diagram showing an example of an enzyme electrode for measuring substrate concentration in which an enzyme is immobilized on the surface of a Nesa glass electrode by the method of the present invention.

図中1はアルコール脱水素酵素からなる固定化酵素膜、
2はネサ膜、3はガラス層である。
In the figure, 1 is an immobilized enzyme membrane consisting of alcohol dehydrogenase.
2 is a Nesa film, and 3 is a glass layer.

この酵素電極の製法は以下の通りである。The method for manufacturing this enzyme electrode is as follows.

まず、アルコール脱水素酵素を100m9/−の割合い
で溶解したリン酸緩衝液を、前述のネサガラス電極(直
径10m、厚さ1mπ)の表面に塗布展開した。
First, a phosphate buffer solution in which alcohol dehydrogenase was dissolved at a ratio of 100 m9/- was applied and developed on the surface of the aforementioned Nesa glass electrode (diameter 10 m, thickness 1 mπ).

次に、少し乾燥させた後、以下に示す種々の雰囲気条件
下で、グルタルアルデヒド蒸気中において25℃で60
分間固定化反応を行わせた。
Then, after being slightly dried, it was heated to 60°C at 25°C in glutaraldehyde vapor under various atmospheric conditions shown below.
The immobilization reaction was allowed to occur for minutes.

反応終了後、リン酸緩衝液で洗浄した。After the reaction was completed, it was washed with phosphate buffer.

こうして得られた固定化酵素膜は十分な密着強度を有す
るものであった。
The immobilized enzyme membrane thus obtained had sufficient adhesion strength.

反応雰囲気条件として、減圧下(30imHg以下)で
得られた電極をA、同様にアルゴンガスの場合をB、窒
素ガスの場合をC1空気の場合をD、酸素ガスの場合を
Eとする。
Regarding the reaction atmosphere conditions, A is the electrode obtained under reduced pressure (30 imHg or less), B is the case with argon gas, C is the case with nitrogen gas, D is the case with air, and E is the case with oxygen gas.

上記アルコール脱水素酵素固定化電極を用いてエタノー
ル濃度を以下の方法で測定した。
Ethanol concentration was measured using the alcohol dehydrogenase immobilized electrode in the following manner.

H型セルを用い、前述の電極を樹脂製電極ホルダーに装
着し、補酵素としてl×10−3モル/lのニコチンア
ミドアデニンジヌクレオチドを含むpH7,0のリン酸
緩衝液に浸漬した。
Using an H-type cell, the electrode described above was attached to a resin electrode holder and immersed in a phosphate buffer solution of pH 7.0 containing 1×10 −3 mol/l nicotinamide adenine dinucleotide as a coenzyme.

次にポテンショスタットを用いて電極電位を補酵素の十
分な酸化電位に設定した後、エタノールを注入して所定
の濃度とし、酵素反応で還元された補酵素の酸化電流値
を測定した。
Next, after setting the electrode potential to a sufficient oxidation potential of the coenzyme using a potentiostat, ethanol was injected to reach a predetermined concentration, and the oxidation current value of the coenzyme reduced by the enzyme reaction was measured.

第2図にエタノール濃度変化に伴う電流値の増加を示す
Figure 2 shows the increase in current value as the ethanol concentration changes.

図から明らかなごとく、空気あるいは酵素の雰囲気下で
得られた電極り、Hに比較して、本発明による電極A、
B、Cの電流増加が大きく、電極に固定化されているア
ルコール脱水素酵素の活性が高いことを示している。
As is clear from the figure, electrode A according to the invention, compared to electrode H obtained under air or enzyme atmosphere,
The increase in current in B and C is large, indicating that the activity of alcohol dehydrogenase immobilized on the electrode is high.

このような活性向上効果は、上記アルコール脱水素酵素
に限られることはない。
Such an activity-improving effect is not limited to the above-mentioned alcohol dehydrogenase.

種々の酵素に本発明の固定化法を用いたところ同様の効
果が得られた。
Similar effects were obtained when the immobilization method of the present invention was used for various enzymes.

また、本発明の固定化法で使用可能な固定化試薬として
は、実施例で示したグルタルアルデヒド以外に、2−オ
キシアシボアルデヒド、クロトンアルデヒド、アクロレ
イン、グリオキザール、プロピオンアルデヒド、パラホ
ルムアルデヒドなどのアルデヒドあるいはアルデヒド重
合物をはじめとして、気相から供給することのできる固
定化試薬であればいずれも使用することができる。
In addition to the glutaraldehyde shown in the examples, examples of immobilization reagents that can be used in the immobilization method of the present invention include aldehydes such as 2-oxyacibaldehyde, crotonaldehyde, acrolein, glyoxal, propionaldehyde, and paraformaldehyde. Alternatively, any immobilizing reagent that can be supplied from the gas phase, including aldehyde polymers, can be used.

