JPS585252B2 - Zirconium sponge Ruino Seizouhouhou Oyobi Sonosouchi - Google Patents

Zirconium sponge Ruino Seizouhouhou Oyobi Sonosouchi

Info

Publication number
JPS585252B2
JPS585252B2 JP50017474A JP1747475A JPS585252B2 JP S585252 B2 JPS585252 B2 JP S585252B2 JP 50017474 A JP50017474 A JP 50017474A JP 1747475 A JP1747475 A JP 1747475A JP S585252 B2 JPS585252 B2 JP S585252B2
Authority
JP
Japan
Prior art keywords
reaction
zirconium
reaction vessel
reducing agent
reduction reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50017474A
Other languages
Japanese (ja)
Other versions
JPS5192711A (en
Inventor
黒木正美
石松一彦
村多明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP50017474A priority Critical patent/JPS585252B2/en
Priority to FR7534493A priority patent/FR2300816A1/en
Priority to US05/679,624 priority patent/US4105192A/en
Publication of JPS5192711A publication Critical patent/JPS5192711A/ja
Publication of JPS585252B2 publication Critical patent/JPS585252B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S266/00Metallurgical apparatus
    • Y10S266/905Refractory metal-extracting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は、ハロゲン化ジルコニウムを、マグネシウム
もしくはナトリウムなどによって還元させることにより
、ジルコニウムスポンジを得る方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for obtaining a zirconium sponge by reducing zirconium halide with magnesium or sodium.

従来一般に知られているジルコニウムスポンジの工業的
製法は、昇華精製した塊状もしくは粉状の四塩化ジルコ
ニウムと、マグネシウムもしくはナトリウムなどとを一
緒に反応容器に装入して不活性ガスのもとて高温度に昇
温し、四塩化ジルコニウムのガスをマグネシウムもしく
はナトリウムなどと、急激な反応による温度上昇を抑制
するため、徐々に接触させて反応を行なう製法によって
いた。
The conventionally known industrial manufacturing method for zirconium sponge is to charge bulk or powdered zirconium tetrachloride purified by sublimation together with magnesium or sodium into a reaction vessel, and then heat the sponge to a very high temperature under an inert gas. The manufacturing method involved raising the temperature and gradually bringing the zirconium tetrachloride gas into contact with magnesium or sodium, etc., in order to suppress the temperature rise caused by a rapid reaction.

この従来法においては以下に述べるような工業上きわめ
て不利な問題があった。
This conventional method has extremely disadvantageous industrial problems as described below.

(1)あらかじめ精製した塊状もしくは粉状の四塩化ジ
ルコニウムを反応器に装入しておくためがなりのスペー
スを必要とし、反応容器自体が大容量のものとなる。
(1) A large amount of space is required to charge the reactor with pre-purified bulk or powdered zirconium tetrachloride, and the reaction container itself has a large capacity.

このためバッチ毎の反応は1回どまりであり反応容器に
占めるジルコニウムスポンジの体積は約1/8である。
Therefore, the reaction is carried out only once per batch, and the volume of the zirconium sponge occupied in the reaction container is approximately 1/8.

(2)反応容器に装入した四塩化ジルコニウムはつぎに
マグネシウムと反応させるため、これを加熱して高温度
(340℃〜400℃)のガスとする必要があり、従っ
て多大の加熱エネルギーを必要とする。
(2) Zirconium tetrachloride charged into the reaction vessel is then reacted with magnesium, so it needs to be heated to a high temperature gas (340°C to 400°C), which requires a large amount of heating energy. do.

(3)還元反応中は微量の窒素および酸素によっても品
質が劣化されるため、反応容器には不活性ガス(たとえ
ばアルゴン)を充満して反応を行なうか、反応容器内圧
は大気圧以上通常はゲージ圧0.2〜1.0kg/cm
2に不活性ガスを封入している。
(3) During the reduction reaction, the quality is degraded by trace amounts of nitrogen and oxygen, so the reaction vessel should be filled with an inert gas (for example, argon) or the internal pressure of the reaction vessel should be at least atmospheric pressure. Gauge pressure 0.2-1.0kg/cm
2 is filled with inert gas.

ところで反応容器の昇温につれてその内圧も上るので不
活性ガスを放出してその分圧調整によって還元反応を行
なうのであるが、この放出ガスには共存している四塩化
ジルコニウムのガスも含まれてくるため、その分は損失
となっている。
By the way, as the temperature of the reaction vessel rises, the internal pressure also rises, so the reduction reaction is carried out by releasing an inert gas and adjusting its partial pressure, but this released gas also contains the coexisting zirconium tetrachloride gas. Therefore, the amount is a loss.

また放出のさいバルブの比較的低温部(331℃以下)
に四塩化ジルコニウムが凝固してバルブや圧力測定管な
どの閉塞を来たす。
Also, during discharge, the relatively low temperature part of the valve (below 331℃)
Zirconium tetrachloride solidifies and causes blockages in valves, pressure measuring pipes, etc.

