JPS5853777A - Crack detector for field coil of turbine generator - Google Patents

Crack detector for field coil of turbine generator

Info

Publication number
JPS5853777A
JPS5853777A JP56152197A JP15219781A JPS5853777A JP S5853777 A JPS5853777 A JP S5853777A JP 56152197 A JP56152197 A JP 56152197A JP 15219781 A JP15219781 A JP 15219781A JP S5853777 A JPS5853777 A JP S5853777A
Authority
JP
Japan
Prior art keywords
potential difference
crack
length
computer
field coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56152197A
Other languages
Japanese (ja)
Inventor
Makoto Hayashi
林 眞琴
Shinji Sakata
信二 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56152197A priority Critical patent/JPS5853777A/en
Publication of JPS5853777A publication Critical patent/JPS5853777A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/346Testing of armature or field windings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

PURPOSE:To detect the position and length of cracks by comparing potential differences between lead wires for measuring potential difference which are distributed in plurality at a field coil end with lead wires for supplying direct current. CONSTITUTION:A plurality of measuring terminals 19 are provided at a space 1 from a slot output to the end of a coil. A potential difference V0, the reference potential difference, between the measuring terminals 14 of the end and potential differences V1-V6 between the measuring terminals 19 are switched over sequentially with a scanner 26 according to a command from a computer 24, amplified by passing through a low-pass filter 27, a preamplifier 28 and an amplifier 29 and then inputted into the computer 24 and digitalized with an analog-digital converter 23. The computer 24 calculates V1/V0-V6/V0 by division of the potential differences measured to determine the length of a crack based on a relationship between the length thereof and the ratio of the potential differences. The position and the length of the cracks are displayed on the screen of a CRT 25.

Description

【発明の詳細な説明】 本発明はタービン発電機フィールドコイルのき裂長さを
検出する装置に係シ、特に、ローターのリテイニングリ
ングを外すことなく、き裂発生位−とき裂長さを精度良
く測定するのに好適な装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting the length of a crack in a field coil of a turbine generator. This invention relates to a device suitable for measuring.

き裂長さを測定する方法として°は超音波法、AE法、
ポテンシャル法などがある。AE法はき裂が成長して行
くときに発生するAEの総カウ/ト数、ドキュメント数
、Vrms値などを計測し、予め実験室にて得られたき
裂成長過程のAE発生挙動との対応からき裂の進展速度
を求めるものである。そのため、実機を模擬した荷重条
件で実験を行っておく必要がある。その理由は疲労き袈
の場合とクリープき裂の場合、或いはその他のき裂でA
Ef生挙動が異なるからである。勿論、AE発生挙動は
材料によって異なるし、組織にも敏感であるので実際に
使われる2材料について調べておかねばならないという
不便さがある。着た、AE倍信号検出するための素子は
現在のところ直径10111111%長さ15mが最小
で′あシ、狭い場所での測定は不可能である。更に、A
E倍信号き裂進展速度と対応するものであるため、常時
測定しなければな°らないと云う不便さがある。超音波
法にも種々の方法があるが、AE法の場合と同様に超音
波発信素子と受信素子が大きいため、狭い場所での測定
は不可能である。直流ポテンシャル法の場合には直流電
流を部材に入力するための給電端子とき裂の発生する恐
れのある部分を挾んだ2ケ所の電位差を測定するための
測定端子を設けるだけで良いので、配線の太さだけの隙
間があれば測定可能と云う利点がある。またAE法と異
なシ、き裂長さを検″出するので、き裂の発生及び成長
の要因を問わないと云う利点もある。
The methods used to measure crack length are ultrasonic method, AE method,
There are methods such as potential method. The AE method measures the total number of counts, number of documents, Vrms value, etc. of AE that occurs when a crack grows, and compares it with the AE generation behavior during the crack growth process obtained in advance in the laboratory. The crack growth rate is determined from Therefore, it is necessary to conduct experiments under load conditions that simulate the actual machine. The reason for this is A in the case of fatigue cracks, creep cracks, or other types of cracks.
This is because the Ef raw behavior is different. Of course, the AE generation behavior differs depending on the material and is also sensitive to tissue, so there is the inconvenience of having to investigate the two materials actually used. At present, the minimum element for detecting the AE multiplied signal is a diameter of 10111111% and a length of 15 m, making it impossible to measure in a narrow space. Furthermore, A
Since the E times signal corresponds to the crack growth rate, there is the inconvenience of having to measure it all the time. There are various ultrasound methods, but as with the AE method, the ultrasound transmitting and receiving elements are large, making measurement in a narrow space impossible. In the case of the DC potential method, it is only necessary to provide a power supply terminal for inputting DC current into the component and a measurement terminal for measuring the potential difference at two points between the parts where cracks may occur. It has the advantage that it can be measured if there is a gap as thick as . Also, unlike the AE method, since the crack length is detected, there is also the advantage that the cause of crack initiation and growth does not matter.

