JPS5853757A - Adsorbent for immuno-affinity chromatography and manufacture of same - Google Patents

Adsorbent for immuno-affinity chromatography and manufacture of same

Info

Publication number
JPS5853757A
JPS5853757A JP56151462A JP15146281A JPS5853757A JP S5853757 A JPS5853757 A JP S5853757A JP 56151462 A JP56151462 A JP 56151462A JP 15146281 A JP15146281 A JP 15146281A JP S5853757 A JPS5853757 A JP S5853757A
Authority
JP
Japan
Prior art keywords
antibody
adsorbent
reaction
carrier
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56151462A
Other languages
Japanese (ja)
Inventor
Toshio Mihara
三原 敏夫
Hiroyasu Suzuki
弘康 鈴木
Yoshiaki Ishimatsu
石松 義章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP56151462A priority Critical patent/JPS5853757A/en
Publication of JPS5853757A publication Critical patent/JPS5853757A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3251Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • B01J20/3274Proteins, nucleic acids, polysaccharides, antibodies or antigens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • External Artificial Organs (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain an adsorbent for an affinity chromatography with a strength enough to withstand repeated use thereof, by immobilizing an antibody used as ligand on a carrier with a high yield without lowering the activity thereof. CONSTITUTION:An antibody as ligand is oxidized by periodic acid or a salt thereof to cleave a glycol unit in the sugar chain moiety to form an aldehyde group. Then, the antibody is bonded to an immobilizing carrier having an amino group or a hydrazide group via a Schiff's base formation reaction and the Schiff's base is reduced by a reducing agent such as sodium borohydride to stabilize it. The oxidation by periodic acid occurs between adjacent hydroxyl groups of a glycol, a reaction under which 1mol of IO4<-> is reduced to IO<-> while 2mol of aldehyde groups are generated. Structurally, the product is obtained by cleavage of a glycol unit followed by oxidation of the resulting adjacent hydroxyl groups. A relationship between the adsorption level of this adsorbent and the repeated use thereof is as illustrated, indicating no lowering of the adsorption capacity.

Description

【発明の詳細な説明】 本発明は繰返し使用しうる耐久性を有する免疫アフィニ
ティクロマトグラフィー用吸着体及びその製法に関し、
より詳しくはリガンドとして抗体を使用し、その活性を
低下させることなく高収率に担体に固定した免疫アフィ
ニティクロマトグラフィー用吸着体及びその製法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an adsorbent for immunoaffinity chromatography that has durability that can be used repeatedly, and a method for producing the same.
More specifically, the present invention relates to an adsorbent for immunoaffinity chromatography that uses an antibody as a ligand and is immobilized on a carrier in high yield without reducing its activity, and a method for producing the same.

酵素基質反応、抗原抗体反応等の生物学的特異性を利用
したアフィニティクロマトグラフィーは特定の蛋白質を
分離精製する方法として優れたものであるが、これらに
ついては千畑他著講談社発行「アフィニティクロマトグ
ラフィー」、山崎他著講談社発行、「アフィニティーク
ロマトグラフィー」及びrMethods in En
zymologyJ 34.1974゜Academi
c Press  などに詳細に記載されている。
Affinity chromatography, which utilizes biological specificity such as enzyme-substrate reactions and antigen-antibody reactions, is an excellent method for separating and purifying specific proteins. , by Yamazaki et al., published by Kodansha, “Affinity Chromatography” and rMethods in En
ZymologyJ 34.1974゜Academi
It is described in detail in c Press etc.

また、免疫アフィニティークロマトグラフィーは、特異
的反応として抗原抗体反応を利用するもので、生体中に
含まれる微量有効成分を高純度に分離精製定量するこ々
あるいは迅速かつ定量的な各種分析や臨床診断システム
等に利用が可能であり例えば佐々木「化学と生物」誌す
〔lO〕第658頁にも記載されているように有用なも
のである。
In addition, immunoaffinity chromatography uses antigen-antibody reactions as a specific reaction, and is used to isolate, purify, and quantify trace amounts of active ingredients contained in living organisms with high purity, as well as perform various types of rapid and quantitative analysis and clinical diagnosis. It can be used for systems, etc., and is useful, for example, as described in Sasaki's "Chemistry and Biology" magazine [IO], page 658.

アフィニティクロマトグラフィーにおいて、リガンドの
固定化方法は担体結合法、架橋法、包括法に大別され、
実用的、特に工業的規模のmmにおいては担体結合法に
属する共有結合法が最も優れたものであるといえる。
In affinity chromatography, ligand immobilization methods are broadly classified into carrier binding method, crosslinking method, and entrapment method.
For practical use, especially in mm on an industrial scale, it can be said that the covalent bonding method, which belongs to the carrier bonding method, is the most excellent method.

共有結合法の具体例としては、寒天中に含まれる多能類
であるアガロースを担体としこれに臭化シアンを用いて
活性化させ、さらにこれをリガンドのアミノ基と結合さ
せる方法(千畑ら「アフィニティークロマトグラフィー
」講談社)、アガロースの誘導体であるω−アミノアル
キルアミン−アガロースのアミノ基とリガンドのカルボ
キシル基をカルボジイミド試薬によりペプチド結合させ
る方法などが知られている。(千畑ら「アフィニティー
クロマトグラフィー」講談社) しかしこれらの方法においても、生物学的に活性なタン
パク質例えば抗体・酵素・ホルモン等の結合にはポリペ
プチド中のアミノ基、カルボキシル基等の活性官能基を
利用しており、固定化されたタンパク質の生物学的な活
性発現の低下等の悪影譬があり、実用的ではない。
A specific example of the covalent bonding method is a method in which agarose, a multipotent substance contained in agar, is used as a carrier, activated with cyanogen bromide, and then bonded with the amino group of the ligand (as described by Chibata et al. Known methods include "Affinity Chromatography" (Kodansha) and a method in which the amino group of ω-aminoalkylamine-agarose, which is a derivative of agarose, and the carboxyl group of a ligand are bonded to a peptide using a carbodiimide reagent. (Chibata et al. "Affinity Chromatography" Kodansha) However, even in these methods, active functional groups such as amino groups and carboxyl groups in the polypeptide are used to bind biologically active proteins such as antibodies, enzymes, and hormones. However, it is not practical because it has negative effects such as a decrease in the expression of biological activity of the immobilized protein.

またに71hler及びMilsteinは免疫学領域
に導入されたリンパ球の細胞融合法によると、特異性を
有する単クローン性抗体を純度よく、シかも大量に採取
することが可能になったと報告している。
In addition, 71hler and Milstein reported that the lymphocyte cell fusion method introduced in the field of immunology has made it possible to collect large amounts of highly pure monoclonal antibodies with specificity. .

(Nature、 256.495.1975 )従来
の抗体は免疫動物の血清あるいは腹水から得られたもの
をそのまま用いるか又は冷エタノール法等で精製して用
いるもので特異性の異なる抗体の混合物であり、抗原特
異性、抗体力価等一定品質の抗体の生産は困難であった
。しかし上記細胞融合法により、単クローン性抗体は、
現在様々な抗原決定基例えば多糖類、脂質、酵素、細胞
表面抗原、ウィルス、ハプテン等に対して作られており
、市販もされておシ、入手あるいはその作製が容易であ
る。
(Nature, 256.495.1975) Conventional antibodies are obtained from the serum or ascites of immunized animals and are used as they are, or after being purified using a cold ethanol method, etc., and are a mixture of antibodies with different specificities. It has been difficult to produce antibodies with constant quality such as antigen specificity and antibody titer. However, by using the above cell fusion method, monoclonal antibodies can be
Currently, they are produced for various antigenic determinants such as polysaccharides, lipids, enzymes, cell surface antigens, viruses, haptens, etc., and are commercially available and easy to obtain or produce.

単クローン性抗体は従来の抗血清から得られる抗体より
も特異性の高いものが得られ、抗原の精製、イムノアッ
セイ等への利用が考えられるが、従来の抗体結合法によ
り免疫的アフィニティークロマトグラフィー用吸着体の
調製を行ったのでは、高価なものとなり、また高特異的
な抗体が処理工程で損失するという欠点があった。
Monoclonal antibodies can be obtained with higher specificity than antibodies obtained from conventional antisera, and can be used for antigen purification, immunoassays, etc.; If an adsorbent was prepared, it would be expensive, and highly specific antibodies would be lost during the treatment process.

生物学的に活性なタンパク質は糖タンパク質であること
が多いが、一般に糖鎖部分は直接生物学的な活性に関係
しないとされ、特に抗体は糖タンパク質であり、糖鎖の
結合位置も解明されている。
Biologically active proteins are often glycoproteins, but it is generally believed that sugar chain moieties are not directly related to biological activity.In particular, antibodies are glycoproteins, and the bonding positions of sugar chains have not been elucidated. ing.