(4)還元反応温度は、約1000℃にも上昇するため
反応容器は耐熱合金製であるが、不活性ガスの放出量が
多過ぎた場合は、四塩化ジルコニウムのガスが濃くなり
すぎて反応が急激にすゝみ、反応生成熱が多大となって
反応容器が935℃の高温度になれば、Fe−Zrの共
晶がおこり容器がおかされる。
(4) The reduction reaction temperature rises to about 1000°C, so the reaction vessel is made of a heat-resistant alloy, but if too much inert gas is released, the zirconium tetrachloride gas becomes too concentrated and the reaction takes place. If the reaction proceeds rapidly and the heat produced by the reaction becomes large and the reaction vessel reaches a high temperature of 935°C, Fe-Zr eutectic will occur and the vessel will be damaged.

したがって反応容器材(Fe、Cr)とZrの合金がで
きジルコニウムスポンジの品質低下の原因となっている
Therefore, an alloy of the reaction vessel material (Fe, Cr) and Zr is formed, which causes a deterioration in the quality of the zirconium sponge.

また逆に不活性ガスの放出が少なすぎた場合は還元反応
は非常におそくなって極端に還元時間のみ長くなって経
済的にきわめて不利である。
On the other hand, if too little inert gas is released, the reduction reaction becomes extremely slow and the reduction time becomes extremely long, which is extremely disadvantageous economically.

これらの不活性ガスの放出は四塩化ジルコニウムのガス
と任意に混合しているためその割合を測定する方法は未
だ実用化されていず実際の操作は熟練者の判断によって
適当な混合比になるよう混合ガスを放出して還元反応を
行なっている。
Since the release of these inert gases is arbitrarily mixed with zirconium tetrachloride gas, a method for measuring the ratio has not yet been put to practical use, and in actual operation, an appropriate mixing ratio must be determined by the judgment of an expert. A reduction reaction is performed by releasing a mixed gas.

そのためバッチ間の品質のバラツキは大きく従来はこの
バラツキを避けることができなかった。
Therefore, there is a large variation in quality between batches, and this variation could not be avoided in the past.

本発明者らは、上述した従来の一バッチ毎の反応による
方法の欠点に鑑み、予じめ内部にマグネシウムもしくは
ナトリウムなどの還元剤を収納させた反応容器内に適宜
少量づつハロゲン化ジルコニウムガスを供給させて反応
を行なわせる方法を提案し、その内容については本出願
人の先願に係る特願昭48−29932号(特開昭49
−118.608号)明細書及び図面中に開示したもの
である。
In view of the drawbacks of the conventional batch-by-batch reaction method described above, the present inventors added zirconium halide gas in small amounts at a time into a reaction vessel containing a reducing agent such as magnesium or sodium in advance. We proposed a method for causing a reaction by supplying the gas, and the content thereof is described in Japanese Patent Application No. 48-29932 (Japanese Unexamined Patent Publication No. 48-29932 (Japanese Unexamined Patent Publication)
-118.608) disclosed in the specification and drawings.

ところがこの本出願人の先願に係る発明は、上述したよ
うに不活性ガス雰囲気とした反応容器中にガス状とした
ハロゲン化ジルコニウムを供給させるものであるため、
上述した(3)及び(4)の従来方法における欠点は改
良されず、これに加うるにさらに反応時上記ハロゲン化
ジルマニウムガスと不活性ガスの混合気と、上記還元剤
との接触による反応となるため、肝腎のハロゲン化ジル
マニウムと還元剤との接触が少なく、反応速度が遅い等
の欠点がある。
However, the invention according to the applicant's earlier application involves supplying gaseous zirconium halide into a reaction vessel with an inert gas atmosphere, as described above.
The drawbacks of the conventional methods (3) and (4) described above are not improved, and in addition to this, the above-mentioned drawbacks in the conventional methods of (3) and (4) are not improved, and in addition, the reaction is caused by contacting the mixture of the zirmanium halide gas and the inert gas with the reducing agent during the reaction. Therefore, there is a drawback that there is little contact between the zirmanium halide in the liver and kidneys and the reducing agent, and the reaction rate is slow.

ところで、上記本出願人の先願に係る方法は、前述のよ
うに四塩化ジルコニウムのガスとマグネシウムの反応で
あり、固体状の四塩化ジルコニウムを直接反応容器に反
応量づつ装入する工業的な試みは知られていない。
By the way, the method according to the applicant's earlier application is a reaction between zirconium tetrachloride gas and magnesium, as described above, and is an industrial method in which solid zirconium tetrachloride is directly charged into a reaction vessel in reaction amounts. No known attempts.

その理由はまず金属ジルコニウムに悪影響を与える不純
物とくに酸素を含まない粉状体の四塩化ジルコニウムを
調製することが困難であり、またこの原料を高温度の反
応容器に供給装入する方法は問題点が多すぎると考えら
れ実現の支障になっていたと想像される。
The reason for this is that it is difficult to prepare powdered zirconium tetrachloride, which does not contain impurities that adversely affect metallic zirconium, especially oxygen, and there are also problems with the method of charging this raw material into a high-temperature reaction vessel. It is assumed that this was considered too much and was a hindrance to its realization.

