JPS585258B2 - Carbon concentration control method in gas carburizing furnace - Google Patents

Carbon concentration control method in gas carburizing furnace

Info

Publication number
JPS585258B2
JPS585258B2 JP50065863A JP6586375A JPS585258B2 JP S585258 B2 JPS585258 B2 JP S585258B2 JP 50065863 A JP50065863 A JP 50065863A JP 6586375 A JP6586375 A JP 6586375A JP S585258 B2 JPS585258 B2 JP S585258B2
Authority
JP
Japan
Prior art keywords
furnace
carbon concentration
gas
carburizing
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50065863A
Other languages
Japanese (ja)
Other versions
JPS51141739A (en
Inventor
太田正則
中村明義
藤野良治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Seisakusho Ltd
Original Assignee
Shimadzu Seisakusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Seisakusho Ltd filed Critical Shimadzu Seisakusho Ltd
Priority to JP50065863A priority Critical patent/JPS585258B2/en
Publication of JPS51141739A publication Critical patent/JPS51141739A/en
Publication of JPS585258B2 publication Critical patent/JPS585258B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、保護ガスを生じる有機液体および浸炭ガスを
生じる有機液体が直接炉内に供給されるガス浸炭炉にお
ける炭素濃度制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of controlling carbon concentration in a gas carburizing furnace in which an organic liquid that produces a protective gas and an organic liquid that produces a carburizing gas are directly supplied into the furnace.

この種のガス浸炭炉(たとえば変成炉、ドリップフィー
ルド炉など)において、拡散処理を行なう場合には炭素
濃度(カーボンポテンシャル)を所定値にまで低下させ
る必要がある。
In this type of gas carburizing furnace (for example, a shift furnace, a drip field furnace, etc.), when performing a diffusion treatment, it is necessary to reduce the carbon concentration (carbon potential) to a predetermined value.

従来の制御方法では浸炭ガス発生用の有機液体の供給を
単に停止して自然に炭素濃度が下ってくるのを待つよう
にしているが、そのさいワークはすでに平衡状態に達し
ているため、炭素濃度が所定値にまで低下するのに1時
間以上の時間を要する。
Conventional control methods simply stop the supply of organic liquid for carburizing gas generation and wait for the carbon concentration to fall naturally, but at that time the workpiece has already reached an equilibrium state, so the carbon It takes one hour or more for the concentration to drop to a predetermined value.

そのため拡散処理に長時間かかつて非能率的であるばか
りでなく、拡散処理の制御を精度高く行なうことができ
なかった。
Therefore, not only is the diffusion process time-consuming and inefficient, but the diffusion process cannot be controlled with high precision.

本発明は上記の実情に鑑みてなされたもので、拡散処理
時に空気を供給することによって極めて短時間に炭素濃
度を所定値にまで低下させ、もって能率を高めるととも
に拡散処理自体の精度をも高めるようにしたガス浸炭炉
における炭素濃度制御方法を提供することを目的とする
The present invention has been made in view of the above-mentioned circumstances, and by supplying air during the diffusion process, the carbon concentration can be reduced to a predetermined value in an extremely short period of time, thereby increasing efficiency and improving the accuracy of the diffusion process itself. An object of the present invention is to provide a method for controlling carbon concentration in a gas carburizing furnace.

以下、本発明に係る制御方法に用いられる好ましい一実
施例装置について図面を参照しながら詳細に説明する。
Hereinafter, a preferred embodiment of the apparatus used in the control method according to the present invention will be described in detail with reference to the drawings.

第1図は一実施例を示す概略断面図である。FIG. 1 is a schematic sectional view showing one embodiment.

浸炭炉本体1の内部は絶縁蓋2により気密に保たれる。The inside of the carburizing furnace body 1 is kept airtight by an insulating lid 2.

浸炭炉本体1の内壁には発熱体3が設けられ、炉内を所
定温度に加熱する。
A heating element 3 is provided on the inner wall of the carburizing furnace body 1 to heat the inside of the furnace to a predetermined temperature.

炉内に設けられたレトルト4内には被処理物(図示せず
)が配置される。
A workpiece (not shown) is placed in a retort 4 provided in the furnace.