本発明の目的はタービン発電機のフィールドコイルエン
ド部におけるき裂の発生及びき裂の長さをリテイニング
を外すことな、<、また精度よく検出し、余寿命を予知
するき裂検出装置を提供するにある。
An object of the present invention is to provide a crack detection device that accurately detects the occurrence and length of cracks in the field coil end portion of a turbine generator without removing the retainer, and predicts the remaining life. There is something to do.

き裂の発生するフィールドコイルエンド部はリテイニン
グに覆われており、コイルとコイルの間はFRPのスペ
ーサーが入れであるため、AE法や超音波法の検出素子
を取付けらnるだけの余地がないため、他の手法を検討
しなければならない。
The end of the field coil where cracks occur is covered with retaining, and there is an FRP spacer between the coils, so there is enough room to install a detection element for the AE method or ultrasonic method. Therefore, other methods must be considered.

直流ポテンシャル法の場合は給電端子と測定端子をコイ
ルの側面に接触させておくだけで良く、空間としてリー
ド線を通せるだけの隙間かめれば十分である。本発明は
直流ポテンシャル法によるき裂長さ検出法、特に、フィ
ールドコイルエンド部に直流醸流給砿用のリード線と電
位差測定用のリード線を多数配線し、測定リード線間の
電位差を比較することによシ、き裂の発生場所を検出す
ると共に、き裂長さを測定することを可能にしたき裂検
出装置である。
In the case of the DC potential method, it is only necessary to have the power supply terminal and measurement terminal in contact with the side surface of the coil, and it is sufficient to create a gap large enough to allow the lead wire to pass through. The present invention is a crack length detection method using a DC potential method, in particular, a method in which a large number of lead wires for DC brewing feed and lead wires for measuring potential difference are wired at the end of a field coil, and the potential difference between the measurement lead wires is compared. In particular, it is a crack detection device that makes it possible to detect the location of a crack as well as measure the length of the crack.

以下、本発明の一実施例を説明する。第1図はタービン
発電機のフィールドコイルエンド部ヲ示す図である。フ
ィールドコイルは、ローターボディ1に掘られたスロッ
ト2の中を1.何層も積み重ねて巻かれ、更にS極、N
極各々第1コイルから何回も同心状に巻かれている。そ
の蝦も種石に近い第1コイル3のトップターン4が、ス
ロット出口部で破断するーことがある。コイルが破断す
ると界磁接地事故に至るので、き裂発生を検出し、破断
を未然に防ぐことが必要である。き裂長さを検出する一
つの方法として直流ポテンシャル法があ°る。
An embodiment of the present invention will be described below. FIG. 1 is a diagram showing a field coil end portion of a turbine generator. The field coil is inserted into the slot 2 drilled in the rotor body 1. Many layers are stacked and wound, and then the S pole, N pole
Each pole is wound concentrically a number of times from the first coil. In this case, the top turn 4 of the first coil 3, which is close to the seed stone, may break at the slot exit. If the coil breaks, it will lead to a field grounding accident, so it is necessary to detect crack occurrence and prevent breakage. One method for detecting crack length is the DC potential method.