例えばヒトの主要抗体であるIgGは、糖鎖が定常部(
constant region )のCH2ドメイン
に位置し、抗原認識又は補体結合に直接関与しないこと
が知られている。そこで、抗体中の糖鎖を化学的に修飾
し、結合する方法として、特開昭52−104591が
開示されている。
For example, IgG, the main human antibody, has sugar chains in the constant region (
It is located in the CH2 domain of the constant region) and is known not to be directly involved in antigen recognition or complement fixation. Therefore, JP-A-52-104591 discloses a method for chemically modifying and bonding sugar chains in antibodies.

本発明者らはこれら糖鎖部位を修飾した抗体を担体に結
合してなる吸着体をアフィニティクロマトグラフィーに
応用することを試みたが、特開昭52−104591号
に示される方法では糖鎖を化学的に修飾する際に修飾さ
れた部位とポリペプチド部位の活性基とが同時に反応し
、自己会合などにより、抗体活性が阻害され、或いは抗
体の固定化収率が著しく低下するなどの欠点があった。
The present inventors attempted to apply an adsorbent formed by bonding an antibody modified with a sugar chain site to a carrier for affinity chromatography, but the method disclosed in JP-A-52-104591 did not When chemically modified, the modified site and the active group of the polypeptide site react simultaneously, resulting in self-association, etc., which inhibits antibody activity or significantly reduces the antibody immobilization yield. there were.

免疫アフィニティクロマトグラフィーにおいては高価な
単りローン性抗体会固定するにあたり、その固定化効率
の向上及び抗体活性の維持ひいては抗原回収率の向上は
工業的応用の成否を決定する重要な条件である。更にア
フィニティクロマトグラフィーにおいてはカラムに充填
しての繰返し使用を条件とするため、繰返し吸脱着に耐
える強度と適度の粒径を必須とする。
In immunoaffinity chromatography, when immobilizing expensive monoclonal antibodies, improving the immobilization efficiency, maintaining antibody activity, and ultimately improving the antigen recovery rate are important conditions that determine the success or failure of industrial application. Furthermore, in affinity chromatography, it is necessary to fill a column and use it repeatedly, so it is essential to have strength that can withstand repeated adsorption and desorption and a suitable particle size.

本発明者らは上記諸条件を満足すべく研究を重ね、固定
化効率の向上、抗体活性の低下防止を図るべく、糖鎖を
化学的に修飾する際の条件及び繰返し使用に耐える担体
を研究し、実用的に使用しうる免疫アフイニティクロマ
トグラフィー用吸着体及びその製法を完成するに至った
。すなわち、本発明はリガンドである抗体を過ヨウ素酸
又はその塩を用いてPH1〜5の条件下で酸化して糖鎖
部分にアルデヒド基を形成させ、次にアミノ基又はヒド
ラジド基を有する固定化用担体と接触jせて、シッフ塩
基を形成して結合させ、水素化ホウ素ナトリウム等の還
元剤でシッフ塩基を還、元して安定化するものである。
The present inventors have conducted extensive research to satisfy the above conditions, and researched conditions for chemically modifying sugar chains and carriers that can withstand repeated use in order to improve immobilization efficiency and prevent decreases in antibody activity. As a result, we have completed a practically usable adsorbent for immunoaffinity chromatography and a method for producing the same. That is, the present invention involves oxidizing the antibody as a ligand using periodic acid or a salt thereof under conditions of pH 1 to 5 to form an aldehyde group on the sugar chain moiety, and then immobilizing the antibody with an amino group or a hydrazide group. The Schiff base is brought into contact with a carrier for use in the reaction, and a Schiff base is formed and bonded, and the Schiff base is reduced and stabilized using a reducing agent such as sodium borohydride.

本発明によれば高い固定化収率と抗体活性を有し、しか
も繰返し使用に耐える強度を併有する抗体吸着体が得ら
れ、実用的、工業的規模でのアフィニティクロマトグラ
フィーが可能になった。
According to the present invention, an antibody adsorbent having a high immobilization yield and antibody activity as well as strength enough to withstand repeated use can be obtained, making affinity chromatography possible on a practical and industrial scale.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明はリガンドである抗体を過ヨウ素酸又はその塩で
酸化して糖鎖部分のグリコール部を分断してアルデヒド
基を形成させ、次いでアミノ基又はヒドラジド基を有す
る固定化用担体と接触させてシッフ塩基反応で結合させ
、水素化料つ素ナトリウム等の還元剤でシッフ塩基を還
元して安定化するものである。
In the present invention, an antibody as a ligand is oxidized with periodic acid or a salt thereof to cleave the glycol moiety of the sugar chain moiety to form an aldehyde group, and then brought into contact with an immobilization carrier having an amino group or a hydrazide group. They are bound by a Schiff base reaction and stabilized by reducing the Schiff base with a reducing agent such as sodium hydride.

過ヨウ素酸罠よる酸化はグリコールの隣接ヒドロキシル
基間で起り、1モルのl04−がIO3−に還元される
と同時に2モルのアルデヒド基が生成する反応である。
Oxidation by a periodate trap occurs between adjacent hydroxyl groups of glycol, and is a reaction in which 1 mole of 104- is reduced to IO3- and 2 moles of aldehyde groups are generated at the same time.

この反応による生成物はグリコシド結合の種類によって
異るが、グリコール部が分断され、隣接ヒドロキシル基
が酸化され、次式に示すような構造の生成物が得られる
The product of this reaction varies depending on the type of glycosidic bond, but the glycol moiety is cleaved and the adjacent hydroxyl group is oxidized, yielding a product with the structure shown in the following formula.

C120HCH20H シツフ塩基の形成は反応PRに大きく依存し、アミノ基
含有化合物の塩基性度により、シッフ塩基形成が最大に
なるPHは異るが、抗体の場合は中性付近での形成が大
ぎい、 (Immunochemiatry15.52
3(”781)このことは下記の実験例からも判断する
ことができる。
C120HCH20H The formation of Schiff's base largely depends on the reaction PR, and the pH at which Schiff's base formation reaches its maximum varies depending on the basicity of the amino group-containing compound, but in the case of antibodies, formation is large near neutrality; (Immunochemiatry15.52
3 ("781) This can also be determined from the following experimental example.

実験例 0、1 Mの緩衝液10m1にヒトIgG(生化学工業
物製13mgf、溶解し、NaIO41mgを添加して
室温で30分間反応させた。緩衝液はPH2〜4がC1
ark and Lubsの緩衝液、PH4〜6が酢酸
緩衝液、PH6〜8がリン酸緩衝液である。
Experimental Example 0: Human IgG (Seikagaku Kogyo Co., Ltd., 13 mgf) was dissolved in 10 ml of 1 M buffer, 1 mg of NaIO was added, and the mixture was reacted for 30 minutes at room temperature.
Ark and Lubs buffers, PH4-6 are acetate buffers and PH6-8 are phosphate buffers.

次にエチレングリコールを最終濃度0.1 Mとなるよ
う添加し、温度4°Cで4B?間反応させ、その反応液
の光学密度(OD 660 nm)を測定して、第1図
に示した。
Next, ethylene glycol was added to a final concentration of 0.1 M, and 4B? The reaction solution was reacted for a period of time, and the optical density (OD 660 nm) of the reaction solution was measured and is shown in FIG.

第1図から判るように中性付近が4度が大きく、IgG
分子のアミノ基が関与した自己会合反応によるものと考
えられる。これは酸化反応時にIgG分子の糖鎖中のア
ルデヒド基とポリペプチド中のアミノ基の間にシッフ塩
基が形成され、hつ分子が自己会合したものである。従
って抗体の糖類の過ヨウ素酸又はその塩による酸化反応
は、副反応である抗体分子間のシッフ塩基の形成の抑制
されるPHで行うことが望ましい。特開昭52−104
591の方法では、糖鎖の酸化反応をPH6付近で行っ
ているが抗体の場合抗体分子の自己会合反応が生じ、抗
体活性及び固定化収率が大幅に低下する欠点がある。本
発明は、抗体の糖鎖の過ヨウ素酸又は、その塩による酸
化反応を、酸化反応時の副反応である抗体分子間の自己
会合反応を抑制するPHで行うことにより、固定化担体
への抗体の結合効率を大幅に改善すると共に高い抗原回
収率を有する担体を得ることができる。
As can be seen from Figure 1, 4 degrees is large near neutrality, and IgG
This is thought to be due to a self-association reaction involving the amino groups of the molecule. This is because a Schiff base is formed between the aldehyde group in the sugar chain of the IgG molecule and the amino group in the polypeptide during the oxidation reaction, resulting in the self-association of h molecules. Therefore, the oxidation reaction of the saccharide of the antibody with periodic acid or its salt is preferably carried out at a pH at which the formation of Schiff bases between antibody molecules, which is a side reaction, is suppressed. Japanese Patent Publication No. 52-104
In the method of No. 591, the oxidation reaction of sugar chains is carried out at around PH6, but in the case of antibodies, a self-association reaction of antibody molecules occurs, which has the disadvantage that antibody activity and immobilization yield are significantly reduced. The present invention enables the oxidation reaction of antibody sugar chains with periodic acid or its salts to be carried out at a pH that suppresses the self-association reaction between antibody molecules, which is a side reaction during the oxidation reaction. It is possible to obtain a carrier that significantly improves antibody binding efficiency and has a high antigen recovery rate.