即ち331℃で固体からガスへガスから固体へと昇華す
る特有の物性をもつ四塩化ジルコニウムは、還元反応中
は反応容器内は高温度なのでガスで存在するか、もし反
応容器に供給装置を連結した場合はどうしてもある箇所
に331℃の温度帯ができここに四塩化ジルコニウムが
凝固して四塩化ジルコニウムの供給装入の障害になると
一般には考えられた。
In other words, zirconium tetrachloride, which has the unique physical property of sublimating from solid to gas to solid at 331°C, exists as a gas during the reduction reaction because the temperature inside the reaction vessel is high, or if a supply device is connected to the reaction vessel. In this case, it was generally thought that a temperature zone of 331° C. would inevitably be created in a certain area, where zirconium tetrachloride would solidify and become an obstacle to the supply and charging of zirconium tetrachloride.

本発明者は、かゝる点に着目してさらに種々研究及び実
験の結果まず四塩化ジルコニウムを別の装置で精製しこ
れを反応容器に連続的に供給装入して上記先願の四塩化
ジルコニウムのガスによる還元反応の場合よりもきわめ
て工業的に経済性にとむ条件でかつ高品質のジルコニウ
ムを製造する方法を見出したものである。
Focusing on this point, the present inventor further conducted various studies and experiments, and as a result, firstly, zirconium tetrachloride was purified using a separate device, and this was continuously fed into a reaction vessel to produce the tetrachloride of the above-mentioned earlier application. We have discovered a method for producing zirconium of high quality and under conditions that are industrially more economical than the case of the reduction reaction of zirconium with gas.

すなわちこの発明は、前に述べた従来方式における不利
な問題点を解決し、さらに工業的に高能率でかつ経済的
にジルコニウムスポンジが製造できるようにしたことを
目的とするもので、固体状四塩化ジルコニウムを供給装
置によって直接反応容器に供給して還元反応を行なわし
めることにより、四塩化ジルコニウムの損失もなく、ま
たバルブ等の閉塞もなく反応速度を早めると共に、従来
は1バツチで反応容器の約1/8の容積を占めるジルコ
ニウムスポンジしかできなかったものを、初回の還元反
応後に製造されるジルコニウムスポンジは反応容器内に
そのまま収納せしめた状態で、還元反応によって生成さ
れる塩化マグネシウムを抜き出し、ついで溶融マグネシ
ウムを装入して再び還元反応を行なう操作を数回繰返す
ことにより、例えば反応器の約1/3容積までジルコニ
ウムを製造させるようにしたものである。
That is, the purpose of this invention is to solve the disadvantageous problems of the conventional method mentioned above, and also to make it possible to produce zirconium sponge industrially with high efficiency and economically. By directly supplying zirconium chloride to the reaction vessel using a supply device to carry out the reduction reaction, there is no loss of zirconium tetrachloride, there is no clogging of valves, etc., and the reaction rate is accelerated. After the first reduction reaction, the zirconium sponge that was produced only occupied about 1/8th of the volume of the zirconium sponge, which was produced after the first reduction reaction, was left in the reaction container, and the magnesium chloride produced by the reduction reaction was extracted. Next, by repeating the operation of charging molten magnesium and carrying out the reduction reaction again several times, zirconium is produced up to about 1/3 of the volume of the reactor, for example.

しかして、この発明は予じめ反応容器内部にアルカリ土
類金属もしくはアルカリ金属の還元剤を収納させると共
に、不活性ガス出し入れ用の内圧調整パイプから不活性
ガスを充填させた反応容器内に、供給装置によってハロ
ゲン化ジルコニウムを供給させ、これにより上記アルカ
リ土類金属もしくはアルカリ金属の還元剤にハロゲン化
ジルコニウムを接触させて還元反応を行なわせるように
なし、上記反応容器内の中間部に先端開口部が突出され
た操作パイプより反応容器から上記還元反応によって生
じる溶融塩を抜き出し及び還元剤を適宜追加装入させて
上記還元反応を続行させるようにしたジルコニウムスポ
ンジの製造方法において、上記供給装置から反応容器内
にまず反応開始時に固体状としたままのハロゲン化ジル
コニウムを所定量直接供給させ、この固体状のハロゲン
化ジルコニウムを固体状としたままで上記還元剤に接触
させて初期還元反応を行なわせ、この初期還元反応の終
了後、この初期還元反応によって生じる溶融塩を抜き出
し還元剤を追加装入させて上記供給装置から反応容器内
に固体状としたままのハロゲン化ジルコニウムを順次所
定量づつ直接供給させ、この固体状のハロゲン化ジルコ
ニウムを固体状としたままで上記還元剤に接触させて還
元反応を続行させるようにしたことを特徴とするジルコ
ニウムスポンジの製造方法にある。
Therefore, in this invention, an alkaline earth metal or alkali metal reducing agent is stored in advance inside the reaction vessel, and the reaction vessel is filled with an inert gas from an internal pressure adjustment pipe for introducing and discharging inert gas. The zirconium halide is supplied by the supply device so that the zirconium halide is brought into contact with the alkaline earth metal or alkali metal reducing agent to perform a reduction reaction, and a tip opening is provided in the middle part of the reaction vessel. In the method for producing a zirconium sponge, the molten salt produced by the reduction reaction is extracted from the reaction vessel through an operation pipe with a protruding section, and the reduction reaction is continued by adding a reducing agent as appropriate. First, a predetermined amount of zirconium halide in a solid state is directly supplied into the reaction vessel at the start of the reaction, and this solid zirconium halide is brought into contact with the above-mentioned reducing agent while in a solid state to perform an initial reduction reaction. After this initial reduction reaction is completed, the molten salt produced by this initial reduction reaction is extracted, a reducing agent is additionally charged, and a predetermined amount of zirconium halide, which remains solid, is sequentially fed into the reaction vessel from the above-mentioned supply device. A method for producing a zirconium sponge is characterized in that the solid zirconium halide is directly supplied, and the solid zirconium halide is brought into contact with the reducing agent to continue the reduction reaction.

