JPS5853612A - Tappet - Google Patents

Tappet

Info

Publication number
JPS5853612A
JPS5853612A JP15053381A JP15053381A JPS5853612A JP S5853612 A JPS5853612 A JP S5853612A JP 15053381 A JP15053381 A JP 15053381A JP 15053381 A JP15053381 A JP 15053381A JP S5853612 A JPS5853612 A JP S5853612A
Authority
JP
Japan
Prior art keywords
tappet
sintered alloy
sliding
based sintered
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15053381A
Other languages
Japanese (ja)
Other versions
JPS637249B2 (en
Inventor
Keiji Nakamura
啓次 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP15053381A priority Critical patent/JPS5853612A/en
Publication of JPS5853612A publication Critical patent/JPS5853612A/en
Publication of JPS637249B2 publication Critical patent/JPS637249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/14Tappets; Push rods

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To improve resistance to pitching and resistance to scuffing in such a way that sliding member made of Co base sintered alloy which contains carbide is arranged on the surface of a cam contacting part, and Fe base sintered alloy is arranged between the sliding member and the tappet body. CONSTITUTION:A tappet is integrated by a cam contacting part 2 which forms a sliding surface 35 to a cam 5, and a tappet body 1, and further the cam contacting part 2 is formed by a sliding member 3 in which the cam contacting part 2 forms the sliding surface 35, and an intermediate member 4. The tappet body 1 forms a barrel part 16 which slides with a tappet guide 6, and a washer 17 which slides with a push rod 7. The barrel part 16 and the washer 17 are not involved in the particular surface pressure and impact in the event of comparing with the cam contacting part 2, and resistance to wear is not required. Thus, resistance to pitching and resistance to scuffing can be improved.

Description

【発明の詳細な説明】 本発明は内燃機関のカム軸に追従する動弁用タペットに
関するものであり、数種の材料を複合した複合タペット
、中でも焼結合金を複合したタペットに関する0 タペットには従来からチル鋳物、合金鋼、浸炭窒化鋼が
用いられ、さらにCrメツ曳溶射等の表面被覆や、焼入
れ、窒化の熱処理が施されて用いられていたものであっ
たが、近年の内燃機関の高出力化に伴い焼結合金製のタ
ペット、又は焼結合金と鋳鉄、鋼との複合材料タペット
が注目されている。その理由として焼結合金が成形性に
優れるばかりか空孔が存在することによる潤滑性向上と
硬質微細粒子の存在による耐摩耗性向上がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a valve train tappet that follows the camshaft of an internal combustion engine. Traditionally, chilled castings, alloy steels, and carbonitrided steels have been used, and they have also been subjected to surface coatings such as Cr metal spraying, and heat treatments such as hardening and nitriding. With the increase in output, tappets made of sintered alloys or composite material tappets of sintered alloys, cast iron, and steel are attracting attention. The reason for this is that the sintered alloy not only has excellent formability, but also improves lubricity due to the presence of pores and improves wear resistance due to the presence of hard fine particles.

しかしながら焼結合金は通常の鉄系合金粉末を固相焼結
したものでは空孔量が多く、との空孔が構造的に切欠き
として作用し、摺動面面圧の高いタペットや他のカムフ
ォロワ、及びカムでは摺動面の疲労によるクラック及び
割れや欠けを発生しピッチングと称される摩耗を発生し
易い。
However, sintered alloys made by solid-phase sintering of ordinary iron-based alloy powders have a large amount of pores, and the pores act as structural notches, making them suitable for tappets and other objects with high sliding surface pressure. Cam followers and cams are prone to cracks, cracks, and chips due to fatigue on the sliding surfaces, which causes wear called pitting.

かかるピッチングに対しては焼結合金の空孔量を減らし
焼結合金強度を向上させることが有効であるため、例え
ば本出願人の先に提案した特開昭56−60811号の
如く液相焼結によって複合化と高強度化を達成したタペ
ットや、あるいは実開昭54−169607号や実開昭
56−83607号の如く固相焼結合金表面を緻密化し
て空孔量を調整したタペットが提案されている。
To prevent such pitting, it is effective to reduce the amount of pores in the sintered alloy and improve the strength of the sintered alloy. Tappets that have achieved composite structure and high strength by bonding, or tappets that have a solid phase sintered alloy surface densified and the amount of pores adjusted as in Utility Model Application No. 169607/1983 and No. 83607/1983 Proposed.