直流ポテンシャル法によるき裂長さの測定原理は、導電
体中に不連続部分が存在することによって、電場が乱さ
れることに起因しておシ、測定される電位差は被測定試
料の大きさ゛や、不連続部分の形状に依存する。従って
、き裂長さaiたけ板幅Wで無次元化したき裂長さa/
Wに対する電位差V。
The principle of measuring crack length using the DC potential method is that the electric field is disturbed by the presence of discontinuities in the conductor, and the measured potential difference depends on the size of the sample being measured, Depends on the shape of the discontinuity. Therefore, the crack length a/
Potential difference V with respect to W.

或いはき裂がないときの電位差V。を基準にした電位差
比V / V Oのマスターカーブを作成しておけば鑞
位差測定によりき裂長さを測定できる。こ(Z)V/L
とa /WZ)関係は8U8304f:)ような特殊な
材料を除けば材質や部材の厚さとは無関係であり、部材
の形状、き裂の形状及び電流入力位置と電位差測定位置
に依存する。
Or the potential difference V when there is no crack. If a master curve of the potential difference ratio V/VO is created based on , the crack length can be measured by measuring the solder position difference. Ko(Z)V/L
Except for special materials such as 8U8304f:), the relationship between a and a/WZ) has nothing to do with the material or the thickness of the member, but depends on the shape of the member, the shape of the crack, the current input position, and the potential difference measurement position.

タービン発電機フィールドコイルに発生するき裂は第2
図に示すような片側き裂である。直流ポテンシャル法で
片側き裂を測定する場合、き裂9を挾んで部材80両端
近傍に距離t。をおいて設けた給電端子10を介して、
直流電源11より安定化直流゛電流を入力し、き裂9を
挾んで距離tだけ離した測定端子12の間の電位差Vを
載位差計13で測定すれば良い。測定される電位差Vは
給電端子間の距離t0が測定端子間の距離tより少し大
きければtoにはほとんど影響されないが、測定端子間
の距離tには大きく依存する。また、電位差Vは比抵抗
の温度依存性のため部材の温度に非常に敏感である。そ
のため、比抵抗の温度依存性を調ぺておいて、部材に取
付けた熱電対で温度を測定して補正を行うか、き裂がな
い部分の電位差V。を測定゛して温度に依存しない電位
差比V/Voでき裂長さを評価しなければならない。第
3図は測定端子間の距離りを15m、’45■。
The crack that occurs in the turbine generator field coil is the second
It is a one-sided crack as shown in the figure. When measuring a one-sided crack using the DC potential method, a distance t is placed between the crack 9 and the vicinity of both ends of the member 80. Through the power supply terminal 10 provided at
A stabilized DC current is inputted from the DC power source 11, and the potential difference V between the measurement terminals 12 which are separated by a distance t across the crack 9 is measured by the position difference meter 13. The potential difference V to be measured is hardly affected by to if the distance t0 between the power supply terminals is a little larger than the distance t between the measurement terminals, but it is largely dependent on the distance t between the measurement terminals. Further, the potential difference V is very sensitive to the temperature of the member due to the temperature dependence of specific resistance. Therefore, either investigate the temperature dependence of resistivity and correct it by measuring the temperature with a thermocouple attached to the member, or correct the potential difference V at the part where there is no crack. The crack length must be evaluated by measuring the temperature-independent potential difference ratio V/Vo. In Figure 3, the distance between the measurement terminals is 15m, '45■.

75mm、105++onと変えたときの電位差比V/
 V。
Potential difference ratio V/ when changed to 75mm, 105++on
V.