次にこの発明の第1の実施例に係るジルコニウムスポン
ジの製造方法を、第1図と第2図によって説明する。
Next, a method for manufacturing a zirconium sponge according to a first embodiment of the present invention will be explained with reference to FIGS. 1 and 2.

第1図と第2図はこの発明の方法の実施に使用する装置
の一例を示したもので、1は上面に開口を有する反応容
器、2は縦形筒状の仕切台、3は下面に開口を有する凝
縮物付着容器で、仕切台2の上下縁部に形成される取付
フランジ4,4と、反応容器1の上縁及び付着容器3の
下縁に夫々形成される取付フランジ5,6とを、バッキ
ングを介してボルト7止めさせることにより、上記三者
1.2,3は上下に連設され、仕切台2の内壁面は、反
応容器1及び付着容器3の内壁面よりもさらに内方に突
出されている。
Figures 1 and 2 show an example of an apparatus used to carry out the method of the present invention, in which 1 is a reaction vessel having an opening on the top surface, 2 is a vertical cylindrical partition, and 3 is an opening on the bottom surface. It is a condensate adhesion container having mounting flanges 4, 4 formed on the upper and lower edges of the partition 2, and mounting flanges 5, 6 formed on the upper edge of the reaction container 1 and the lower edge of the adhesion container 3, respectively. are fixed with bolts 7 through backing, so that the three parts 1, 2, and 3 are vertically connected, and the inner wall surface of the partition 2 is further inner than the inner wall surface of the reaction container 1 and the adhesion container 3. It is protruding towards the side.

これら、反応容器1、仕切台2及び付着容器3は、いず
れも電熱炉8,9,10内に納まっており、反応容器1
の外周とその電熱炉8の内周間には、調整空間11が形
成され、この調整空間11の上下には調整パイプ12,
12が開口されている。
These reaction vessel 1, partition stand 2, and adhesion vessel 3 are all housed in electric heating furnaces 8, 9, and 10, and reaction vessel 1
An adjustment space 11 is formed between the outer periphery of the electric furnace 8 and the inner periphery of the electric heating furnace 8, and adjustment pipes 12,
12 is open.

33は、反応容器1の底板で、この底板を押抜いてジル
コニウムスポンジを取り出すようになっている。
33 is a bottom plate of the reaction vessel 1, and the zirconium sponge is taken out by punching out this bottom plate.

13は、ZrCl4供給装入用スクリューフィーダーよ
り成る供給装置で、その外筒14の先端部は上記仕切台
2の内壁に開口され、外筒14の基端部がわの上面には
ZrCl4入ロバイブ15が分枝突設されている。
Reference numeral 13 denotes a feeding device consisting of a screw feeder for supplying ZrCl4, the tip of the outer cylinder 14 is opened on the inner wall of the partition 2, and the base end of the outer cylinder 14 has a ZrCl4-filled lobe on the upper surface. 15 are provided with branching protrusions.

さらに第2図に詳細に示されるように外筒14の密蔽基
端部におけるスクリューシャフト16の回転軸封は、四
塩化ジルコニウムのガスをまず内側のテフロンガスケッ
ト17でシールし、大気のシールは外側のゴム0リング
18で軸封する構造となっている。
Further, as shown in detail in FIG. 2, the rotary shaft seal of the screw shaft 16 at the sealed base end of the outer cylinder 14 first seals the zirconium tetrachloride gas with the inner Teflon gasket 17, and seals the atmosphere. It has a structure in which the shaft is sealed with an outer rubber O-ring 18.

19は、スクリューシャフト16の突出基端部に契着さ
れた従動スプロケット、20は軸受である。
19 is a driven sprocket attached to the protruding base end of the screw shaft 16, and 20 is a bearing.

さらに、スクリューシャフト16は、基端部がわに開口
し内端面は閉鎖されるパイプ状となっており、その内腔
21にはシーズヒータ22が挿入されている。
Furthermore, the screw shaft 16 has a pipe shape with its proximal end open and its inner end surface closed, and a sheathed heater 22 is inserted into the inner cavity 21 of the screw shaft 16 .