この液相焼結による複合タペットは母材との結合度及び
焼結合金自体の強度においては優れるものの摺動する相
手材料であるカムがチル鋳物や浸炭焼入鋼である場合に
潤滑条件が悪く高負荷である機関ではスカッフィングと
称される金属間融着摩耗を発生し易いだめに、表面に軟
窒化処理が施される。一般的に軟窒化処理層を設けた摺
動部材では比較的低面圧のもの(例えばピストンリング
など)では充分な効果を発揮するが、高面圧で使用され
るタペットにおいては軟窒化に伴う軟化が窒化拡散層下
部に発生しピッチングが発生し易くなる。即ち摺動面表
面には硬質の窒化化合物層が生じ、その下に拡散層が形
成され摺動面から05朋程度までは硬化されるが、逆に
それより下の層は焼戻された状態となり軟化する。特に
高合金であり、かつ密度の高いタペット用液相焼結合金
では軟窒化層を必要深さく通常02mm)設けようとし
たら長時間の処理時間を要するため軟化傾向が著しい。
Although this composite tappet made by liquid phase sintering has excellent bonding with the base metal and the strength of the sintered alloy itself, it has poor lubrication conditions when the sliding mating material, the cam, is made of chill casting or carburized steel. In engines under high load, soft nitriding treatment is applied to the surface to prevent metal-to-metal fusion wear called scuffing from occurring. In general, sliding members provided with a nitrocarburized layer are sufficiently effective for those with a relatively low surface pressure (such as piston rings), but in tappets used under high surface pressure, the nitrocarburizing Softening occurs at the bottom of the nitrided diffusion layer, making pitting more likely to occur. That is, a hard nitride compound layer is formed on the surface of the sliding surface, and a diffusion layer is formed below it, and the layer from the sliding surface to about 0.5 mm is hardened, but on the contrary, the layer below that is in a tempered state. It becomes soft. In particular, in the case of liquid phase sintered alloys for tappets, which are high-alloyed and have a high density, if it is attempted to provide a soft-nitrided layer to the required depth (usually 02 mm), a long processing time is required and the tendency for softening is significant.

このことは固相焼結合金を緻密化したタペットでも全く
同一の欠点としてあげられ単に焼結合金の表面空孔量を
調整したり、熱処理することによってのみでは耐スカッ
フィング性と耐ピツチング性を共に満足するタペットは
得られない。
This is the same problem with tappets made of densified solid-phase sintered alloys; it is not possible to achieve both scuffing resistance and pitting resistance by simply adjusting the amount of surface pores in the sintered alloys or heat-treating them. I can't get a satisfactory tappet.

本発明は上記の耐スカッフィング性と耐ピツチング性の
双方に優れると共に生産性にも優れだタペットを目的と
するものであり、以下詳細に説明する。
The object of the present invention is to provide a tappet which is excellent in both the above-mentioned scuffing resistance and pitting resistance, and is also excellent in productivity, and will be described in detail below.

まず本発明の要旨とするところは下記3つの構成要件に
よるタペットにある。
First, the gist of the present invention lies in a tappet having the following three constituent features.

(1)鋳鉄又は鋼によるタペット本体のカムとの摺動部
にカム当接部を設ける。
(1) A cam abutting part is provided on the sliding part of the tappet body made of cast iron or steel with the cam.

(2)  カム当接部の表面に炭化物を15〜40重量
%含むCo基焼結合金による摺動部材を配する。
(2) A sliding member made of a Co-based sintered alloy containing 15 to 40% by weight of carbide is disposed on the surface of the cam contact portion.

(3)カム当接部の摺動部材とタペット本体との間にF
e基焼結合金を配する。
(3) F between the sliding member of the cam contact part and the tappet body
Arrange e-based sintered alloy.

かかる本発明タペットの一実施例を第1図に示と共に第
1図に従って説明する。
An embodiment of the tappet of the present invention is shown in FIG. 1 and will be described with reference to FIG.

タペットはカム5との摺動面35排成するカム当接部2
とタペット本体1とによりなり、さらにカム当接部2が
摺動面35を形成する摺動部材3と中間部材4とによっ
て形成される。タペット本体1はタペットガイド6と摺
動する胴部16とブツシュロッド7と摺動する座部17
とが形成される○この胴部16及び座部17はカム当接
部2と比較した場合に特別の面圧及び衝撃がなく、耐摩
耗性の要求が厳しいものでないためタペット本体1への
焼入れによって充分な耐摩耗性が得られる。
The tappet is a cam contact portion 2 that forms a sliding surface 35 with the cam 5.
The cam contact portion 2 is further formed by a sliding member 3 forming a sliding surface 35 and an intermediate member 4. The tappet body 1 includes a body portion 16 that slides on the tappet guide 6 and a seat portion 17 that slides on the bushing rod 7.
○This body part 16 and seat part 17 do not have special surface pressure or impact when compared with the cam contact part 2, and do not have strict requirements for wear resistance, so they are hardened to the tappet body 1. This provides sufficient wear resistance.