のき裂長さa/Wに対する変化である。き裂前方の断面
積の減少に伴うインピーダンスの増加は測定端子間距離
tが大きい場合には相対的に小さくなるためV / V
 Oの変化はtの増大と共に小さくなシ、測定精度を上
げるためには測定端子間距離tをできるだけ小さくする
必要がある。
This is the change in crack length a/W. The increase in impedance due to the decrease in the cross-sectional area in front of the crack becomes relatively small when the distance t between the measurement terminals is large, so V/V
The change in O decreases as t increases, and in order to improve measurement accuracy, it is necessary to make the distance t between the measurement terminals as small as possible.

第4図はタービン発電機フィールドコイルのき裂検出装
置、である。ローター1から出た直後のコイル4の側面
に直流電流を供給するための給電端子10を設け、ここ
を通じて直流電源11よシ直流電流をコイル全体に流す
。基準となる電位差を測るためき裂の発生する恐れのな
いエンド部に間隔t’tおいて測定端子14を設け、こ
の間の電位差V。をローパスフィルター1.5ヲ通して
直流成分だけを通すようにしてプリアンプ16とアンプ
17で増幅してIVオーダーにした後、アナログ割算器
18に入力する。き裂の発生する恐れのあるスロット出
口部からエンド部の間のコイル側面に測定端子14と同
じ間隔tをおいて測定端子19を設け、この間の電位差
Vをローパスフィルター20を通してプリアンプ21と
アンプ22で増幅した後、前記アナログ割算器18に入
れ、割算器18にて増幅された電位差Vとvoの割算を
行い、AD変換器23によりディジタル化した後、コン
ピューター24に入れる。コンピューター24の記憶回
路の中には、第3図に示すような測定端子間の距離tに
対応した電位差比V /” V Oとき裂長さa/Wと
の関係を入れておき、割算器23より入った電位差比V
/VOt−この関係に入れることによりき裂長さa/W
を算出し、CRT25に表示する。
FIG. 4 shows a crack detection device for a turbine generator field coil. A power supply terminal 10 for supplying a DC current is provided on the side surface of the coil 4 immediately after coming out of the rotor 1, and a DC power supply 11 causes the DC current to flow throughout the coil through this terminal. In order to measure the reference potential difference, measurement terminals 14 are provided at intervals t't at the ends where there is no risk of cracking, and the potential difference V between them is provided. The signal is passed through a low-pass filter 1.5 to pass only the DC component, amplified by a preamplifier 16 and an amplifier 17 to IV order, and then input to an analog divider 18. A measurement terminal 19 is provided at the same distance t as the measurement terminal 14 on the side of the coil between the slot outlet and the end where cracks may occur, and the potential difference V between these terminals is passed through a low-pass filter 20 to the preamplifier 21 and amplifier 22. After being amplified, the signal is input to the analog divider 18, where the amplified potential difference V and vo are divided, digitized by the AD converter 23, and then input to the computer 24. The memory circuit of the computer 24 stores the relationship between the potential difference ratio V/''V O and the crack length a/W corresponding to the distance t between the measurement terminals as shown in FIG. Potential difference ratio V entered from 23
/VOt-By entering this relationship, the crack length a/W
is calculated and displayed on the CRT 25.

次にき裂が進展して臨界のき裂長さa / We K至
るまでの余寿命の求め方を示す。コンピューター25の
記憶回路に第5図に示すようにき裂長さa/Wの運転時
間t−またけ回転数nに対応した応力の繰返し数Nに伴
う変化、即ち、き裂進展曲線を記憶させる。ある繰返し
数Niまでのき裂進展速度da/dNを計算して、第6
図に示すようなき裂進展速度d a /d Nとき裂長
さa/Wの関係を両対数グラフ上で直線近似してd a
/d N= (a/W)”という関係式を求める。次に
第7図に示したように繰返し数N ’を時のき裂長さa
/W+と臨界のき裂長さa/W、の間を等分割する。a
/W+のところからda/dN=(a/W)−+7)+
@係式ttc a / w Iを代入して得られたd 
a/d N lの傾きでa/Wl+。
Next, we will show how to determine the remaining life until the crack propagates to the critical crack length a/We K. As shown in FIG. 5, the storage circuit of the computer 25 stores the change of the crack length a/W with the number of repetitions N of the stress corresponding to the operating time t and the straddle rotation speed n, that is, the crack growth curve. . Calculate the crack growth rate da/dN up to a certain number of repetitions Ni, and
As shown in the figure, the relationship between crack growth rate d a /d N and crack length a/W is linearly approximated on a logarithmic graph to obtain d a
/d N= (a/W)''.Next, as shown in Figure 7, the crack length a when the number of repetitions N' is
/W+ and the critical crack length a/W are equally divided. a
From /W+, da/dN=(a/W)-+7)+
@ d obtained by substituting the equation ttc a / w I
a/Wl+ with slope of a/d N l.