上記入口バイブ15上には、ロータリーフィーダー23
が連接され、その上部は精製ZrCl4の入ったZrC
l4貯槽ピン24となっている。
A rotary feeder 23 is placed on the inlet vibrator 15.
are connected, and the upper part is ZrC containing purified ZrCl4.
14 storage tank pin 24.

25は棚吊り防止装置である。25 is a shelf hanging prevention device.

上記スクリューフィーダー13とロータリーフィーダー
23は連動して回転するようになっているが、供給能力
はスクリューフィーダーの方がロータリーフィーダーよ
りもはるかに大となっている。
The screw feeder 13 and rotary feeder 23 are designed to rotate in conjunction with each other, but the screw feeder has a much larger feeding capacity than the rotary feeder.

26は操作パイプで、その先端部は、仕切台2の内壁面
から水平方向に突出された後下方に垂直方向に折曲され
、反応容器1の略中央部に位置せしめられており、その
基端部がわはバルブ27を介して、MgCl2抜き出し
若しくはMg装入装置に連通されている。
Reference numeral 26 denotes an operation pipe, the tip of which protrudes horizontally from the inner wall surface of the partition 2, is bent vertically downward, and is positioned approximately at the center of the reaction vessel 1. The end is connected via a valve 27 to a MgCl2 extraction or Mg charging device.

28は、仕切台2の内壁面に開口されるAr等の不活性
ガス出し入れ用の内圧調整パイプ、29はそのバルブで
ある。
Reference numeral 28 designates an internal pressure adjustment pipe for introducing and discharging inert gas such as Ar, which is opened on the inner wall surface of the partition stand 2, and 29 designates a valve thereof.

さらに、上記パイプ26,28の突出開口部の上部位置
における仕切台2の内壁面には、還元反応終了後MgC
l2を抜くための真空蒸留のガス通路となる打抜き板3
0が溶接されている。
Further, the inner wall surface of the partition stand 2 at the upper position of the protruding openings of the pipes 26 and 28 is provided with MgC after the completion of the reduction reaction.
Punched plate 3 that serves as a gas passage for vacuum distillation to extract l2
0 is welded.

さらに凝縮物付着容器3の頂上部には、真空ポンプと連
通される排気パイプ31が連設され、さらに上記頂上部
には、垂直内方向に、打抜き板30に通路をあける打抜
き棒32が、上下自在として設置されている。
Furthermore, an exhaust pipe 31 that communicates with a vacuum pump is connected to the top of the condensate adhesion container 3, and a punching rod 32 that opens a passage in the punching plate 30 in the vertical inward direction is provided at the top. It is installed so that it can be moved up and down.

次に上記装置の動作と作用について説明する。Next, the operation and effect of the above device will be explained.

まず、パイプ28より排気せしめた後、Arを通入され
た反応容器1内に、反応終了後副生する塩化マグネシウ
ムの溶融面が反応容器1の上端まで上昇する限界内で計
算量のマグネシウムを予め装入しておく。
First, after the pipe 28 is exhausted, a calculated amount of magnesium is poured into the reaction vessel 1 into which Ar is introduced, within the limit that the molten surface of magnesium chloride produced as a by-product after the reaction rises to the upper end of the reaction vessel 1. Load it in advance.

次いで附属の電熱炉8によってマグネシウムを溶融し、
反応開始温度(750〜850℃)になってから、ロー
タリーフィーダー23およびスクリューフィーダー13
によって、貯槽ビン6内の精製粉状四塩化ジルコニウム
を、反応容器1内に供給して還元反応を行なわせる。
Next, the magnesium is melted in the attached electric furnace 8,
After reaching the reaction start temperature (750 to 850°C), the rotary feeder 23 and the screw feeder 13
Accordingly, the purified powdered zirconium tetrachloride in the storage bottle 6 is supplied into the reaction vessel 1 to undergo a reduction reaction.

このようにして目的のジルコニウムスポンジが、反応容
器1の底部及び内壁面に生成される。
In this way, the desired zirconium sponge is produced on the bottom and inner wall surface of the reaction vessel 1.

反応量に応じた上記粉状四塩化ジルコニウムの供給速度
は、反応容器内圧力の変化(反応速度)に従がい、ロー
タリーフィーダー23によって自動的に調節する。
The feed rate of the powdered zirconium tetrachloride according to the reaction amount is automatically adjusted by the rotary feeder 23 according to the change in the pressure inside the reaction vessel (reaction rate).

また前述のように、ロータリーフィーダー23の供給能
力よりも、スクリューフィーダー13の供給能力の方が
はるかに大となっているから、供給原料の圧縮による閉
鎖はない。
Furthermore, as described above, since the supply capacity of the screw feeder 13 is much larger than that of the rotary feeder 23, there is no closure due to compression of the feedstock.