以上述べたごとく、本発明の酵素固定化法によれば、高
い酵素活性を有する酵素固定化体を容易に得ることがで
きる。
As described above, according to the enzyme immobilization method of the present invention, an immobilized enzyme having high enzyme activity can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はネサガラス電極とこれを覆う固定化酵素膜を示
す断面模式図、第2図は各種酵素電極を用いて測定した
エタノール濃度と電流増加量の関係を示す。 1・・・・・・固定化酵素膜、 ラス層。 2・・・・・・ネサ膜、 3・・・・・・ガ
FIG. 1 is a schematic cross-sectional view showing a Nesa glass electrode and an immobilized enzyme membrane covering it, and FIG. 2 shows the relationship between ethanol concentration and current increase amount measured using various enzyme electrodes. 1: Immobilized enzyme membrane, lath layer. 2...Nesa membrane, 3...Ga

Claims (1)

【特許請求の範囲】 1 酵素と架橋反応する固定化試薬で酵素を固定化する
酵素固定化法であって、減圧下あるいは不活性ガス雰囲
気下において前記固定化試薬を気相から供給して固定化
反応を行わせることを特徴とする酵素固定化法。 2 固定化試薬がアルデヒドあるいはアルデヒドの重合
物から選ばれる特許請求の範囲第1項記載の酵素固定化
法。
[Scope of Claims] 1 An enzyme immobilization method in which an enzyme is immobilized with an immobilization reagent that undergoes a crosslinking reaction with the enzyme, wherein the immobilization reagent is supplied from a gas phase under reduced pressure or an inert gas atmosphere. An enzyme immobilization method characterized by carrying out a chemical reaction. 2. The enzyme immobilization method according to claim 1, wherein the immobilization reagent is selected from aldehydes and aldehyde polymers.
JP55077503A 1980-06-09 1980-06-09 Enzyme immobilization method Expired JPS5853914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55077503A JPS5853914B2 (en) 1980-06-09 1980-06-09 Enzyme immobilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55077503A JPS5853914B2 (en) 1980-06-09 1980-06-09 Enzyme immobilization method

Publications (2)

Publication Number Publication Date
JPS572683A JPS572683A (en) 1982-01-08
JPS5853914B2 true JPS5853914B2 (en) 1983-12-01

Family

ID=13635761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55077503A Expired JPS5853914B2 (en) 1980-06-09 1980-06-09 Enzyme immobilization method

Country Status (1)

Country Link
JP (1) JPS5853914B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4687732A (en) * 1983-06-10 1987-08-18 Yale University Visualization polymers and their application to diagnostic medicine
US4500788A (en) * 1983-08-19 1985-02-19 Baxter Travenol Laboratories, Inc. Device for providing antibacterial radiation
JPS63111454A (en) * 1986-10-29 1988-05-16 Nec Corp Production of immobilized enzyme film

Also Published As

Publication number Publication date
JPS572683A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
Nguyen et al. An overview of techniques in enzyme immobilization
Erden et al. A review of enzymatic uric acid biosensors based on amperometric detection
Cosnier Biosensors based on electropolymerized films: new trends
US4581336A (en) Surface-modified electrodes
CA2092042A1 (en) Biosensor
US6107084A (en) Method for the preparation of an immobilized protein ultrathin film reactor and a method for a chemical reaction by using an immobilized protein ultrathin film reactor
JPS6239900B2 (en)
US4268419A (en) Support matrices for immobilized enzymes
JPH0616699A (en) Method of immobilization of biochemical substance
JP3151331B2 (en) How to immobilize biochemicals
JPS5853914B2 (en) Enzyme immobilization method
ATE15225T1 (en) IMMOBILIZED ENZYMES, PROCESSES FOR THEIR PRODUCTION AND THEIR USE IN THE TRANSFORMATION OF SUBSTRATES INTO PRODUCTS.
US4434229A (en) Enzyme immobilization with an immobilizing reagent in vapor phase
JPS6326992B2 (en)
JPH06105237B2 (en) Enzyme and mediator immobilization method
JPS6243496B2 (en)
JPS6257942B2 (en)
JPH0721479B2 (en) Enzyme electrode, sensor using the same, quantitative analysis method
JPS63309848A (en) Production of enzyme electrode
JPS626682A (en) Immobilized carrier
JPH0550272B2 (en)
JP2682867B2 (en) Protein immobilization method
JPS5863389A (en) Dried immobilized enzyme and its preparation
JPS61187792A (en) Production of immobilized living body catalyst
JPH0799960A (en) Ceramic carrier for bioreactor