ベンチレータ5は炉内のガスを図の矢印方向に循環させ
る。
The ventilator 5 circulates the gas within the furnace in the direction of the arrow in the figure.

炉内のガスのサンプリングおよびガス圧調節用の排気管
6からの排気ガスは、一部が分析装置7に、他が排気口
8に導びかれ、排気口8では燃え上る調節後がみられる
Part of the exhaust gas from the exhaust pipe 6 for gas sampling and gas pressure adjustment in the furnace is led to the analyzer 7 and the other part to the exhaust port 8, where a flare-up can be seen after the adjustment. .

この調節後が燃えている限り、炉内のガス圧以上に保た
れているわけである。
As long as the fuel is burning after this adjustment, the pressure will remain higher than the gas pressure inside the furnace.

炉内ガスの分析装置7の分析データ信号は制御装置9に
伝達される。
An analysis data signal from the furnace gas analyzer 7 is transmitted to the controller 9 .

容器11には、浸炭ガスを発生する第1の有機液体(た
とえばエチルアセテート)が蓄えられており、この第1
の有機液体は制御弁13で流量制御されて供給管10に
導びかれる。
A first organic liquid (for example, ethyl acetate) that generates carburizing gas is stored in the container 11.
The organic liquid is guided to the supply pipe 10 with its flow rate controlled by the control valve 13.

また、容器12には、保護ガス(担体ガス、キャリアガ
スとも称す)を発生する第2の有機液体(たとえばメチ
ルアルコール)が蓄えられ、この第2の有機液体は制御
弁14を介し前記供給管10に導びかれる。
Further, a second organic liquid (for example, methyl alcohol) that generates a protective gas (also referred to as a carrier gas) is stored in the container 12, and this second organic liquid is passed through the control valve 14 to the supply pipe. Guided by 10.

この供給管10は、前記浸炭炉本体1の内部に通じてい
る。
This supply pipe 10 communicates with the inside of the carburizing furnace main body 1 .

前記制御弁13,14は、前記制御装置9からの制御信
号に応じて開閉動作し、有機液体の流量を制御する。
The control valves 13 and 14 open and close according to control signals from the control device 9 to control the flow rate of the organic liquid.

浸炭ガスを発生する第1の有機液体の流量を制御する制
御弁13に並列に、バイパス路21が設けられる。
A bypass passage 21 is provided in parallel to the control valve 13 that controls the flow rate of the first organic liquid that generates the carburizing gas.

また、保護ガスを発生する第2の有機液体の流量制御を
行なう制御弁14に並列にバイパス路22が設けられる
Further, a bypass path 22 is provided in parallel with the control valve 14 that controls the flow rate of the second organic liquid that generates the protective gas.

これらのバイパス路21.22には弁23.24が備え
られている。
These bypass channels 21.22 are equipped with valves 23.24.

浸炭炉本体1の内部に通じるもう一本の管31は弁32
を介し清浄空気を供給する空気供給装置33に結合され
る。
Another pipe 31 leading to the inside of the carburizing furnace body 1 is connected to a valve 32.
The air supply device 33 is connected to an air supply device 33 that supplies clean air through the air supply device 33.

以上の構成を有する装置の動作すなわち制御方法の一例
について第2図を参照しながら説明する。
An example of the operation or control method of the apparatus having the above configuration will be described with reference to FIG. 2.

第2図aは温度、bは炭素濃度(カーボンポテンシャル
)、cはCO2(二酸化炭素)濃度、dは発熱体3への
供給電流、eは保護ガス発生用の第2の有機液体の供給
量、fは浸炭ガス発生用の第1の有機液体の供給量、g
は清浄空気の供給量の時間的変化を表わすタイムチャー
トである。
In Figure 2, a is the temperature, b is the carbon concentration (carbon potential), c is the CO2 (carbon dioxide) concentration, d is the supply current to the heating element 3, and e is the supply amount of the second organic liquid for generating protective gas. , f is the supply amount of the first organic liquid for carburizing gas generation, g
is a time chart showing temporal changes in the supply amount of clean air.

まず時刻t0で加熱を開始し、炉内の温度を上昇させる
First, heating is started at time t0, and the temperature inside the furnace is increased.