一方カム5と摺動する摺動部材3に耐スカッフィング性
と耐ピツチング性に著しく優れる炭化物を含んだCo基
焼結合金を用い、タペット本体1と摺動部材3とを結合
しかつ摺動部材3を支承するものとして中間部材4を配
することにより、タペット本体1、中間部材4、摺動部
材3とが強固に結合しタペットとしての強度が充分に得
られる。
On the other hand, a Co-based sintered alloy containing carbide, which has excellent scuffing resistance and pitting resistance, is used for the sliding member 3 that slides on the cam 5, and the tappet body 1 and the sliding member 3 are connected to each other. By arranging the intermediate member 4 to support the tappet 3, the tappet main body 1, the intermediate member 4, and the sliding member 3 are firmly connected, and sufficient strength as a tappet can be obtained.

この摺動面35を形成する摺動部材3にCO基焼結合金
を用いる理由として次の事項があげられる0まず耐スカ
ッフィング性については、本発明のCo基焼結合金が炭
化物粒子とCo基合金基地の相乗効果を有することによ
り達成される。即ちW、Cy 、 ’l’i 、 Nb
の炭化物は硬度HV1500以上と著しく高いものであ
り、かつ基地中に分散していることにより摺動面間でベ
アリング効果をなし潤滑性及び耐摩耗性に寄与する。た
だし15重量%未満であると炭化物粒子量が過少であり
上記の効果がなく、40重量%を超えた場合には炭化物
粒子に比べこれを支承する基地量が過少となって焼結合
金の強度が脆くなりピッチングを発生し易いばかりか、
相手材であるカムに対して硬度が高すぎ、これを著しく
摩耗させるため15〜40重量%の範囲で選択せねばな
らない。一方摺動部材の基地はCo基合金によって形成
されるため一般的には鋳鉄又は鋼、又は鉄系焼結合金で
あるカムに対して全く異種材料であり、かつCo基合金
硬度が高いため金属間融着を起こし難く、スカッフ・イ
ンクが発生する可能性は極めて低い。さらにCo基合金
はFe基合金に比し溶融点が低く後記する中間部材であ
るFe基焼結合金の液相温度にて液相を多く発生し、焼
結合金密度が向上し、空孔がほとんど消滅されるだめ焼
結完了後の強度は高いものとなり耐ピツチング性におい
ても優れたものである。
The reason why a CO-based sintered alloy is used for the sliding member 3 that forms this sliding surface 35 is as follows.Firstly, regarding the scuffing resistance, the Co-based sintered alloy of the present invention is resistant to carbide particles and Co-based This is achieved by having a synergistic effect of the alloy base. That is, W, Cy, 'l'i, Nb
The carbide has a significantly high hardness of HV1500 or more, and because it is dispersed throughout the matrix, it creates a bearing effect between sliding surfaces and contributes to lubricity and wear resistance. However, if it is less than 15% by weight, the amount of carbide particles is too small and the above effect is not achieved, and if it exceeds 40% by weight, the amount of base supporting the carbide particles is too small compared to the carbide particles, resulting in the strength of the sintered alloy. Not only does it become brittle and prone to pitching, but
The hardness is too high for the mating material, the cam, and causes significant wear, so it must be selected in a range of 15 to 40% by weight. On the other hand, since the base of the sliding member is formed of a Co-based alloy, it is a completely different material from the cam, which is generally cast iron, steel, or an iron-based sintered alloy. It is difficult to cause interfusion, and the possibility of scuff ink generation is extremely low. Furthermore, Co-based alloys have a lower melting point than Fe-based alloys, and generate a large amount of liquid phase at the liquidus temperature of the intermediate member Fe-based sintered alloy (described later), improving the sintered alloy density and reducing pores. The strength after completion of sintering is high and the pitting resistance is also excellent.