さらに、スクリューフィーダー13の出口部は約600
℃の高温であるのに対し、ロータリーフィーダー23の
部分は常温であるが、スクリューシャフト16は内部の
シーズヒーター22により加熱されているから、温度勾
配がなめらかになり、低温の粉体状四塩化ジルコニウム
と高温度のガスが外筒14内で向流しても凝固現象をお
こすことはない。
Furthermore, the exit portion of the screw feeder 13 is approximately 600 mm
℃, while the rotary feeder 23 is at room temperature, but since the screw shaft 16 is heated by the internal sheathed heater 22, the temperature gradient is smooth and the low temperature powdered tetrachloride is heated. Even if zirconium and high-temperature gas flow countercurrently within the outer cylinder 14, no solidification phenomenon occurs.

また、たとえスクリューシャフトの羽根などへ四塩化ジ
ルコニウムが少量凝固しても、シーズヒーター22の熱
出力を調節して再蒸発させることができる。
Furthermore, even if a small amount of zirconium tetrachloride solidifies on the blades of the screw shaft, it can be reevaporated by adjusting the heat output of the sheathed heater 22.

さらに、スクリューシャフト16の回転軸封は、低速回
転なので気密性に問題はない。
Furthermore, since the rotary shaft seal of the screw shaft 16 rotates at a low speed, there is no problem with airtightness.

以上の初期還元反応動作の終了後、内圧調整パイプ28
から、大気圧以上通常1.2〜1.5kg/cm2の不
活性ガス(Arガス)を加えて、操作パイプ26先端の
レベルまでMgCl2を抜き出し、次に別の装置で溶融
したMgをこのパイプ26より装入させ、再びZrCl
4を輸送供給して還元反応を行なわせ、さらにMgCl
2を抜きまた溶融Mgを追加装入する。
After the above initial reduction reaction operation is completed, the internal pressure adjustment pipe 28
Then, inert gas (Ar gas) of usually 1.2 to 1.5 kg/cm2 above atmospheric pressure is added, and MgCl2 is extracted to the level of the tip of the operation pipe 26. Next, the molten Mg is poured into this pipe using another device. 26, and again ZrCl
4 is transported and supplied to perform a reduction reaction, and further MgCl
2 was removed and molten Mg was additionally charged.

前記の操作を、ジルコニウムスポンジが操作パイプ26
の先端位置まで堆積される迄繰り返して、還元反応を行
なわせる。
The zirconium sponge performs the above operation using the operation pipe 26.
The reduction reaction is repeated until it is deposited up to the tip of the layer.

上記の方法により、従来の製造量に比べて3倍以上のジ
ルコニウムを1バツチで製造させることが出来る。
By the above method, more than three times as much zirconium as the conventional production amount can be produced in one batch.

さて、上記還元反応操作が完全に終了すると、打抜き棒
32を下降させて打抜き板30を打抜き、排気パイプ3
1を介して真空ポンプを作動させる。
Now, when the above reduction reaction operation is completely completed, the punching rod 32 is lowered to punch out the punching plate 30, and the exhaust pipe 3
Activate the vacuum pump via 1.

しかる後電熱炉8をさらに作動させて反応容器1を高温
とすれば、該容器1内のMgCl2が真空蒸留され、比
較的低温とした付着容器3の内壁面に凝縮付着する。
Thereafter, when the electric heating furnace 8 is further operated to raise the temperature of the reaction vessel 1, MgCl2 in the vessel 1 is vacuum distilled and condensed and adheres to the inner wall surface of the deposition vessel 3, which has been kept at a relatively low temperature.

上記高温真空蒸留動作中、大気圧との圧力差のため、反
応容器1が変形するのを防止するため、調整パイプ12
,12から排気せしめて、反応容器1外周の調整空間1
1を真空に保つようにする。
During the high-temperature vacuum distillation operation, the adjustment pipe 12 is
, 12, and the adjustment space 1 on the outer periphery of the reaction vessel 1.
Make sure to keep 1 in a vacuum.

またこの調整空間11には、前記還元反応動作中反応熱
を奪い反応速度をさらに早めるため窒素または冷風を入
れて、反応容器1の外面を冷却させることも出来る。
Further, nitrogen or cold air can be introduced into the adjustment space 11 to cool the outer surface of the reaction vessel 1 in order to remove reaction heat and further accelerate the reaction rate during the reduction reaction operation.

上記各操作の完了後、付着容器3、仕切台2を取りはず
し、底板33の部分から反応容器1内のジルコニウムス
ポンジを押抜いて取り出す。
After completing each of the above operations, the adhesion container 3 and the partition stand 2 are removed, and the zirconium sponge inside the reaction container 1 is pushed out from the bottom plate 33 and taken out.

このジルコニウムスポンジ塊は直径よりも高さが大きく
周面および上下面の低品位スポンジ部を旋盤などで削除
し、この数バッチ分のスポンジ塊を溶接してインゴット
製造用の真空溶解炉の消耗電極に供することができる。
The height of this zirconium sponge mass is larger than its diameter, and the low-grade sponge parts on the circumference and top and bottom surfaces are removed using a lathe, etc., and several batches of sponge mass are welded to form consumable electrodes for vacuum melting furnaces used to manufacture ingots. It can be provided to

実施例 次に上記ジルコニウム還元製造装置による本発明の実施
例を以下に述べる。
EXAMPLE Next, an example of the present invention using the above-mentioned zirconium reduction production apparatus will be described below.