加熱開始後の時刻t1において、制御弁14およびバイ
パス路22の弁24を開き、大量の保護ガス発生用第2
の有機液体を炉内に供給する。
At time t1 after the start of heating, the control valve 14 and the valve 24 of the bypass path 22 are opened, and a large amount of protective gas generation second valve 24 is opened.
of organic liquid is supplied into the furnace.

炉内温度が所定温度(たとえば930℃)に達した時刻
t2で、前記バイパス路22の弁24を閉じ、定量の第
2の有機液体を供給する。
At time t2 when the temperature inside the furnace reaches a predetermined temperature (for example, 930° C.), the valve 24 of the bypass passage 22 is closed and a fixed amount of the second organic liquid is supplied.

また同時刻12において、制御弁13およびバイパス路
21の弁23を開き、大量の浸炭ガス発生用第1の有機
液体を炉内に供給する。
At the same time 12, the control valve 13 and the valve 23 of the bypass path 21 are opened, and a large amount of the first organic liquid for carburizing gas generation is supplied into the furnace.

したがって炭素濃度すは時刻t2から上昇してゆき、時
刻t3において所定の濃度(たとえば0.95%)に達
する。
Therefore, the carbon concentration increases from time t2 and reaches a predetermined concentration (for example, 0.95%) at time t3.

この時刻t3で前記バイパス路21の弁23を閉じ、制
御弁13により所定炭素濃度(0,95%)を保持する
に必要な量の第1の有機液体供給制御を行なう。
At time t3, the valve 23 of the bypass path 21 is closed, and the control valve 13 controls the supply of the first organic liquid in an amount necessary to maintain a predetermined carbon concentration (0.95%).

この状態(強浸炭)を時刻t4まで持続する時刻t4に
おいて弁32を開き、清浄空気を多量供給することによ
り炭素濃度を低め(たとえば0.75%)拡散処理を行
なう。
At time t4, when this state (strong carburization) is maintained until time t4, the valve 32 is opened and a large amount of clean air is supplied to perform a diffusion process to lower the carbon concentration (for example, to 0.75%).

拡散処理中は微量の清浄空気を供給する。A small amount of clean air is supplied during the diffusion process.

次に時刻t5において、加熱を停止し、炉内の温度を降
下し焼入温度(たとえば850℃)とする。
Next, at time t5, heating is stopped and the temperature inside the furnace is lowered to the quenching temperature (for example, 850° C.).

このとき清浄空気を多量供給する。At this time, a large amount of clean air is supplied.

次に時刻t6、t7、t8、t9でたとえば4回の焼入
処理を行なう。
Next, quenching is performed four times, for example, at times t6, t7, t8, and t9.

この焼入れ処理の際にはいったん浸炭炉の絶縁蓋2を開
放するので、絶縁蓋2閉鎖後のそれぞれの時点でバイパ
ス路21゜22の弁23,24を開くことにより第1、
第2の有機液体を多量供給する。
During this hardening process, the insulating lid 2 of the carburizing furnace is opened once, so the valves 23 and 24 of the bypass paths 21 and 22 are opened at each point after the insulating lid 2 is closed.
A large amount of the second organic liquid is supplied.

また、絶縁蓋2開放時の温度降下を補償するため、発熱
体3へも各時刻t6.t7、t8、t9で多量の電流供
給がなされる。
In addition, in order to compensate for the temperature drop when the insulating lid 2 is opened, the heating element 3 is also supplied at each time t6. A large amount of current is supplied at t7, t8, and t9.

なお第2図cのCO2濃度曲線において、破線および括
弧内数字で示すように所定のCO2濃度よりやや低目の
値で清浄空気の供給(すなわち弁32の開動作)を行な
えば、より良好な結果が得られる。
In addition, in the CO2 concentration curve of FIG. 2c, if clean air is supplied (that is, the valve 32 opens) at a value slightly lower than the predetermined CO2 concentration, as shown by the broken line and the numbers in parentheses, better results will be obtained. Get results.

以上の説明において、強浸炭から拡散に切換えるとき(
時刻t4)や、拡散中において焼入温度に降温する際に
は、ワークがすでに平衡状態に達している。
In the above explanation, when switching from strong carburizing to diffusion (
At time t4) or when the temperature is lowered to the quenching temperature during diffusion, the workpiece has already reached an equilibrium state.