かかる摺動部材に用いる焼結合金は炭化物としてはWX
Crs ’rt 、 Nbが摺動条件に優れる理由とし
て選ばれるが、実用的には耐摩耗性と強度を満たすもの
として25〜35重量%の範囲で選択されることが望ま
しい。又焼結合金にはこれら炭化物の他に重量%にてC
1,0〜4.0 %、Cr6〜18%、W2〜10チ、
残実質的にCOの成分組成であることが望ましい。Cr
、Wについては基地組織の強化と共にCo−Cr−W−
Cの微細な炭化物を上記しあるが、Cr 64未満、W
2%未満ではその効果が少なく、Cr18%、W10%
を超えた場合に基地が脆化するためそれぞれCr 6〜
18%、W2〜10%で選択されることが望ましい0又
CについてはCo基合金の溶融温度を下げると共に炭化
物形成元素として作用するが、C1,04未満ではその
効果がなく、4.0%を超えた場合に炭化物量が多大と
なって脆くなるため1.0〜40チで選択されることが
好まある鋳鉄又は鋼に拡散結合すると同時に、摺動部材
であるCo基焼結合金とも一体的に焼結されるものであ
るが、さらに焼結以前及び焼結以後も摺動部材であるC
o基焼結合金を支承する効果をも有する。即ち上記した
如きCO基焼結合金は原料が極めて高価であるため非実
用的なものであるが、これを肉盛、あるいは溶射しよう
とした場合には肉盛にも多量の材料を要し、溶射は剥離
し易い欠点があり実現不可能なものである。これに対し
て本発明では摺動部材を構成するCO基焼結合金と、そ
れを支承するFe基焼結合金とを焼結する以前に粉末を
積層した複合圧粉体より焼結することによってCO基焼
結合金量を著しく低減することが可能となる。即ち第2
図(イ)〜に)に示す如く粉末圧粉体が形成されること
による。
The sintered alloy used for such sliding members is WX as a carbide.
Crs'rt and Nb are selected because they have excellent sliding conditions, but in practice it is desirable to select them in a range of 25 to 35% by weight to satisfy wear resistance and strength. In addition to these carbides, the sintered alloy also contains C in weight%.
1.0~4.0%, Cr6~18%, W2~10ch,
It is desirable that the remaining component composition be substantially CO. Cr
, Co-Cr-W- as well as strengthening base organization for W.
Although the fine carbides of C are mentioned above, Cr less than 64, W
If it is less than 2%, the effect is small, Cr18%, W10%
Since the base becomes brittle if Cr exceeds 6~
18%, W2 to 10% is preferable. O or C lowers the melting temperature of the Co-based alloy and acts as a carbide forming element, but if it is less than C1.04, it has no effect and 4.0% If the amount exceeds 1.0 to 40, the amount of carbide becomes large and becomes brittle, so it is preferable to choose between 1.0 and 40. At the same time, it is integrated with the Co-based sintered alloy that is the sliding member. C, which is a sliding member before and after sintering.
It also has the effect of supporting the o-based sintered alloy. That is, the CO-based sintered alloy as described above is impractical because the raw materials are extremely expensive, but if you try to overlay or thermally spray it, a large amount of material is required for overlaying, Thermal spraying is unfeasible because it tends to peel off easily. In contrast, in the present invention, the CO-based sintered alloy constituting the sliding member and the Fe-based sintered alloy supporting it are sintered from a composite green compact in which powder is laminated before sintering. It becomes possible to significantly reduce the amount of CO-based sintered alloy. That is, the second
This is because a powder compact is formed as shown in Figures (a) to (a).

第2図(イ)は、ダイDを上げてFe基焼結合金の粉末
Fを充填したところを示し従来と変わらないが、第2図
(ロ)に示すようにダイDを止めたまま上ノくンチUに
より粉末Fの上方部のみを圧粉し、次いでダイDを圧粉
された高さまでおろし、CO基焼結合金の粉末Cのフィ
ーダAをセットし、次いでダイDを上げ粉末Cを充填す
る。(第2図(ハ)の状態)従って粉末Cは高さ方向が
うすくとも均一な厚さで充填されることとなる。後の工
程は従来と同じく第2図に)に示す如く上バンチUを下
げると同時にダイDを下げ、上下パンチU、Lから同量
圧粉した後にダイDを下げて圧粉体をとり出す0このよ
うにして成形された圧粉体は粉末Cと粉末Fとが強く圧
接されるために相対的に粉末F厚さを大きくとることで
粉末C厚さが薄くとも圧粉体が取り出し時のスプリング
バック力や後工程での取扱いに際して破損することがな
い。
Figure 2 (a) shows the state where the die D is raised and the Fe-based sintered alloy powder F is filled, which is the same as before. Only the upper part of the powder F is compacted by the punch U, then the die D is lowered to the compacted height, the feeder A for the CO-based sintered alloy powder C is set, and then the die D is raised and the powder C is Fill it. (The state shown in FIG. 2 (c)) Therefore, the powder C is filled with a uniform thickness even if it is thin in the height direction. The subsequent process is the same as before, as shown in Figure 2), lower the upper bunch U and lower the die D at the same time, compact the same amount of powder from the upper and lower punches U and L, then lower the die D and take out the green compact. 0 In the powder compact formed in this way, the powder C and the powder F are strongly pressed together, so by making the powder F relatively thick, even if the powder C is thin, the powder compact can be easily removed when taken out. It will not be damaged due to spring back force or handling during post-processing.