糖鎖の酸化に使用する過ヨウ素酸あるいはその塩は、抗
体の1−10万倍モル程度の範囲内で使用する。抗体の
100倍モル以上使用すると、1時間以内の反応時間で
十分である。過ヨウ素酸溶液は九により分解するので、
反応は光を遮断して行った方がよいが、過剰量の過ヨウ
素酸溶液を使用し数時間以内の反応ならば、特に光を遮
断しなくて・も問題はない。
Periodic acid or a salt thereof used for oxidizing sugar chains is used in an amount of about 10,000 to 100,000 to 100,000 times the molar amount of the antibody. When using 100 times the molar amount or more of the antibody, a reaction time of one hour or less is sufficient. Since periodic acid solution decomposes by 9,
It is better to carry out the reaction while blocking light, but if an excess amount of periodic acid solution is used and the reaction takes place within a few hours, there is no problem even if the reaction is not blocked from light.

所定のPHを維持するためには、一般に緩衝液を使用す
るが、緩衝液としては、酸化反応によシ糖鎖に形成され
たアルデヒド基と反応する官能基を含有するもの以外は
すべて使用可能である。ただし、リン酸緩衝液は過ヨウ
素酸と反応するのでその使用を避けた方がよい場合もあ
る。緩衝液の濃度は0.001〜LM、好ましくは0.
01〜0.5Mで使用することが好ましい。緩衝液のP
Hは、抗体の糖鎖を過ヨウ素酸又はその塩で酸化する場
合、副反応を抑制するため、PH1〜5であるが、抗体
分子に酸変性が生じない範囲で低いことが望ましく、4
.5以下、より好ましくは2〜4である。
In order to maintain a specified pH, a buffer is generally used, but any buffer can be used except those containing functional groups that react with aldehyde groups formed in saccharide chains during oxidation reactions. It is. However, it may be better to avoid using phosphate buffer as it reacts with periodic acid. The concentration of the buffer solution is 0.001 to LM, preferably 0.001 to LM.
It is preferable to use it at 01 to 0.5M. P of buffer solution
H is PH 1 to 5 in order to suppress side reactions when the sugar chain of the antibody is oxidized with periodic acid or its salt, but it is preferably as low as PH 1 to 5 so as not to cause acid denaturation of the antibody molecule.
.. It is 5 or less, more preferably 2 to 4.

PH1以下では抗体分子の酸変性が著しく、又PH5以
上では副反応である抗体分子の自己会合反応が生じるの
で好ましくない。
If the pH is below 1, the acid denaturation of the antibody molecules will be significant, and if the pH is above 5, a self-association reaction of the antibody molecules will occur as a side reaction, which is not preferable.

抗体の糖鎖の酸化及広温度は、0〜60°C1好ましく
は5〜20°Cである。60’(:’以上では抗体が失
活し、0°C以下では反応しない。
The oxidation and expansion temperature of the sugar chains of the antibody is 0 to 60°C, preferably 5 to 20°C. The antibody is inactivated at temperatures above 60'(:') and does not react at temperatures below 0°C.

酸化剤としては、過ヨウ素酸又はその塩の他に、酸カリ
、塩素、硝酸等があるが、特に過ヨウ素酸又はその塩が
最も良好な結果が得られる。
In addition to periodic acid or its salt, the oxidizing agent includes acid potassium, chlorine, nitric acid, etc., but periodic acid or its salt provides the best results.

酸化反応後残存する過剰の酸化剤は、糖鎖部分の過度の
酸化及び俄北丑i酸化剤の担体への作用を避けるため除
去する必要がある。エチレングリコール・グリセリン・
グルコース・亜硫酸ナトリウム等、酸化剤により酸化さ
れ得る化学薬品を添加するか、又は酸化反応に使用した
のと同じ緩衝液に対して透析するか、又はその他一般的
な方法で除去することができる。
Excess oxidizing agent remaining after the oxidation reaction must be removed to avoid excessive oxidation of the sugar chain moiety and the effect of the oxidizing agent on the carrier. Ethylene glycol, glycerin,
Chemicals that can be oxidized by an oxidizing agent, such as glucose or sodium sulfite, can be added or removed by dialysis against the same buffer used in the oxidation reaction, or by other conventional methods.

糖鎖にアルデヒド基を有する抗体を、少なくとも1つの
反応性アミノ基又はヒドラジド基を有する担体に結合さ
せる場合、反応のPRは5〜8好ましくはPH6〜7で
ある。このPH範囲外では、主反応である抗体の糖鎖中
のアルデヒド基と担′体のアミノ基又はヒドラジド基間
のシッフ塩基形成が抑制される。PH5〜8好ましくは
PH6〜7の緩衝液中で、抗体と担体を共存させ、0〜
25℃で数時間から数日間反応させることにより、抗体
と担体をシック塩基反応で結合する。しかし形成された
シック塩基は、不安定であり、酸性又はアルカリ性条件
下で容易に分解する。免疫アフィニティークロマトグラ
フィーにおいては、抗体結合担体を繰り返し使用し、吸
着タンノ(り質の溶出も酸性条件で行うことが多い。従
って抗体と担体間のシック塩基を安定化する必要がある
。安定化は次式に示されるように、還元により行われる
When an antibody having an aldehyde group in its sugar chain is bound to a carrier having at least one reactive amino group or hydrazide group, the PR of the reaction is 5 to 8, preferably PH 6 to 7. Outside this pH range, the main reaction, the formation of a Schiff base between the aldehyde group in the sugar chain of the antibody and the amino group or hydrazide group of the carrier, is suppressed. The antibody and carrier are allowed to coexist in a buffer solution with a pH of 5 to 8, preferably 6 to 7, and a pH of 0 to 8.
By reacting at 25° C. for several hours to several days, the antibody and the carrier are bound by a thick base reaction. However, the thick bases formed are unstable and easily decompose under acidic or alkaline conditions. In immunoaffinity chromatography, antibody-bound carriers are used repeatedly, and the elution of adsorbed proteins is often performed under acidic conditions.Therefore, it is necessary to stabilize the thick base between the antibody and the carrier. This is done by reduction as shown in the following formula.

還元 R1CH=NR2−R1CH2−NHR2(7ツフ塩基
)     (R,;抗体、R2;担体)抗体と担体間
のシック塩基の還元は、水素化ホウ素ナトリウム(Na
BH4)又はシアノ水素化ホウ素ナトリウム(NaBH
3CNIにより、θ°〜25°C,PH5〜10で、数
十分から数十時間の反応で行われる。
Reduction R1CH=NR2-R1CH2-NHR2 (7 Tuff bases) (R,; antibody, R2; carrier) The reduction of the thick base between the antibody and the carrier is performed using sodium borohydride (Na
BH4) or sodium cyanoborohydride (NaBH
The reaction is carried out using 3CNI at θ° to 25°C and pH 5 to 10 for several tens of minutes to several tens of hours.

還元剤としては、1水累化ホ、つJナト〃クネ又は、シ
アノ水素化ホO素ナトリ、や・、、!!−の他に、ヨウ
化水素・硫化水素・水素化アルミニウム、リチウム・亜
硫酸塩・硫化ナトリウム・硫化アンモニウム等が挙げら
れるが、特に水素化ホウ素ナトリウム又はシアノ水素化
ホウ素ナトリウムが最も好ましいものである。
As a reducing agent, monohydric acid, cyanohydrogenated fluorine, etc. ! In addition to -, examples include hydrogen iodide, hydrogen sulfide, aluminum hydride, lithium, sulfite, sodium sulfide, ammonium sulfide, etc., with sodium borohydride or sodium cyanoborohydride being the most preferred.

固定化用担体としては、少なくとも1つの反応性アミノ
基又はヒドラジド基を有する多孔性セルロースビーズの
誘導体の他に、アミノ化又はヒドラジド化ポリスチレン
・架橋性アミノ化又はヒドラジド化ポバール・アミン化
又はヒドラジド°イヒアガロース・アミノ化又はヒドラ
ジド化デキストラン・アミノ化又はヒドラジド化ガラス
ピーズ等力I挙げられる。
In addition to derivatives of porous cellulose beads having at least one reactive amino group or hydrazide group, examples of immobilization carriers include aminated or hydrazide polystyrene, crosslinkable aminated or hydrazide poval, aminated or hydrazide Examples include aminated or hydrazidized dextran, aminated or hydrazidized glass beads, etc.