別の装置によって昇華精製した粉体状ZrCl4110
kgをZrCl4貯槽ビン24に装入して第1図のよう
にスクリューフィーダー13およびロータリーフィーダ
ー23を組立てた上に取付ける。
Powdered ZrCl4110 purified by sublimation using another device
kg is charged into the ZrCl4 storage bin 24, and the screw feeder 13 and rotary feeder 23 are assembled and attached as shown in FIG.

反応容器1にはあらかじめ理論上よりも40%多い12
kgのMgインゴットを入れておき、その上部に打抜き
板30を溶接した仕切台2および蒸着容器3をゴムバッ
キングをはさんでポルト締めして据付ける。
Reaction vessel 1 contains 40% more than theoretically 12
kg of Mg ingots are put therein, and a partition stand 2 with a punched plate 30 welded to its upper part and a vapor deposition container 3 are installed by sandwiching a rubber backing and tightening the ports.

気密テストのあと反応容器内圧調整パイプ28から排気
してArゲージ圧力で0.2kg/cm2まで通入する
After the airtightness test, the reactor is evacuated from the internal pressure adjustment pipe 28 and allowed to flow to an Ar gauge pressure of 0.2 kg/cm2.

Arはスクリューフィーダーおよびロータリーフィーダ
ーのすき間を通って貯槽ビン24にも通入される。
Ar is also introduced into the storage bin 24 through the gap between the screw feeder and the rotary feeder.

排気の間型熱炉8を入れて反応容器内を200〜300
℃に予熱するかAr通入後はさらに750℃まで昇温す
る。
Insert the heat furnace 8 during exhaust and heat the inside of the reaction vessel to 200 to 300
After preheating to 750°C or passing Ar, the temperature is further increased to 750°C.

その間反応容器内のArは熱膨張によって圧力上昇をす
るが、0.5kg/cm2になったならば0.2kg/
cm2まで外に放出する。
During that time, the pressure of Ar in the reaction vessel increases due to thermal expansion, but if it becomes 0.5 kg/cm2, then the pressure will increase by 0.2 kg/cm2.
Release to the outside up to cm2.

Arのみなのでバルブ閉塞はない。Since it uses only Ar, there is no valve blockage.

反応容器内が750℃に達したならば容器内圧力を0.
11kg/cm2まで下げてスクリューフィーダーおよ
びロータリーフィーダーを駆動してZrCl4の供給を
開始する。
When the temperature inside the reaction vessel reaches 750°C, the pressure inside the vessel is reduced to 0.
The weight was lowered to 11 kg/cm2, and the screw feeder and rotary feeder were driven to start supplying ZrCl4.

反応容器に供給されたZrCl4はMg溶解面のあたり
で、ZrCl4+2Mg→Zr+2MgC12の反応に
よって還元されるが、その一部は高温度のために昇華し
てガスになり、若干の圧力上昇を示す。
ZrCl4 supplied to the reaction vessel is reduced near the Mg dissolution surface by the reaction ZrCl4+2Mg→Zr+2MgC12, but a part of it sublimes into gas due to the high temperature and shows a slight pressure increase.

そこでZrCl4の供給を止めれば、ガス状ZrCl4
も反応されて圧力はもとの0.11kg/cm2まで降
下する。
If the supply of ZrCl4 is then stopped, gaseous ZrCl4
is also reacted, and the pressure drops to the original 0.11 kg/cm2.

つぎに再びZrCl4を供給し0.4kg/cm2に圧
力が上昇したとき供給を止め、0.1kg/cm2で再
供給する操作を繰り返しながら還元反応を続ける。
Next, ZrCl4 is supplied again, and when the pressure rises to 0.4 kg/cm2, the supply is stopped, and the reduction reaction is continued while repeating the operation of supplying ZrCl4 again at 0.1 kg/cm2.

この供給装置の圧力変化によるオン・オフ操作は、圧力
調節計と供給装置を連動させて自動的に働らかせる。
The on/off operation of the supply device is automatically performed by interlocking the pressure regulator and the supply device.

スクリューフィーダーで供給する間はシャフト内のシー
ズヒーター22を入れてスクリューシャフト16を20
0〜350℃に加熱しておく。
While feeding with the screw feeder, the sheath heater 22 inside the shaft is inserted and the screw shaft 16 is
Heat to 0-350°C.

以上の断続供給は1.5時間かゝすZrCl4の平均供
給速度は28kg/hrであった。
The above intermittent supply lasted for 1.5 hours, and the average supply rate of ZrCl4 was 28 kg/hr.

反応終了は還元剤としてのMgが消費されてなくなるの
で圧力の降下がないことで判る。
The completion of the reaction can be determined by the fact that there is no drop in pressure since Mg as a reducing agent is consumed.

以上の還元反応終了後大気圧よりも若干のAr加圧によ
って、MgCl222kgを操作パイプ26から抜き出
した。
After the above reduction reaction was completed, 222 kg of MgCl was extracted from the operation pipe 26 by pressurizing Ar to a level slightly higher than atmospheric pressure.