この圧粉体は別に用意されたタペット本体と組付けられ
てFe基焼結合金が液相を生ずる温度にて焼結される。
This green compact is assembled with a separately prepared tappet body and sintered at a temperature at which the Fe-based sintered alloy forms a liquid phase.

この液相焼結によってFe基焼結合金に存在する空孔は
量が減少せられ高密度の焼結合金が得られると共に、液
相発生と同時に焼結合金中の元素のタペット本体への拡
散が進行し、タペット本体とFe基焼結合金は冶金学的
な拡散結合が達成される。それと同時にFe基焼結合金
より液相発生温度の低いCo基焼結合金ではFe基焼結
合金への冶金学的拡散結合が達成されており、焼結完了
後はこれら3つの部材が冶金学的に完全に結合される。
Through this liquid phase sintering, the amount of pores existing in the Fe-based sintered alloy is reduced and a high-density sintered alloy is obtained, and at the same time as the liquid phase is generated, elements in the sintered alloy are diffused into the tappet body. progresses, and metallurgical diffusion bonding is achieved between the tappet body and the Fe-based sintered alloy. At the same time, metallurgical diffusion bonding to the Fe-based sintered alloy has been achieved with the Co-based sintered alloy, which has a lower liquid phase generation temperature than the Fe-based sintered alloy, and after completion of sintering, these three components are completely combined.

かかるFe基焼結合金は焼結完了後もCo基焼結合金を
支承する必要があるため強度及び剛性に優れなくてはな
らない。そのため重量%にてcl、5〜4.0チ、(P
% BN st )のうち一種又は二種以上を0.2〜
5.0%、Cu 1.0〜5.0 %を含む合金である
ことが望ましい。P N B N Slは少量で液相温
度を低下させるために添加されるが0.24未満では効
果がなく、5.0俤を超えた場合に基地の脆化が著しい
ため0.2〜5.0 %で選択される。Cは基地組織の
調整及び液相発生温度低化のため添加されるが、1.5
チ未満では基地のツユライト量が多く剛性が低くなり、
4.0%超ではセメントタイトが過大となって脆化する
ため1.5〜4.0 %で選択される。又Cuは基地の
強化のため添加されるが、1.0チ未満でることが好ま
しい。その理由として通常の機関では面圧圧力を受けて
かつすべり接触するタペ7)では表面の0.1〜0.6
 in付近に最も応力が集中し、この部分の強度が低い
とピッチング発生の原因となるものであるが、本発明に
おいてはCo基焼結合金とFe基焼結合金とが冶金学的
に拡散結合しているため、この結合部が最も強度に優れ
た層となる。
Such a Fe-based sintered alloy needs to support the Co-based sintered alloy even after sintering is completed, so it must have excellent strength and rigidity. Therefore, in weight%, cl, 5 to 4.0 chi, (P
0.2 to 0.2 or more of one or more of the following:
An alloy containing 5.0% and 1.0 to 5.0% of Cu is desirable. P N B N Sl is added in small amounts to lower the liquidus temperature, but if it is less than 0.24, it has no effect, and if it exceeds 5.0, the base becomes brittle, so it is added in the range of 0.2 to 5. Selected at .0%. C is added to adjust the matrix structure and lower the liquid phase generation temperature, but it is added at 1.5
Below 1, the amount of tuyurite in the base is large and the rigidity is low.
If it exceeds 4.0%, the cementite becomes too large and becomes brittle, so the content is selected between 1.5 and 4.0%. Further, Cu is added to strengthen the base, but it is preferably less than 1.0 Cu. The reason for this is that in normal engines, the taper 7), which receives surface pressure and makes sliding contact, has a surface of 0.1 to 0.6
The stress is most concentrated near the in, and if the strength of this part is low, it will cause pitting. However, in the present invention, the Co-based sintered alloy and the Fe-based sintered alloy are metallurgically bonded by diffusion bonding. Therefore, this joint is the strongest layer.