アフィニテイクロマトグラフイーに用いる担体としては
、一般に合成ポリマーは物理的強度の充分なものは疎水
性に基づく非特異的吸着が起りやすく、ガラスピーズは
リガンドの吸着効率が劣るが多孔性セルローズビーズは
充分な物理的強度力;あり、しかも非特異的吸着がなく
、表面積が大きく、吸着効率が高く、かつ安価でちり、
本発明に最も適した担体の一つである。
Generally speaking, synthetic polymers with sufficient physical strength tend to cause non-specific adsorption due to hydrophobicity as supports for affinity chromatography, glass beads have poor ligand adsorption efficiency, but porous cellulose beads It has sufficient physical strength, has no non-specific adsorption, has a large surface area, has high adsorption efficiency, and is inexpensive and dust-free.
It is one of the most suitable carriers for the present invention.

少なくとも1つの反応性アミノ基又はヒドラジド基を有
する多孔性セルローズビーズの誘導体は、市販品例えば
アミンヘキシルセルロース(AH−セルロース、メルク
社製)、カルボメトキシセルロースヒドラジド(CM−
セルロースヒドラジドメルク社製]を使用してもよく、
又多孔性セルロースビーズから誘導体を作製して使用し
てもよい多孔性セルロースビーズがら誘導体を作製する
方法には、例えば多孔性セルロースビーズをエポキシ化
し、さらにアンモニアでアミン化する方法(有機合成化
学、第38巻、第2号128貞(= 80 ) )、又
は臭化シアンで活性化し一般弐NH2(CH2) nN
H2で示されるジアミン類を結合させてω−アミノアル
キルアミン−セルロースを得る方法(子細ら、「アフィ
ニティークロマトグラフィーj講談社)又は臭化シアン
活性化多孔性セルロースビーズに、一般式NH2NHc
o(CH2)ncoNHNH2テ示すレルシヒドラジド
類を結合させて、ヒドラジド誘導体を得る方法などがあ
る。本発明に係るビーズは粒径5゜〜1000μ、孔径
5o〜1ooo^程度のも、のが好適であるが、この範
囲に制限されるもので杜ない。
Derivatives of porous cellulose beads having at least one reactive amino group or hydrazide group are commercially available products such as aminehexylcellulose (AH-cellulose, manufactured by Merck & Co., Ltd.), carbomethoxycellulose hydrazide (CM-
Cellulose hydrazide manufactured by Merck & Co., Ltd.] may be used,
Further, derivatives may be prepared and used from porous cellulose beads. Examples of methods for preparing derivatives from porous cellulose beads include, for example, a method of epoxidizing porous cellulose beads and further aminating them with ammonia (synthetic organic chemistry, Volume 38, No. 2 128 (= 80 )) or activated with cyanogen bromide and general 2NH2 (CH2) nN
A method for obtaining ω-aminoalkylamine-cellulose by combining diamines represented by H2 (Kosasa et al., "Affinity Chromatography J Kodansha)" or a method in which cyanogen bromide-activated porous cellulose beads are combined with the general formula NH2NHc.
There is a method of obtaining a hydrazide derivative by combining lercihydrazides such as o(CH2)ncoNHNH2. The beads according to the present invention preferably have a particle size of 5° to 1000 μm and a pore size of 5° to 100°, but are not limited to these ranges.

これら担体は前記の条件を満足するものであればよく、
市販品を使用しても、また本発明の目的により適するよ
うに特別に調製したものであっても−よい。(Biot
echnol、 Bioeng、 18.1507(論
76))本発明において用いる抗体は、公知の方法によ
。  り免疫動物から得られる抗血清及び細胞融合法に
よシ得られる単クローン性抗体である。いずれの場合も
硫安塩析又は冷エタノール沈澱法等で精製して用いられ
るが、さらにDEAE−セルロース又はゲル濾過等のカ
ラムクロマドグラフイーで精製して用いることが好まし
い。
These carriers may be those that satisfy the above conditions,
Commercially available products may be used, or those specially prepared to be more suitable for the purpose of the present invention may be used. (Biot
echnol, Bioeng, 18.1507 (Theory 76)) Antibodies used in the present invention can be prepared by known methods. Antiserum obtained from immunized animals and monoclonal antibodies obtained by cell fusion method. In either case, it is used after being purified by ammonium sulfate salting out or cold ethanol precipitation, but it is preferably used after being further purified by column chromatography such as DEAE-cellulose or gel filtration.

以上詳述したように本発明は抗体の特異的反応に直接関
与していない糖鎖部分を酸化して−cH2−NH−又は
−CH2−NH−NU−CO−構造を介して担体に結合
させるものであシ、結合させるにあたシ反応条件を制御
することにょシ、抗体の不活性化を防ぎ〜結合効率を高
め、しかも繰返し使用に耐える物理的強度と高い抗原回
収率を維持しうるものである。
As detailed above, the present invention oxidizes sugar chain moieties that are not directly involved in the specific reaction of antibodies and binds them to a carrier via a -cH2-NH- or -CH2-NH-NU-CO- structure. However, it is necessary to control the reaction conditions for binding to prevent antibody inactivation and increase binding efficiency, while maintaining physical strength that can withstand repeated use and high antigen recovery rate. It is something.

以下、実施例を挙げてさらに具体的に説明するが、本発
明はこれによって制限されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

なお、以下の実施例において抗原回収率は下記の方法に
よりて測定した。
In addition, in the following examples, the antigen recovery rate was measured by the following method.

1)抗原の放射性ヨウ素(126I)標識クロラミンT
法(Nature、 194.495 (’62))に
より125■で標識し、ゲル濾過によシ精爬した。
1) Antigen radioactive iodine (126I) labeled chloramine T
The pellets were labeled with 125 µ according to the method (Nature, 194.495 ('62)) and purified by gel filtration.

2)可溶性抗体の抗原結合量の測定 一定量の抗原量Jt(125I標識した抗原溶液の希釈
系列溶液を等量加えて良く攪拌し、一定時間放置後遠心
分離し、上清又は沈降物の放射活性を測定し、結合し得
る抗原量の最大値を求めた。
2) Measurement of antigen-bound amount of soluble antibody Add a constant amount of antigen Jt (125I-labeled antigen solution in a diluted series) in an equal volume, stir well, let stand for a certain period of time, centrifuge, and irradiate the supernatant or precipitate. The activity was measured and the maximum amount of antigen that could be bound was determined.

(抗原濃度、抗体濃度及び放置時間は予備実験により決
定した。) 3] 吸着体(固定化抗体)の抗原結合量の測定吸着体
をカラムに充填し 12Jで標識した抗原を供給してア
フィニティクロマトグラフィーを行い、吸着された抗原
の放射活性を測定して、吸着体の抗原結合量を求めた。
(Antigen concentration, antibody concentration, and standing time were determined by preliminary experiments.) 3] Measurement of antigen binding amount of adsorbent (immobilized antibody) Fill a column with adsorbent, supply antigen labeled with 12J, and perform affinity chromatography. The radioactivity of the adsorbed antigen was measured to determine the amount of antigen bound to the adsorbent.

4) 抗原回収率の算出 実際のカラム反応において吸着された抗原量(X)と吸
着体の作表に使用した可溶性抗体が結合し得る抗原量の
最大値(Ylの比率で求めた。
4) Calculation of antigen recovery rate It was calculated as the ratio between the amount of antigen adsorbed in the actual column reaction (X) and the maximum amount of antigen (Yl) that can be bound by the soluble antibody used for tabulation of the adsorbent.

すなわち、抗原回収率= X x 、i D、Q−4%
)とした。
That is, antigen recovery rate = X x , i D, Q-4%
).

実施例1−1 アミン化多孔性セルロースビーズの調製性多孔性セルロ
ースビーズ(生化学工業株製、セルロファイン700m
l1g(固形分Jに蒸留水8m42NNaOH21ml
、エビクロルヒビリフ6mtを順次加え、4o0Cで3
時間反応させ、ssoμmote/g(固形分)のエポ
キシ基を有するエポキシ化多孔性セルロースビーズを得
た。さらにこのエポキシ化多孔性セルロースビーズヲ濃
アンモニア水と40°Cで2時間反応させ、s OOp
mote/ g (固形分)のアミン基を有するアミノ
化多孔性セルロースビーズ全得た。
Example 1-1 Preparation of aminated porous cellulose beads Porous cellulose beads (Seikagaku Corporation, Cellulofine 700m
l1g (solid content J to distilled water 8m42NNaOH21ml
, 6mt of shrimp chlorhibirif was added one after another, and 3
The reaction was carried out for a period of time to obtain epoxidized porous cellulose beads having epoxy groups of sso μmote/g (solid content). Furthermore, the epoxidized porous cellulose beads were reacted with concentrated ammonia water at 40°C for 2 hours to obtain sOOp.
Total mote/g (solid content) of aminated porous cellulose beads having amine groups were obtained.