まで直線を引く。Draw a straight line until.

同様に、”/Wl +1のところがらda/dNl+t
(D煩きでa/Wl+2まで直線を引き、これを繰返し
て臨界き裂長さa/W。までき裂進展曲線を伸ばす。
Similarly, from “/Wl +1, da/dNl+t
(Draw a straight line up to a/Wl+2 using D, and repeat this to extend the crack growth curve to the critical crack length a/W.

臨界き裂長さa/W、、での繰返し数N、がら最後の測
定時の繰返し数N1を引いたものN、 =N、 −歯が
余寿命である。a/Wl以後き裂が成長する毎に第5図
から第7図の作業を繰返しコンピュータに行わせること
により、その都度余寿命N。
The number of repetitions N at the critical crack length a/W, , minus the number of repetitions N1 at the time of the last measurement, is N, =N, - the tooth is the remaining life. After a/Wl, each time the crack grows, the computer repeats the operations shown in FIGS. 5 to 7, and the remaining life N is determined each time.

を修正し表示する。余寿命N1が極めて小さくなった場
合、゛或いは臨界き裂長さa/WK至った場合には警報
をCRT画面上に表示し、発電機を停止させ、コイルの
交換を行う。
Correct and display. When the remaining life N1 becomes extremely small, or when the critical crack length a/WK is reached, a warning is displayed on the CRT screen, the generator is stopped, and the coil is replaced.

第8図は第2の実施例である。第3図に示したようにき
裂長さの測定精度は測定端子間の距離が短い程良い。そ
こで、コイルのスロット出口部からエンド部にかけて短
い間隔tをおいて測定端子19を多数設ける。ここでは
測定端子t−8ケ所に設けることによシ6ケ所の4位差
を測る例を示した。基準電位差であるエンド部の測定端
子14間の電位差V。と測定端子19間の電位差v1〜
v6はスキャナー26でコンピューター24の指示によ
り頴次切換えられて、ローパスフィルター27、プリア
ンプ2B、アンプ29を通って増幅され、AD変換器2
3でディジタル化されてコンピューター24へ入力され
る。コンピューター24は測定された電位差の割算を行
ってVs/Vo〜Vs /vo  を求め、第3図のよ
うなき裂長さa/Wと電位差比V / V oとの関係
よりき裂長さa/Wを求め、CRT25画面上にき裂発
生位置とき裂長さを求めると共に、き裂が成長していっ
た場合には第5図〜第7図の手順に従って余寿命N、を
計算して表示する。
FIG. 8 shows a second embodiment. As shown in FIG. 3, the accuracy of crack length measurement is better as the distance between the measurement terminals is shorter. Therefore, a large number of measurement terminals 19 are provided at short intervals t from the slot outlet to the end of the coil. Here, an example is shown in which the 4-position difference at 6 locations is measured by providing measurement terminals at t-8 locations. The potential difference V between the measurement terminals 14 at the end portion is the reference potential difference. and the potential difference between the measurement terminal 19 v1~
v6 is switched in accordance with instructions from the computer 24 in the scanner 26, amplified through the low-pass filter 27, preamplifier 2B, and amplifier 29, and then sent to the AD converter 2.
3 and is digitized and input to the computer 24. The computer 24 divides the measured potential difference to obtain Vs/Vo to Vs/vo, and calculates the crack length a/Vo from the relationship between the crack length a/W and the potential difference ratio V/Vo as shown in FIG. Find the crack occurrence position and crack length on the CRT 25 screen, and if the crack grows, calculate and display the remaining life N according to the steps in Figures 5 to 7. .