即ちCO基焼結合金中の炭化物粒子が存在せず、かつF
e基焼結合金中にCo、Cr、W等が拡散してなる結合
層はFe基焼結合金以上の基地強度が達成される。従っ
てCo基焼結合金の厚さは摺動面表面より0.1〜1.
O1mの範囲で選択することにより耐ピツチング性の効
果をより向上しうる。尚かかる薄い焼結合金層を得よう
とした場合に、みかけ上の粉末量を増すためCo基焼結
合金粉末に気化性の粉末又は液体を混ぜてFe基焼結合
金粉末上へ充填するか、又は塗布するかによって2層の
圧粉体を形成することも場合によってなされる。又ピッ
チングに対して特別苛酷でない通常の機関にあってはC
That is, there are no carbide particles in the CO-based sintered alloy, and F
A bonding layer formed by diffusing Co, Cr, W, etc. into an e-based sintered alloy achieves a base strength greater than that of a Fe-based sintered alloy. Therefore, the thickness of the Co-based sintered alloy is 0.1 to 1.
By selecting within the range of O1m, the effect of pitting resistance can be further improved. In addition, when trying to obtain such a thin sintered alloy layer, it is necessary to mix vaporizable powder or liquid with the Co-based sintered alloy powder and fill it onto the Fe-based sintered alloy powder in order to increase the apparent amount of powder. In some cases, a two-layer green compact may be formed by coating or coating. Also, in normal engines that are not particularly harsh on pitching, C.
.

基焼結合金は05〜1.5 tttx程度の比較的に肉
厚の厚いものであっても充分に耐えうる。
The base sintered alloy can sufficiently withstand even relatively thick walls of about 05 to 1.5 tttx.

又焼結炉中での位置ずれ等を防止するために第3図に示
す如< Fe基焼結合金4にフランジ部41を設けたり
、タペット本体に焼結合金の掛止突起又は溝を設けるこ
とも可能である。
In addition, in order to prevent misalignment in the sintering furnace, as shown in FIG. It is also possible.

以上記した如く本発明タペットは耐スカッフィング性及
び耐ピツチング性に優れるのみ外らず、製造も容易なも
のであるが、以下の如く製造したタペットの試験結果を
示す。
As described above, the tappet of the present invention not only has excellent scuffing resistance and pitting resistance, but is also easy to manufacture.The following are the test results of the tappet manufactured as follows.

CO基焼結合金として、WC粉、Cr C粉及びCo 
−C−W合金粉末とC粉を混合し、Fe基焼結合金とし
て、Fe−P−C粉とC粉、Cu紛を混合しそれぞれ2
層に充填後6t/crlでプレス成形し、SCM種の鋼
によるタペット本体と組合せ環元性雰囲気中で1240
℃にて焼結した後、焼入焼戻を行い最終寸法加工し、次
のタペットを得た。
As CO-based sintered alloys, WC powder, CrC powder and Co
- Mix C-W alloy powder and C powder, and mix Fe-P-C powder, C powder, and Cu powder to prepare Fe-based sintered alloy.
After filling the layer, it was press-formed at 6t/crl, and combined with the tappet body made of SCM type steel in a cyclic atmosphere of 1240
After sintering at ℃, quenching and tempering were performed and the final dimensions were processed to obtain the following tappet.

(Co基焼結合金)−摺動部材 成分重量%、WC8,1%、Cr C20,3%、Cr
 12.2 %、W5.5%、C3,0%、残C。
(Co-based sintered alloy) - Sliding member component weight%, WC8.1%, Cr C20.3%, Cr
12.2%, W5.5%, C3.0%, balance C.