なおエポキシ基の定量は、塩酸による滴定法(J、 C
hromatogr、 90.87 (’740により
、アミノ基の定量はI nmanとpintziaの方
法(Biocllemistry几4074 +’69
) )によった。
The epoxy group can be quantitatively determined using a titration method using hydrochloric acid (J, C
chromatogr, 90.87 ('740), the method of Inman and Pintzia (Bioclemistry 几4074 + '69)
) according to ).

実施例1−2 抗ウシアルブミン抗体へのアルデヒド基の導入精製抗ウ
シアルブミン抗体を、ウサギの抗血清(富士臓器■袈)
より硫安塩析により調製した。
Example 1-2 Introduction of an aldehyde group into anti-bovine albumin antibody Purified anti-bovine albumin antibody was converted into rabbit antiserum (Fuji Organ)
It was prepared by salting out ammonium sulfate.

この精製抗ウシアルブミン抗体15mg f、10Tn
tの0.1 M酢酸緩衝液(PH3,7)に溶解し、N
al0゜1mgを添加して、室温で30分間反応させた
。次にエチレングリコールを最終濃度が0.1 Mとな
るよう添加し、4°Cで4時間反応した。さらにこの反
応液t−4°Cで18時間0.1 M酢酸緩衝液(PH
3,7)1tに対し透析した。
This purified anti-bovine albumin antibody 15mg f, 10Tn
Dissolved in 0.1 M acetate buffer (PH3,7) at t and N
0.1 mg of al was added, and the mixture was allowed to react at room temperature for 30 minutes. Next, ethylene glycol was added to a final concentration of 0.1 M, and the mixture was reacted at 4°C for 4 hours. Furthermore, this reaction solution was incubated at -4°C for 18 hours with 0.1 M acetate buffer (PH
3,7) Dialyzed against 1t.

実施例1−3 アルデヒ゛ド基導入抗ウシアルブミン抗体のアミノ化多
孔性セルロースビーズへの結合 実施例1−2で調製したアルデヒド基導入抗ウシアルブ
ミン抗体に、実施例1−1で調製したアミノ化多孔性セ
ルロースビーズ0.4g(固形分)を添加し、0.1M
炭酸ナトリウム緩衝液(PH93によりPH1に6に調
整した。4°Cで一晩反応させた後、形成したシッフ塩
基にNaBH45mgを加え、4’C,5時間、lP 
Ha sの条件で処理して還元し安定化した。こうして
得られた抗ウシアルブミン抗体結合多孔性セルロースビ
ーズのウシアルブミン吸着量は、1g(固形分)あた9
15mgであル、抗原回収率は91%であった。
Example 1-3 Binding of aldehyde group-introduced anti-bovine albumin antibody to aminated porous cellulose beads Add 0.4g (solid content) of cellulose beads and make 0.1M
The pH was adjusted to 1 to 6 using sodium carbonate buffer (PH93. After reacting overnight at 4°C, 45 mg of NaBH was added to the formed Schiff base and incubated at 4'C for 5 hours in lP.
It was reduced and stabilized by treatment under Has conditions. The amount of bovine albumin adsorbed by the anti-bovine albumin antibody-bound porous cellulose beads thus obtained was 9
At 15 mg, the antigen recovery rate was 91%.

なお比較のため、NaIO47処理しない精製抗ウシア
ルブミン抗体を、上記と全く同様の方法でアミノ化多孔
性セルロースビーズと接触させたが、抗体の結合は全く
みられなかった。
For comparison, a purified anti-bovine albumin antibody not treated with NaIO47 was brought into contact with aminated porous cellulose beads in exactly the same manner as above, but no binding of the antibody was observed.

比較例I  CNBr活性化アガロースへの抗ウシアル
ブミン抗体の結合 市販のセファロース4B(ファルマシア社製)8rrL
tをガラスフィルター上に移し、蒸留水200rrLt
で洗浄、吸引後、蒸留水20mtに懸濁させた。攪拌下
、tONNaOHでPHを11〜12とし、これにCN
Br水溶液(L 5 g CNBr150rrLt蒸留
水)を徐々に添加した。この間PHは1ONNaOHを
添加することにより11−12に維持した。反応液の温
度は30’Cを越えないように操作した。反応終了後、
ガラスフィルターで濾過した。次いで冷蒸留水200m
l sさらに冷却した0、25 M NaHCOalo
orrLtを用いて洗浄して% CNBr活性化アガロ
ースを得た。
Comparative Example I Binding of anti-bovine albumin antibody to CNBr-activated agarose Commercially available Sepharose 4B (manufactured by Pharmacia) 8rrL
Transfer the sample onto a glass filter and add 200rrLt of distilled water.
After washing and suctioning, the solution was suspended in 20 mt of distilled water. While stirring, adjust the pH to 11-12 with tONNaOH, and add CN to this.
An aqueous Br solution (L 5 g CNBr150rrLt distilled water) was slowly added. During this time the pH was maintained at 11-12 by adding 1ON NaOH. The temperature of the reaction solution was controlled so as not to exceed 30'C. After the reaction is complete,
Filtered through a glass filter. Then 200m of cold distilled water
l s further cooled 0,25 M NaHCOalo
%CNBr-activated agarose was obtained by washing with orrLt.

仁うして得られたCNBr活性化アガロース0.4g(
固形分)を実施例1で調製した精製抗ウシアルブミン抗
体15mgを含有する0、25M炭酸ナトリウム緩衝液
(α5 MN&C1NaC1含有、5)20mt中に懸
濁させ、4°Cで一晩反応させた。反応後残存する活性
基は0.2Mグリシン(PH&5)’t’室温で2時間
処理して除いた。
0.4 g of CNBr-activated agarose obtained by boiling (
Solid content) was suspended in 20 mt of 0.25 M sodium carbonate buffer (containing α5 MN & C1 NaC1, 5) containing 15 mg of the purified anti-bovine albumin antibody prepared in Example 1, and reacted overnight at 4°C. The active groups remaining after the reaction were removed by treating with 0.2M glycine (PH&5)'t' at room temperature for 2 hours.

こうして得られた抗ウシアルブミン抗体結合アガロース
のウシアルブミン吸着量は、Ig(固形分)あたシ3m
gであり、抗原回収率は17チであった。
The amount of bovine albumin adsorbed by the thus obtained anti-bovine albumin antibody-bound agarose was 3 m
g, and the antigen recovery rate was 17 g.

実施例2−1 実施例1及び比較例1で調製した免疫アフィニティーク
ロマトグラフィー用親和性吸着体によるウシ血清中のア
ルブミンの・精御実験例実施例1で調製した抗ウシアル
ブミン抗体結合多孔性セルロースビーズ0.4g(固形
分)及び比較例1で調製した抗ウシアルブミン抗体結合
アガロース0.6g(固形分)をカラム(1mφ×2.
.5crrI)k充填し、ウシ血清0.15mtをカラ
ム上部より供給し、0.02Mホウ酸緩衝液(PH8,
0,15M NaC1含有)を流下させた。カラムより
の溶出液のOD280nmが0.03以下になるまで上
記と同じ緩衝液を通液後、2 M KSCN溶液を通液
して吸着されていたウシアルブミンを溶出した。その結
果を表及び第2図に示す。
Example 2-1 Purification of albumin in bovine serum using the affinity adsorbent for immunoaffinity chromatography prepared in Example 1 and Comparative Example 1 Experimental example Anti-bovine albumin antibody-bound porous cellulose prepared in Example 1 0.4 g (solid content) of beads and 0.6 g (solid content) of the anti-bovine albumin antibody-conjugated agarose prepared in Comparative Example 1 were placed in a column (1 mφ x 2.
.. 5crrI)k, 0.15mt of bovine serum was supplied from the top of the column, and 0.02M borate buffer (PH8,
0.15M NaCl) was allowed to flow down. After passing the same buffer as above until the OD280nm of the eluate from the column became 0.03 or less, a 2 M KSCN solution was passed through the column to elute the adsorbed bovine albumin. The results are shown in the table and FIG.

なお、蛋白量はLowryの方法にしたがい測定した。In addition, the protein amount was measured according to the method of Lowry.

(Lowry、 O,)L 、 Rowebrough
、 N、 J、 Fall。
(Lowry, O,)L, Rowebrough
, N., J., Fall.