本発明によれば直流電流を供給するためのり−ド線2本
と、電位差を測定するためのリード線を4本ないし10
数本を発電機フィールドコイルエンド部に予め配線して
おくことにより、き裂発生位置とき裂長さを検出できる
ので、フィールドコイルの温度を測定しなくとも、また
、リテイニン。
According to the present invention, there are two lead wires for supplying direct current and four to ten lead wires for measuring potential difference.
By pre-wiring several wires to the generator field coil end, the crack occurrence position and crack length can be detected, so there is no need to measure the field coil temperature.

グリフグを外さなくとも、き裂を検出できる効果がある
It has the effect of being able to detect cracks without removing the glyph.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は発電機フィールドコイルエンド部周辺の斜視図
1.第2図は直流ポテンシャル法によるき裂長さ測定の
配線図、第3図は測定端子間の距離を変えた場合の電位
差比とき裂長さの関係を示す図、第4図はフィールドコ
イルエンド部のき裂検出のブロック因、第5図はき裂長
さと繰返し数の関係図、第6図はき裂伝は速度とき裂長
さの関係図、第7図はき裂進展の予想曲線の作成法を示
す図、第8図はフィールドコイルエンド部のき裂検出装
置である。 V/VO・・・電位差比、a−・・・き裂長さ、W・・
・板幅、t・・・測定端子間距離、10・・・給電端子
、11・・・直流電源、14.19・・・測定端子、1
5,20゜27・・・ローパスフィルター、16,21
.28・・・プリアンプ、17,22.29・・・アン
プ、18・・・III IE器、23・・・AD変挨器
、24・・・コンヒユーター、25二・・CRT、26
・・・スキャナー。
Figure 1 is a perspective view of the area around the generator field coil end. Figure 2 is a wiring diagram for crack length measurement using the DC potential method, Figure 3 is a diagram showing the relationship between potential difference ratio and crack length when the distance between measurement terminals is changed, and Figure 4 is a diagram showing the relationship between the potential difference ratio and crack length when the distance between measurement terminals is changed. Figure 5 shows the relationship between crack length and number of repetitions. Figure 6 shows the relationship between speed and crack length for crack propagation. Figure 7 shows how to create a predicted crack growth curve. The figure shown in FIG. 8 is a crack detection device for a field coil end portion. V/VO...Potential difference ratio, a-...Crack length, W...
・Plate width, t... Distance between measurement terminals, 10... Power supply terminal, 11... DC power supply, 14.19... Measurement terminal, 1
5,20°27...Low pass filter, 16,21
.. 28... Preamplifier, 17, 22. 29... Amplifier, 18... III IE device, 23... AD converter, 24... Computer, 25 2... CRT, 26
···scanner.

Claims (1)