肉厚(126111N表面硬度H%/650  密度8
.21(Fe基焼結合金)−中間部材 成分重量%、C3,4%、P O,6%、Si 1.1
%、Cu 3.2 %、残Fe 肉厚2.611N中間部硬度HV200  密度7.5
I(寸法) 摺動部外径ff30、重量150g (試験装置) 上記タペットをカムシャフトと組付け、回転数を電動機
直結の変速機にて変え、荷重をタペットに加えるバネ力
で変える。
Wall thickness (126111N surface hardness H%/650 density 8
.. 21 (Fe-based sintered alloy) - Intermediate member component weight %, C3.4%, PO, 6%, Si 1.1
%, Cu 3.2%, remaining Fe Wall thickness 2.611N Middle part hardness HV200 Density 7.5
I (dimensions) Sliding part outer diameter ff30, weight 150g (Test equipment) The above tappet is assembled with a camshaft, the rotation speed is changed by a transmission directly connected to the electric motor, and the load is changed by a spring force applied to the tappet.

(比較タペット) 成分重量%、C2,8’L Si O,67%、Po、
45%、Ni 1.1 %、Cr t2.8%、Mo 
1.2 ’% 、残Feの液相焼結合金複合タペット 表面2硬度)(V2O3密度7.51 (相手材カムシャフト) 成分重量%、TC3,2%、Si 2.2 %、Mn 
0.8 %、Ni O,3%、Cr 1.2 %、Mo
 0.4 ’%、残Feの舒改に焼入れし表面硬度HR
C54 (試験1.  スカッフィング試験) 回転数を2000r9”とし荷重を5分毎に10kl?
づつ上げてスカッフィング発生荷重とする。
(Comparison tappet) Component weight %, C2,8'L SiO, 67%, Po,
45%, Ni 1.1%, Cr t2.8%, Mo
1.2'%, residual Fe liquid phase sintered alloy composite tappet surface 2 hardness) (V2O3 density 7.51 (mate material camshaft) component weight%, TC3.2%, Si 2.2%, Mn
0.8%, NiO, 3%, Cr 1.2%, Mo
0.4'%, surface hardness HR after quenching with residual Fe
C54 (Test 1. Scuffing test) The rotation speed is 2000r9" and the load is 10kl every 5 minutes?
Increase the load step by step to determine the load that causes scuffing.

(試験2. ピッチング試験) 回転数を1000rplとし荷重を25kgづつ上げて
10  サイクルでピッチング限界荷重とする。
(Test 2. Pitching test) The rotation speed was set to 1000 rpm, and the load was increased in 25 kg increments to reach the pitching limit load after 10 cycles.

(試験結果)         単位 kgこの実験結
果によっても明らかな如く本発明タミソトは耐ピツチン
グ性と耐スカッフィングの双方に同時に優れるものであ
り高負荷高速の機関であり、かつ潤滑条件の劣る苛酷な
機関にも充分に耐えうるものである。
(Test results) Unit: kg As is clear from these experimental results, the Tamisoto of the present invention has excellent pitting resistance and scuffing resistance at the same time, and is suitable for high-load, high-speed engines, as well as for harsh engines with poor lubrication conditions. It is durable enough.

【図面の簡単な説明】[Brief explanation of drawings]