したがって炭素濃度は従来において通常1時間以上経過
しても所定値にまで低下しない。
Therefore, conventionally, the carbon concentration usually does not decrease to a predetermined value even after one hour or more has passed.

これは特にピット炉の場合に著しい。This is particularly noticeable in the case of pit furnaces.

本実施例では清浄空気を一定量(たとえば11/min
〜51/m1n)または一定量プラス一時的に多量(た
とえば一定量プラス11/min〜101/rnin)
を浸炭炉内に供給し、浸炭ガスと混合させるため、炭素
濃度は、たとえば5〜20分間に所定値にまで下がる。
In this embodiment, clean air is supplied at a fixed amount (for example, 11/min).
~51/m1n) or a certain amount plus a temporarily large amount (for example, a certain amount plus 11/min to 101/rnin)
is supplied into the carburizing furnace and mixed with the carburizing gas, so that the carbon concentration decreases to a predetermined value within, for example, 5 to 20 minutes.

また、従来のピット炉の場合、絶縁蓋を開放すると浸炭
ガスは燃焼し、炉外の空気と入換ってしまう。
Furthermore, in the case of a conventional pit furnace, when the insulating lid is opened, the carburizing gas is burned and replaced with air outside the furnace.

したがって次に絶縁蓋を閉鎖しても、炉内ガスの炭素濃
度が所定値にまで上昇するにけ長時間装した。
Therefore, even if the insulating lid was closed next, the furnace was left open for a long time until the carbon concentration of the gas in the furnace rose to a predetermined value.

本実施例では、第1、第2の有機液体をバイパス路21
.22を介して一時的に大量供給しているため、炉内の
炭素濃度はきわめて短時間で所定値にまで上昇する。
In this embodiment, the first and second organic liquids are passed through the bypass path 21.
.. 22, the carbon concentration in the furnace rises to a predetermined value in a very short time.

なおこれらの効果はビット炉以外に密閉式焼入槽を有す
る箱形炉に適用した場合にも得られる。
Note that these effects can also be obtained when applied to a box-shaped furnace having a closed quenching tank other than a bit furnace.

したがって炭素濃度を所定値に短時間に制御できるため
、浸炭時間を正確に規制でき、浸炭深さの精度を高める
ことができる。
Therefore, since the carbon concentration can be controlled to a predetermined value in a short time, the carburizing time can be accurately regulated and the accuracy of the carburizing depth can be improved.

また、ピット形ガス浸炭炉において、複数個のワークを
一度に装入し、1個づつ焼入れする場合に、浸炭ガスの
炭素濃度の回復や、所定値に安定するまでの制御時間が
短かいため、複数個のワークの熱処理特性のバラツキを
小さくできる。
In addition, when charging multiple workpieces at once and quenching them one by one in a pit-type gas carburizing furnace, the control time required to recover the carbon concentration in the carburizing gas and stabilize it at a predetermined value is short. , it is possible to reduce variations in heat treatment characteristics of multiple workpieces.

以上実施例について説明したように、この発明の炭素濃
度制御方法によれば、拡散処理時に空気を供給すること
によって炭素濃度を下げるようにしているため、きわめ
て短時間で所定値にまで下げることができて能率向上を
図ることができるばかりでなく、短時間ですみやかに炭
素濃度を下げることができるので、拡散処理自体の精度
向上にも寄与できる。
As explained in the embodiments above, according to the carbon concentration control method of the present invention, the carbon concentration is lowered by supplying air during the diffusion process, so it is possible to reduce the carbon concentration to a predetermined value in an extremely short time. This not only improves efficiency, but also allows the carbon concentration to be lowered quickly in a short period of time, contributing to improving the accuracy of the diffusion process itself.