A、 L、 and Randall、 R,J、 J
ournal of BiologicalChemi
stry 193265(1951))、第4図につい
ても同様である。
A, L, and Randall, R, J, J
our own of Biological Chemistry
The same applies to Fig. 4 (Stry 193265 (1951)).

表 又、比較例1では流速が10 mt / d・hを越す
と精製が不可能であるのに反し、実施例1では流速が2
5mt/d・hでも良好な結果が得られた。
In addition, in Comparative Example 1, purification was impossible when the flow rate exceeded 10 mt/d・h, whereas in Example 1, the flow rate exceeded 2 mt/d・h.
Good results were obtained even at 5 mt/d·h.

なお、0.2Mグリシン−塩酸緩衝液による溶出画分が
ウシアルブミンであることは、オフタロニー法(新実験
化学講座20−CI )−生物化学、丸善)、により確
認し、この溶出画分をSDSポリアクリルアミド電気泳
動で分析したところ、アルブミンのバンドのみを示した
In addition, it was confirmed that the elution fraction with 0.2M glycine-hydrochloric acid buffer was bovine albumin by the Ophthalony method (New Experimental Chemistry Course 20-CI) - Biochemistry, Maruzen), and this elution fraction was analyzed with SDS. When analyzed by polyacrylamide electrophoresis, only an albumin band was shown.

実施例2−2 実施例2−1で行ったと同じカラム操作を繰り返し行っ
たところ比較例1の方法で調製した抗ウシアルブミン抗
体結合アガロースは5回使用後、ウシアルブミン吸着容
量の顕著な低下を示したが、実施例1の方法で調製した
抗ウシアルブミン抗体結合多孔性セルロースビーズは1
5回使用後も、全くウシアルブミン吸着容量の低下はみ
られなかった。この結果を第3図に示す。
Example 2-2 When the same column operation as in Example 2-1 was repeated, the anti-bovine albumin antibody-conjugated agarose prepared by the method of Comparative Example 1 showed a significant decrease in bovine albumin adsorption capacity after 5 uses. However, the anti-bovine albumin antibody-conjugated porous cellulose beads prepared by the method of Example 1
Even after 5 uses, no decrease in bovine albumin adsorption capacity was observed. The results are shown in FIG.

比較例2 抗体の酸化反応t−PH5以上で行った場合実施例1−
、.2において、精製抗ウシアルブミン抗体のNal0
.による酸化t0.1 M IJン酸緩衝液 。
Comparative Example 2 Antibody oxidation reaction t-When carried out at PH5 or higher Example 1-
,.. In 2, purified anti-bovine albumin antibody Nal0
.. Oxidation with t0.1 M IJ acid buffer.

(PH6)中で行った。すなわち、10 ml、 (D
 O1IMIJン酸緩衝液(PH6)に抗体を15mg
溶解し、NaIO41mgを添加して室温で30分反応
させた。
(PH6). That is, 10 ml, (D
15 mg of antibody in O1IMIJ acid buffer (PH6)
It was dissolved, 41 mg of NaIO was added, and the mixture was reacted at room temperature for 30 minutes.

この時点で反応液が濁り、抗体の自己会合が明らかに認
められた。次にエチレングリコールを最終濃度が0.1
 Mとなるよう添加し、4°Cで4時間反応させた。0
.1 M IJン酸緩衝液(PH6)1/、に対し4″
′Cで18時間透析後実施例i−1の方法で調製したア
ミノ化多孔性セルロースビーズl O,4g(固形分)
添加し、4°Cで一晩反応させ、さらにNaBH45m
gによる還元処理を4°Cで5時間、PH&50条件で
行った。こうして得られた抗ウシアルブミン抗体結合多
孔性セルロースビーズのウシアルブミン吸着量は、1g
(固形分)あたシ1 mgであり、抗原回収率は6チで
あった。
At this point, the reaction solution became cloudy and self-association of antibodies was clearly observed. Next, add ethylene glycol to a final concentration of 0.1
M and reacted at 4°C for 4 hours. 0
.. 1 M IJ acid buffer (PH6) 1/4"
4 g (solid content) of aminated porous cellulose beads prepared by the method of Example i-1 after 18 hours dialysis at
Add NaBH45m and react overnight at 4°C.
The reduction treatment with g was carried out at 4°C for 5 hours under PH&50 conditions. The amount of bovine albumin adsorbed by the anti-bovine albumin antibody-bound porous cellulose beads thus obtained was 1 g.
(Solid content) was 1 mg, and the antigen recovery rate was 6.

実施例3−1 ヒドラジド化多孔性セルロースビーズの調製性多孔性セ
ルロースビーズ(生化学工業■製、セルロファイン?0
0m)1 ge実施例1−1の方法でエポキシ化し、5
50μmate / g (固形分)のエポキシ基を有
するエポキシ化多孔性セルロースピーズを得た。これを
アジピン酸ジヒドラジドの飽和溶液(約90g/lt・
0.1M炭酸ナトリウム緩衝液(PH9))10mtに
懸濁させ、4’Cf−晩反応させた。反応後0.2 M
 NaC1で、洗液が2゜4.6−)IJニトロベンゼ
ンスルホン酸(TNBS)反応に対し陰性になるまで洗
浄した。
Example 3-1 Preparation of hydrazide porous cellulose beads Porous cellulose beads (manufactured by Seikagaku Corporation, Cellulofine?0)
0 m) 1 ge Epoxidized by the method of Example 1-1, 5
Epoxidized porous cellulose beads with 50 μmate/g (solid content) of epoxy groups were obtained. Add this to a saturated solution of adipic acid dihydrazide (approximately 90 g/lt・
The suspension was suspended in 10 mt of 0.1M sodium carbonate buffer (PH9) and reacted overnight with 4'Cf. 0.2 M after reaction
Washed with NaCl until the wash was negative for the 2°4.6-)IJ nitrobenzene sulfonic acid (TNBS) reaction.

こうして得られたヒドラジド化多孔性セルロースビーズ
は、150 tt mole / g (固形分)のヒ
ドラジド基を有した。ヒドラジド基の定量はTNBS法
で行った( Mo1. Ce11. Biochem、
 、 4 、181 (”74))。
The hydrazide porous cellulose beads thus obtained had hydrazide groups of 150 tt mole/g (solid content). Quantification of hydrazide groups was performed by the TNBS method (Mo1. Ce11. Biochem,
, 4, 181 ("74)).

実施例3−2 抗ヒトウロキナーゼ抗体へのアルデヒド基ノ導入 精製抗ヒトウロキナーゼ抗体を、ウサギの抗血清(ミド
リ十字■製)より硫安塩析により調製した。この精製抗
ヒトウロキナーゼ抗体10mgt、10mtの0.1 
M酢酸緩衝液(PH3,73に溶解し、N!LIO41
mg を添加して、室温で30分間反応させた。次にエ
チレングリコールを最終濃度が0.05Mとなるよう添
加し、4°Cで3時間反応させた。
Example 3-2 Introduction of aldehyde group into anti-human urokinase antibody A purified anti-human urokinase antibody was prepared from rabbit antiserum (manufactured by Midori Juji) by salting out ammonium sulfate. 0.1 of this purified anti-human urokinase antibody 10mgt, 10mt
Dissolved in M acetate buffer (PH3,73, N!LIO41
mg was added and allowed to react at room temperature for 30 minutes. Next, ethylene glycol was added to a final concentration of 0.05M, and the mixture was reacted at 4°C for 3 hours.

さらにこの反応液を4’Cで18時間、0.1 M酢酸
緩衝液(PH17)1tに対し透析した。
Furthermore, this reaction solution was dialyzed against 1 t of 0.1 M acetate buffer (PH17) at 4'C for 18 hours.

実施例3−3 アルデヒド基導入抗ヒトウロキナーゼ抗体のヒドラジド
化多孔性セルロースビーズへの結合実施例3−2で調製
したアルデヒド基導入抗ヒトウロキナーゼ抗体に、実施
例3−1で調製したヒドラジド化多孔性セルロースビー
ズ0.5 g (固形分)を添加し、Q、1M炭酸ナト
リウム緩衝液(PH9)によりPHを6に調整した。4
°Cで一晩反応後、NaBH,5mgを用いて4°C,
S時間、PH&5の条件で処理して、シッフ塩基を安定
化させ、免疫アフィニティクロマトグラフィー用吸着体
を得た。
Example 3-3 Binding of aldehyde group-introduced anti-human urokinase antibody to hydrazide porous cellulose beads The aldehyde group-introduced anti-human urokinase antibody prepared in Example 3-2 was bonded to the hydrazide porous antibody prepared in Example 3-1. 0.5 g (solid content) of cellulose beads were added, and the pH was adjusted to 6 with Q.1M sodium carbonate buffer (PH9). 4
After overnight reaction at °C, 4 °C using 5 mg of NaBH,
The Schiff base was stabilized by treatment under conditions of S time and PH&5 to obtain an adsorbent for immunoaffinity chromatography.