【特許請求の範囲】[Claims] 1、 タービン発電[フィールドコイルのスロット出口
部から直流・−流を流し、エンド部にある間隔をおいて
設けた測定端子間の電位差をスキャナーを介してローパ
スフィルターを通し、アンプで増幅した後、AD変換し
てマンピユータに入力し、これを基準の電位差とし、き
裂の発生する恐れのある前記スロット出口部から前記エ
ンド部にかけて前記エンド部の前記測定端子の間隔と等
しい間隔で数組の測定端子を配列し、この数組の測定端
子間の電位差を前記コンピュータと連動した前記スキャ
ナーを介して前記ローパスフィルターを通し、前記アン
プで増幅した後、AD変豫して前記コンピュータに入れ
、前記スロット出口部の各端子間の゛電位差を前記エン
ド部の基準電位差で割算することにより電位差比を求め
、その値が1より大きい測定端子間をき裂発生湯所と表
示し、予め得られて前記コンピュータに記憶されている
゛−電位差比、き裂長さとの関係より、き裂長さを求め
て表示すること全特徴とするタービン発電機フィールド
コイルのき裂検出装置。
1. Turbine power generation [DC/- current is passed from the slot outlet of the field coil, and the potential difference between measurement terminals placed at a certain interval at the end is passed through a scanner, a low-pass filter, and amplified by an amplifier. AD convert it and input it to the manipulator, use this as a reference potential difference, and measure several sets at intervals equal to the interval between the measurement terminals of the end section from the slot exit section where cracks may occur to the end section. The terminals are arranged, and the potential difference between the several sets of measurement terminals is passed through the scanner linked to the computer, passed through the low-pass filter, amplified by the amplifier, AD converted, inputted into the computer, and inserted into the slot. A potential difference ratio is obtained by dividing the potential difference between each terminal of the outlet section by the reference potential difference of the end section, and the area between the measurement terminals where the value is greater than 1 is indicated as a crack initiation point. A crack detection device for a turbine generator field coil, characterized in that the crack length is determined and displayed from the relationship between the potential difference ratio and the crack length stored in the computer.
JP56152197A 1981-09-28 1981-09-28 Crack detector for field coil of turbine generator Pending JPS5853777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56152197A JPS5853777A (en) 1981-09-28 1981-09-28 Crack detector for field coil of turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56152197A JPS5853777A (en) 1981-09-28 1981-09-28 Crack detector for field coil of turbine generator

Publications (1)

Publication Number Publication Date
JPS5853777A true JPS5853777A (en) 1983-03-30

Family

ID=15535174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56152197A Pending JPS5853777A (en) 1981-09-28 1981-09-28 Crack detector for field coil of turbine generator

Country Status (1)

Country Link
JP (1) JPS5853777A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126309U (en) * 1991-04-23 1992-11-18 シヤープ株式会社 Rotating magnetic head cleaning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04126309U (en) * 1991-04-23 1992-11-18 シヤープ株式会社 Rotating magnetic head cleaning device

Similar Documents

Publication Publication Date Title
US6392416B1 (en) Electrode integrity checking
US9464979B2 (en) Monitoring a conductive fluid conduit
US6843137B2 (en) Flowmeter fault detection
EP0228014B1 (en) A method for measuring damage to structural components
US3104355A (en) Corrosion measuring probe with a temperature compensating element in a wheatstone bridge and method of using same
US6314373B1 (en) Grid sensor for determining the conductivity distribution in flow media and process for generating measurement signals
EP3070446A1 (en) A thermo wire testing circuit
CN112556870A (en) Method and system for measuring dynamic temperature of superconducting strip
US6244744B1 (en) Three-wire RTD interface
Witos et al. Calibration and laboratory testing of computer measuring system 8AE-PD dedicated for analysis of acoustic emission signals generated by partial discharges within oil power transformers
JPS5853777A (en) Crack detector for field coil of turbine generator
EP0375375A1 (en) Loop impedance tester
JPS61153555A (en) Method and device for detecting presence of substance or generation of change immediately before physical state change in fluid
KR100784302B1 (en) Diagnosis Method And Equipment for Electric Power machinery
US9689823B2 (en) Steam quality meter and measurement method
JPH04501470A (en) Measuring device for surface crack growth parameters
CN106153528A (en) A kind of metal covering Corrosion monitoring instrument and measuring method thereof
JP6864843B2 (en) Electromagnetic induction type electric conductivity meter
JPS5841341A (en) Detection of crack
RU2079824C1 (en) Method testing authenticity of readings of thermoelectric converter
JPH05157721A (en) Crack progress speed measuring device
TH18516A3 (en) electric current meter
JPH07311126A (en) Method for diagnosing earthquake proofing property of structure
JPS6195213A (en) Electromagnetic flow meter
SU972373A1 (en) Device for measuring aluminium hydroxide humidity