第1図;本発明タペット実施例断面図。 第2図;本発明タペットの製造を示す断面図。 第3図;本発明の他の実施例断面図。 付号の説明 1:タペット本体 2:カム当接部 3:摺動部材   4:中間部材 特許出願人 日本ピスト/す/グ株式会社 FIG. 1: A sectional view of an embodiment of the tappet of the present invention. FIG. 2: A sectional view showing the manufacture of the tappet of the present invention. FIG. 3; sectional view of another embodiment of the present invention. Explanation of numbers 1: Tappet body 2: Cam contact part 3: Sliding member 4: Intermediate member patent applicant Nippon Pisto/S/G Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)鋳鉄又は鋼によるタペット本体1のカムとの摺接
部に異種材料によるカム当接部2を配してなるタペット
において、 前記カム当接部の表面に、炭化物を重量優にして15〜
40%含むCo基焼結合金による摺動部材3を配し、該
摺動部材3と前記タペット本体1間に液相焼結されたF
e基焼結合金による中間部材4を配したことを特徴とす
るタペット。
(1) In a tappet in which a cam contact part 2 made of a different material is arranged on the sliding contact part of a tappet body 1 made of cast iron or steel with the cam, the surface of the cam contact part is coated with carbide with a weight of 15 ~
A sliding member 3 made of a Co-based sintered alloy containing 40% Co is disposed between the sliding member 3 and the tappet body 1, and liquid-phase sintered F
A tappet characterized by having an intermediate member 4 made of e-based sintered alloy.
(2)前記摺動部材3が、(WN Cr N Tiz 
Nb)炭化物のうち一種又は二種以上を合計で2ト35
重量%含むCO基焼結合金であり、かつ厚さが0.1〜
1.0酊であることを特徴とする特許 1項記載のタペット〇
(2) The sliding member 3 is (WN Cr N Tiz
Nb) A total of 2 tons of one or more types of carbides35
It is a CO-based sintered alloy containing % by weight, and the thickness is 0.1~
1. Tappet described in Patent Paragraph 1 characterized by being intoxicated
(3)前記摺動部材3が、(W, Cr 、 Tt X
Nb )炭化物のうち一種又は二種以上を合計で2ト3
0%、C 1.0〜4.0%、Cr6〜18%、W2−
10%、残実質的にCoによりなることを特徴とする前
記特許請求の範囲第1項記載のタペット。
(3) The sliding member 3 has (W, Cr, Tt
Nb) A total of 2 tons of one or more types of carbides3
0%, C 1.0-4.0%, Cr6-18%, W2-
A tappet according to claim 1, characterized in that the tappet consists of 10% and the balance substantially of Co.
(4)前記中間部材4が重量チにて、C1,θ〜4D%
、(P% B% St)のうち一種又は二種以上を02
〜50チ、Cu 1.0 〜5.0 %、残実質的にF
eよりなることを特徴とする前記特許請求の範囲第1項
記載のタペット。
(4) The intermediate member 4 is C1,θ~4D% in terms of weight
, (P% B% St) 02
~50%, Cu 1.0~5.0%, remaining substantially F
The tappet according to claim 1, characterized in that the tappet is made of e.
(5)前記摺動部材3と中間部材4とがそれぞれの粉末
を積層した複合圧粉体より焼結されてなることを特徴と
する前記特許請求の範囲第1項記載のタペット。
(5) The tappet according to claim 1, wherein the sliding member 3 and the intermediate member 4 are sintered from a composite green compact obtained by laminating powders of each of the sliding members 3 and the intermediate member 4.
(6)前記タペット本体1と中間部材4とが中間部材4
中の元素の拡散により冶金学的に結合されてなることを
特徴とする前記特許請求の範囲第1項記載のタペット。
(6) The tappet main body 1 and the intermediate member 4 are connected to the intermediate member 4.
The tappet according to claim 1, characterized in that it is metallurgically bonded by diffusion of elements therein.
JP15053381A 1981-09-25 1981-09-25 Tappet Granted JPS5853612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15053381A JPS5853612A (en) 1981-09-25 1981-09-25 Tappet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15053381A JPS5853612A (en) 1981-09-25 1981-09-25 Tappet

Publications (2)

Publication Number Publication Date
JPS5853612A true JPS5853612A (en) 1983-03-30
JPS637249B2 JPS637249B2 (en) 1988-02-16

Family

ID=15498941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15053381A Granted JPS5853612A (en) 1981-09-25 1981-09-25 Tappet

Country Status (1)

Country Link
JP (1) JPS5853612A (en)

Also Published As

Publication number Publication date
JPS637249B2 (en) 1988-02-16

Similar Documents

Publication Publication Date Title
US6332904B1 (en) Mixed powder metallurgy process
US4583502A (en) Wear-resistant member for use in an internal combustion engine
KR101245069B1 (en) A powder metal engine composition
US4505988A (en) Sintered alloy for valve seat
US5049183A (en) Sintered machine part and method
JPWO2019221106A1 (en) Valve seat made of iron-based sintered alloy for internal combustion engine
JPH0210311B2 (en)
US4251273A (en) Method of forming valve lifters
JPS62211355A (en) Wear-resisting ferrous sintered alloy
JP3704100B2 (en) High wear-resistant and high-strength sintered parts and manufacturing method thereof
JP2005054989A (en) Sintered sprocket for silent chain and its manufacturing method
JPS5853612A (en) Tappet
JPH0137466B2 (en)
CN101068641B (en) Sintered alloys for cam lobes and other high wear articles
JPH0344202B2 (en)
JP2641424B2 (en) Method for manufacturing internal combustion engine valve train
EP0618351A1 (en) Tappets for use in internal combustion engines
US5310519A (en) Process of manufacturing as sintered member having at least one molybdenum-containing wear-resisting layer
JPS631080Y2 (en)
US20240131581A1 (en) Sintered Engine Part and Method of Manufacture Thereof
CN115261699B (en) Sintered valve seat insert and method of making the same
JPH0310001B2 (en)
JPH0116298B2 (en)
JP2001227618A (en) Camshaft
Dowson Cost reduction through innovative powder engineering