実施例4 実施例3で調製した免疫アフィニティークロマトグラフ
ィー用吸着体による人尿中のウロキナ−ゼの精製 実施例3で調製した抗ヒトウロキナーゼ抗体結合多孔性
セルロースビーズ0.4g(固形分)をカラム(lcr
nφxz!Mm)に充填し、人尿より得たウロキナーゼ
原末(700国際単位/mg)0.2gをカラム上部よ
り供給し、0.1MIJン酸緩衝生理食塩水(PH7,
5)を流下させた。溶出液のOD280nmが0.03
以下になるまで上記と同じ緩衝液を通液後、1.5MK
SCNで吸着されていたウロキナーゼを溶出させた。こ
の結果を第4図に示す。
Example 4 Purification of urokinase in human urine using the adsorbent for immunoaffinity chromatography prepared in Example 3 0.4 g (solid content) of porous cellulose beads bound to the anti-human urokinase antibody prepared in Example 3 was applied to a column. (lcr
nφxz! 0.2 g of urokinase bulk powder (700 international units/mg) obtained from human urine was supplied from the top of the column, and 0.1 MIJ of acid-buffered saline (PH7,
5) was allowed to flow down. OD280nm of eluate is 0.03
After passing the same buffer as above until it reaches 1.5MK
Urokinase adsorbed by SCN was eluted. The results are shown in FIG.

KSCNによる溶出液を透析してKSCNを除去し一低
温で濃縮してさらに凍結乾燥したところ、13万国際単
位/mgタンパクの比活性をもつウロキナーゼが得られ
、活性回収率は92チであった。また発熱性物質の試験
結果は陰性であった。
When the KSCN eluate was dialyzed to remove KSCN, concentrated at a low temperature, and further freeze-dried, urokinase with a specific activity of 130,000 international units/mg protein was obtained, and the activity recovery rate was 92%. . Test results for pyrogenic substances were also negative.

なお本カラム操作を繰り返し10回行ったが、ヒトウロ
キナーゼの吸着容量の低下は全くみられなかった◎ ウロキナーゼ活性の測定は、フィブリ゛ン平板法(P、
 L、 Walton、 Cl1n、 Chim、 A
cta、 13.680(”66))で、発熱性物質の
試験は日本薬局方一般試験法第27項発熱性試験法に準
じ、投与量は60000国際単位/Kyで行った。
Although this column operation was repeated 10 times, no decrease in the adsorption capacity of human urokinase was observed.Urokinase activity was measured using the fibrin plate method (P,
L, Walton, Cl1n, Chim, A
cta, 13.680 ("66)), and the test for pyrogenic substances was conducted in accordance with the Japanese Pharmacopoeia General Test Methods Section 27 Pyrogenicity Test Method, and the dose was 60,000 international units/Ky.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は抗体をNaIO4で酸化する際のPHと反応液
の光学密度との関係を示すグラフ、第2図及び第4図は
それぞれウシアルブミン及びウロキナーゼのアフィニテ
ィーカラムによる精製結果を示すグラフ、第3図はカラ
ム操作における吸着量と繰返し回数との関係を示すグラ
フである。 手続補正書 昭和56年1Q月3/日 !%訂庁長官島田春樹殿 1・ 事件の表示 昭和56年特許願第151462号 2 発明の名称 体及びその製法 1 補正をする者 事件との関係 特許出願人 住所 〒100東京都千代田区有楽町1丁目4番1号自
  発 5、補rの対象 明細書の発明の詳細な説明の欄 66  補正の内容 (1)  明細書、3頁、下から2行「・・・方法にお
いても、’J ’e r・・・方法においては、」に訂
正する。 (2ン  同、6頁、4〜5行の「高価な単りP−ン性
抗体を固定するにあたシ、」を「抗体を固定化するにあ
たり、」に訂正する。 (3)  同、8頁、6行の に訂正する。 (4)  同、17頁、8行の「抗原溶液」ヲ「抗体溶
液」に訂正する。 (5)  同、183N、9行の「エビクロルヒビリン
」を「エピクロルヒドリン」に訂正する。 (6)同、23頁、4行のr 0.2 Mグリシン−塩
酸緩衝液J f r2M’ KSCN溶液」に訂正する
。 以上
Figure 1 is a graph showing the relationship between PH and optical density of the reaction solution when antibodies are oxidized with NaIO4, Figures 2 and 4 are graphs showing the purification results of bovine albumin and urokinase using an affinity column, respectively. FIG. 3 is a graph showing the relationship between the amount of adsorption and the number of repetitions in column operation. Procedural amendment 1Q/3/1982! Mr. Haruki Shimada, Director General of the % Correction Agency 1. Indication of the case, Patent Application No. 151462, filed in 1982. 2. Name of the invention and its manufacturing method 1. Relationship with the amendment person case. Address of the patent applicant: 1-chome Yurakucho, Chiyoda-ku, Tokyo, 100. 4 No. 1 Self-issue 5, Detailed explanation of the invention column 66 in the subject specification of supplement r Contents of amendment (1) Specification, page 3, 2 lines from the bottom ``...also in the method, 'J' er... In the method, it is corrected to ``. (2nd. Same, p. 6, lines 4-5, "For immobilizing expensive monoclonal antibodies," should be corrected to "For immobilizing antibodies." (3) Same as above. , page 8, line 6. (4) ``Antigen solution'' on page 17, line 8 of the same ``antibody solution'' should be corrected. " should be corrected to "epichlorohydrin." (6) Same, page 23, line 4 should be corrected to "r 0.2 M glycine-hydrochloric acid buffer J f r2M' KSCN solution."

Claims (2)

【特許請求の範囲】[Claims] (1)炭水化物部位のグリコール部が酸化分断されてな
るCHO基を有する抗体と側鎖にアミノ基又はヒドラジ
ド基を有する担体とが−CH,−NH−構造又は−CH
,−NH−NH−CO−構造を介して結合していると共
に、カラムに充填し10回以上の吸脱着を繰返しても8
0チ以上の抗原回収率を有する免疫アフィニティクロマ
トグラフイー用吸着体。
(1) An antibody having a CHO group formed by oxidative cleavage of the glycol moiety of a carbohydrate moiety and a carrier having an amino group or hydrazide group in the side chain have a -CH, -NH- structure or -CH
, -NH-NH-CO- structure, and even if the column is packed and adsorption/desorption is repeated more than 10 times, 8
An adsorbent for immunoaffinity chromatography that has an antigen recovery rate of 0 or more.
(2)PH1〜5の範囲で抗体に酸化剤を作用せしめ、
抗体の糖鎖部位のグリコール部をアルデヒド基に酸化し
た後、アミノ基又はヒドラジド基を有する担体と結合さ
せ、上記結合部分を還元してカラム使用によ910回以
上の吸脱着を繰返しても80チ以上の抗原回収率を有す
る免疫アフィニティクロマトグラフィー用吸着体の製法
(2) allowing an oxidizing agent to act on the antibody in the pH range of 1 to 5;
After oxidizing the glycol moiety of the sugar chain site of the antibody to an aldehyde group, it is bonded to a carrier having an amino group or a hydrazide group, and the bonded portion is reduced. A method for producing an adsorbent for immunoaffinity chromatography having an antigen recovery rate of 1 or higher.
JP56151462A 1981-09-25 1981-09-25 Adsorbent for immuno-affinity chromatography and manufacture of same Pending JPS5853757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56151462A JPS5853757A (en) 1981-09-25 1981-09-25 Adsorbent for immuno-affinity chromatography and manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151462A JPS5853757A (en) 1981-09-25 1981-09-25 Adsorbent for immuno-affinity chromatography and manufacture of same

Publications (1)

Publication Number Publication Date
JPS5853757A true JPS5853757A (en) 1983-03-30

Family

ID=15519066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151462A Pending JPS5853757A (en) 1981-09-25 1981-09-25 Adsorbent for immuno-affinity chromatography and manufacture of same

Country Status (1)