なお本発明は上記実施例のみに限定されず、本発明の要
旨を逸脱しない範囲において種々の変更が可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例を示す概略断面正面図、
第2図は第1図を説明するためのタイムチャートである
。 1・・・浸炭炉本体、2・・・絶縁蓋、3・・・発熱体
、4・・・レトルト、5・・・ベンチレータ、6・・・
排気管、7・・・分析装置、8・・・排気口、9・・・
制御装置、10・・・供給管、11.12・・・容器、
13.14・・・制御弁、21.22・・・バイパス路
、23,24,32・・・弁、31・・・管、33・・
・空気供給装置。
FIG. 1 is a schematic cross-sectional front view showing one embodiment of the present invention;
FIG. 2 is a time chart for explaining FIG. 1. DESCRIPTION OF SYMBOLS 1... Carburizing furnace body, 2... Insulating lid, 3... Heating element, 4... Retort, 5... Ventilator, 6...
Exhaust pipe, 7... Analyzer, 8... Exhaust port, 9...
Control device, 10... Supply pipe, 11.12... Container,
13.14... Control valve, 21.22... Bypass path, 23, 24, 32... Valve, 31... Pipe, 33...
・Air supply device.

Claims (1)

【特許請求の範囲】[Claims] 1 浸炭ガスを生じる第1の有機液体および保護ガスを
生じる第2の有機液体が直接供給されるガス浸炭炉にお
いて、拡散処理を行なう際に空気を供給することによっ
て炭素濃度を低下させるよう炭素濃度の制御を行なうこ
とを特徴とする炭素濃度制御方法。
1 In a gas carburizing furnace to which a first organic liquid that generates a carburizing gas and a second organic liquid that generates a protective gas are directly supplied, the carbon concentration is reduced by supplying air during the diffusion treatment. A carbon concentration control method characterized by controlling.
JP50065863A 1975-05-31 1975-05-31 Carbon concentration control method in gas carburizing furnace Expired JPS585258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50065863A JPS585258B2 (en) 1975-05-31 1975-05-31 Carbon concentration control method in gas carburizing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50065863A JPS585258B2 (en) 1975-05-31 1975-05-31 Carbon concentration control method in gas carburizing furnace

Publications (2)

Publication Number Publication Date
JPS51141739A JPS51141739A (en) 1976-12-06
JPS585258B2 true JPS585258B2 (en) 1983-01-29

Family

ID=13299257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50065863A Expired JPS585258B2 (en) 1975-05-31 1975-05-31 Carbon concentration control method in gas carburizing furnace

Country Status (1)

Country Link
JP (1) JPS585258B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177362A (en) * 1983-03-29 1984-10-08 Daido Steel Co Ltd Controlling method of carburizing atmosphere
JP7189115B2 (en) * 2019-12-05 2022-12-13 株式会社日本テクノ Gas carburizing method and gas carburizing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923139A (en) * 1972-06-26 1974-03-01

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923139A (en) * 1972-06-26 1974-03-01

Also Published As

Publication number Publication date
JPS51141739A (en) 1976-12-06

Similar Documents

Publication Publication Date Title
JP2013249524A (en) Gas nitriding and gas nitrocarburizing method
US8465603B2 (en) Method and device for controlling process gases for heat treatments of metallic materials/workpieces in industrial furnaces
JPS57177969A (en) Controlling method for carbon potential in furnace
JP6552209B2 (en) Method and apparatus for manufacturing metal spring
JPS585258B2 (en) Carbon concentration control method in gas carburizing furnace
JP4292280B2 (en) Carburizing method
JP6400905B2 (en) Gas carburizing method
US9540721B2 (en) Method of carburizing
US6051078A (en) Method and apparatus for controlling the atmosphere in heat treatment furnace
ES442478A1 (en) Method for generating hydrogen
JP6543208B2 (en) Gas carburizing method and gas carburizing apparatus
JP2017197822A (en) Surface hardening method and surface hardening apparatus
JP2019135332A (en) Manufacturing method and manufacturing apparatus for metallic spring
JP2002339017A (en) Heat treatment method and heat treatment furnace
JP2929068B2 (en) Heat treatment method for steel
JP2002363727A (en) Carburizing method and device thereof
JPS6345358A (en) Gas carburizing method
JP6357042B2 (en) Gas soft nitriding method and gas soft nitriding apparatus
JPS6053744B2 (en) Gas carburizing method using nitrogen, organic liquid, and hydrocarbon
JP2701334B2 (en) Operating method of atmospheric gas generator
JPH0338639Y2 (en)
JP3063695B2 (en) External combustion oxidizer with multiple hydrogen nozzles
US3084999A (en) Measurement and control of constituent potentials
JPH02175885A (en) Heat degreasing device
JPS6143427B2 (en)