Country Link
JP (1) JPS5853757A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181966A (en) * 1984-12-06 1986-08-14 ユ−オ−ピ− インコ−ポレイテツド Stabilizing antibody coupled by carboxyl group
JPH01165600A (en) * 1987-11-14 1989-06-29 Roehm Gmbh Immobilized antibody and its production
WO2004058687A1 (en) * 2002-12-26 2004-07-15 Shionogi Co., Ltd. Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
EP1731540A1 (en) * 2004-03-31 2006-12-13 Sumitomo Bakelite Company, Limited Polymer particle
JP2016526416A (en) * 2013-06-24 2016-09-05 エクステラ・メディカル・コーポレーション Hemofiltration system containing mannose coated substrate
US10188783B2 (en) 2005-12-13 2019-01-29 Exthera Medical Corporation Method for extracorporeal removal of pathogenic microbe, an inflammatory cell or an inflammatory protein from blood
WO2019039545A1 (en) * 2017-08-23 2019-02-28 Jsr株式会社 Chromatography carrier, ligand-immobilizing carrier, chromatography column, target substance purification method, and chromatography carrier production method
US10457974B2 (en) 2013-11-08 2019-10-29 Exthera Medical Corporation Methods for diagnosing infectious diseases using adsorption media
US10537280B2 (en) 2011-02-15 2020-01-21 Exthera Medical Corporation Device and method for removal of blood-borne pathogens, toxins and inflammatory cytokines
US10786615B2 (en) 2016-03-02 2020-09-29 Exthera Medical Corporation Method for treating drug intoxication
US10857283B2 (en) 2014-09-22 2020-12-08 Exthera Medical Corporation Wearable hemoperfusion device
US11123466B2 (en) 2009-12-01 2021-09-21 Exthera Medical Corporation Methods for removing cytokines from blood with surface immobilized polysaccharides
US11266772B2 (en) 2012-06-13 2022-03-08 Exthera Medical Corporation Use of heparin and carbohydrates to treat cancer
WO2023106379A1 (en) * 2021-12-08 2023-06-15 国立大学法人 東京大学 Cellulose porous particles, and microcarrier for culture use which comprises same
US11844895B2 (en) 2014-04-24 2023-12-19 Exthera Medical Corporation Method for removing bacteria from blood using high flow rate
US11911551B2 (en) 2016-03-02 2024-02-27 Exthera Medical Corporation Method for treating drug intoxication

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181966A (en) * 1984-12-06 1986-08-14 ユ−オ−ピ− インコ−ポレイテツド Stabilizing antibody coupled by carboxyl group
JPH01165600A (en) * 1987-11-14 1989-06-29 Roehm Gmbh Immobilized antibody and its production
US9139607B2 (en) 2002-12-26 2015-09-22 Sumitomo Bakelite Co., Ltd. Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
JPWO2004058687A1 (en) * 2002-12-26 2006-04-27 塩野義製薬株式会社 Sugar chain purification and concentration method and sugar chain structure analysis method using sugar chain capture molecules
JP2010046666A (en) * 2002-12-26 2010-03-04 Shionogi & Co Ltd Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
JP2010046665A (en) * 2002-12-26 2010-03-04 Shionogi & Co Ltd Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
US9683006B2 (en) 2002-12-26 2017-06-20 Sumitomo Bakelite Co., Ltd. Method of purifying/concentrating sugar chains with a sugar chain-trapping molecule and method of analyzing sugar chain structure
WO2004058687A1 (en) * 2002-12-26 2004-07-15 Shionogi Co., Ltd. Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
EP1731540A1 (en) * 2004-03-31 2006-12-13 Sumitomo Bakelite Company, Limited Polymer particle
EP1731540A4 (en) * 2004-03-31 2011-03-02 Sumitomo Bakelite Co Polymer particle
JP2012122073A (en) * 2004-03-31 2012-06-28 Sumitomo Bakelite Co Ltd Polymer particle
JP5026070B2 (en) * 2004-03-31 2012-09-12 住友ベークライト株式会社 Polymer particles
US10688239B2 (en) 2005-12-13 2020-06-23 Exthera Medical Corporation Method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from blood
US11065378B2 (en) 2005-12-13 2021-07-20 Exthera Medical Corporation Method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from blood
US10188783B2 (en) 2005-12-13 2019-01-29 Exthera Medical Corporation Method for extracorporeal removal of pathogenic microbe, an inflammatory cell or an inflammatory protein from blood
US11123466B2 (en) 2009-12-01 2021-09-21 Exthera Medical Corporation Methods for removing cytokines from blood with surface immobilized polysaccharides
US10537280B2 (en) 2011-02-15 2020-01-21 Exthera Medical Corporation Device and method for removal of blood-borne pathogens, toxins and inflammatory cytokines
US11266772B2 (en) 2012-06-13 2022-03-08 Exthera Medical Corporation Use of heparin and carbohydrates to treat cancer
JP2016526416A (en) * 2013-06-24 2016-09-05 エクステラ・メディカル・コーポレーション Hemofiltration system containing mannose coated substrate
US10639413B2 (en) 2013-06-24 2020-05-05 Exthera Medical Corporation Blood filtration system containing mannose coated substrate
US10487350B2 (en) 2013-11-08 2019-11-26 Exthera Medical Corporation Methods for diagnosing infectious diseases using adsorption media
US10457974B2 (en) 2013-11-08 2019-10-29 Exthera Medical Corporation Methods for diagnosing infectious diseases using adsorption media
US11306346B2 (en) 2013-11-08 2022-04-19 Exthera Medical Corporation Methods for diagnosing infectious diseases using adsorption media
US11844895B2 (en) 2014-04-24 2023-12-19 Exthera Medical Corporation Method for removing bacteria from blood using high flow rate
US10857283B2 (en) 2014-09-22 2020-12-08 Exthera Medical Corporation Wearable hemoperfusion device
US10786615B2 (en) 2016-03-02 2020-09-29 Exthera Medical Corporation Method for treating drug intoxication
US11911551B2 (en) 2016-03-02 2024-02-27 Exthera Medical Corporation Method for treating drug intoxication
KR20200043990A (en) * 2017-08-23 2020-04-28 제이에스알 가부시끼가이샤 Chromatographic carrier, ligand-fixed carrier, chromatography column, method for purifying target substance, and method for preparing carrier for chromatography
JPWO2019039545A1 (en) * 2017-08-23 2020-10-01 Jsr株式会社 Chromatographic carrier, ligand-fixed carrier, chromatography column, method for purifying target substance, and method for producing chromatographic carrier
CN110997133A (en) * 2017-08-23 2020-04-10 Jsr株式会社 Chromatography carrier, ligand-immobilized carrier, chromatography column, method for purifying target substance, and method for producing chromatography carrier
WO2019039545A1 (en) * 2017-08-23 2019-02-28 Jsr株式会社 Chromatography carrier, ligand-immobilizing carrier, chromatography column, target substance purification method, and chromatography carrier production method
TWI799441B (en) * 2017-08-23 2023-04-21 日商Jsr股份有限公司 Chromatography carrier, ligand-immobilized carrier, chromatography column, purification method of target substance, and production method of chromatography carrier
WO2023106379A1 (en) * 2021-12-08 2023-06-15 国立大学法人 東京大学 Cellulose porous particles, and microcarrier for culture use which comprises same

Similar Documents

Publication Publication Date Title
JPS5853757A (en) Adsorbent for immuno-affinity chromatography and manufacture of same
USRE32011E (en) Ultrapurification of factor VIII using monoclonal antibodies
US5092992A (en) Polyethyleneimine matrixes for affinity chromatography
JP2554848B2 (en) VIII: C formulation
US4742159A (en) Digitalis antibodies, process for the preparation thereof and the use thereof for the therapy of digitalis intoxications
US3966898A (en) Method and reagent for determining immunologic materials
JP2761881B2 (en) An antibody-immobilized carrier for affinity chromatography
US5085779A (en) Polyethyleneimine matrixes for affinity chromatography
JPH059440B2 (en)
Fish et al. Tumour-bound immunoglobulins. The fate of immunoglobulin disappearing from the surface of coated tumour cells
Catty et al. The application of cellulose carbonate to the preparation of water-insoluble immunoadsorbents used in the purification of antibodies to immunoglobulins
CA1332598C (en) Polyethyleneimine matrixes for affinity chromatography
US4762787A (en) Anti-human IGM immunoadsorbent and process for producing said immunoadsorbent
Margel Affinity separation with polyaldehyde microsphere beads
US4863869A (en) Anti-human IGM immunoadsorbent and process for producing said immunoadsorbent
JP2961986B2 (en) Method for separating and purifying polyclonal antibody
JPH03505287A (en) Biocompatible, substance-specific reagents for processing physiological fluids
JP3155961B2 (en) Anti-bilirubin monoclonal antibody-immobilized carrier and method for producing the same
JP2826965B2 (en) Immunoadsorbent and its production method
JPH0233094B2 (en)
SU1158029A3 (en) Method of quantitative determination of triiodothyronine
JPH05261281A (en) Carrier for immobilizing bioactive substance and its production
CA1251152A (en) Ultrapurification of factor viii
Sato et al. Effect of pore size of porous bead carriers immobilizing antibody on IgE adsorption
EP0217061B1 (en) Ultrapurification of factor VIII