つぎに別のMg融解炉から融解Mg5kgをパイプ26
より反応容器1に装入して圧力を再び0.1kg/cm
2に下げて、ZrCl4の再供給を開始した。
Next, 5 kg of molten Mg is poured into pipe 26 from another Mg melting furnace.
Then, the pressure was increased to 0.1 kg/cm again.
2 and started refeeding ZrCl4.

この2回目の還元反応は35分でおわり抜き出しMgC
l2は14kgあり、供給速度は27kg/hrであっ
た。
This second reduction reaction finished in 35 minutes and the MgC
l2 was 14 kg, and the feed rate was 27 kg/hr.

以下同様の反応操作により合計の反応時間は3.7hr
、Zr 生成量は38kg抜き出しMgCl4は64k
gであった。
Following the same reaction operation, the total reaction time was 3.7 hr.
, Zr production amount is 38kg extracted, MgCl4 is 64k
It was g.

上記実施例における物量収支の詳細を表にまとめると次
の通りである。
The details of the quantity balance in the above example are summarized in the following table.

さらに上記本発明に係る固体供給法と、先順のガス供給
法によって同じ量のジルコニウムスポンジを製造した場
合の比較例を次に示す。
Further, a comparative example will be shown below in which the same amount of zirconium sponge was manufactured by the solid supply method according to the present invention and the sequential gas supply method.

同一規模装置における本発明法と先願法の生成速度の比
較は次の通りである。
A comparison of the production speed between the method of the present invention and the method of the prior application in the same scale equipment is as follows.

先願法 10/8=1.25kg/hr 上述したように、本発明に係る固体供給法は、先願のガ
ス供給に比し、10.3/1.25=8.24と8.2
4倍も反応速度が早くなっているが、これは、本発明の
方法によれば、固体状のハロゲン化ジルコニウムは、そ
の供給時不活性ガス中に混合することなく、そのまま反
応面に落下し、反応時反応面に沿ってハロゲン化ジルコ
ニウムの濃縮ガス層が形成され、先願のガス供給法のよ
うに不活性ガス中にハロゲン化ジルコニウムガス拡散す
ることがなく、反応密度が極めて高いためである。
Prior application method 10/8 = 1.25 kg/hr As mentioned above, the solid supply method according to the present invention has a rate of 10.3/1.25 = 8.24 and 8.2 compared to the gas supply method of the prior application.
The reaction rate is four times faster, but this is because according to the method of the present invention, solid zirconium halide is not mixed into the inert gas when it is supplied, but instead falls onto the reaction surface as it is. This is because a concentrated gas layer of zirconium halide is formed along the reaction surface during the reaction, and the zirconium halide gas does not diffuse into the inert gas as in the gas supply method of the previous application, and the reaction density is extremely high. be.

また本発明による方法によれば、その反応は一瞬であっ
て、一部固体状のZrCl4とMgとが直接反応してい
るように見える。
Furthermore, according to the method of the present invention, the reaction is instantaneous, and it appears that partially solid ZrCl4 and Mg are directly reacting.

次に上記実施例の場合における、本発明の固体供給法と
先願のガス供給法との、発生熱について説明する。
Next, the heat generated by the solid supply method of the present invention and the gas supply method of the prior application in the case of the above embodiment will be explained.

先願法 :ZrZrC14(+2Mg(1)→Zr(S
)+2MgCl2(1) 生成熱 ニーΔH877℃=78.6Kcal/hr反
応速度: 1.25kg/hr(上記実施例により)本
発明法 反応容器内での発生熱は、上記のガス反応(先願法)の
生成熱から、ZrC14(S)→ZrZrC14(の昇
華熱(潜熱+顕熱)を差引いたものとなる。
First-to-file method: ZrZrC14(+2Mg(1)→Zr(S
)+2MgCl2(1) Heat of formation Knee ΔH877℃=78.6Kcal/hr Reaction rate: 1.25kg/hr (according to the above example) ) is obtained by subtracting the heat of sublimation (latent heat + sensible heat) of ZrC14 (S) → ZrZrC14 ().

78.6−40.5=38.1Kcal/mole反応
速度: 10.3kg/hr (上記実施例により)
上述したところから明らかなように、本発明の固体供給
法は、先願のガス供給法よりも発生熱は約4倍多くなっ
ている。
78.6-40.5=38.1Kcal/mole Reaction rate: 10.3kg/hr (according to the above example)
As is clear from the above, the solid supply method of the present invention generates about four times more heat than the gas supply method of the prior application.

上述したように本発明法によれば、発生熱が多くなるた
め、反応容器を加熱させる必要がなくそのまま反応を続
行出来経済的である。
As described above, according to the method of the present invention, since a large amount of heat is generated, there is no need to heat the reaction vessel, and the reaction can be continued as it is, which is economical.

この点先願のガス供給法によれば、反応容器内のMgC
l2の凝固を防ぐため常に加熱が必要である。
In this respect, according to the gas supply method of the earlier application, MgC in the reaction vessel
Heating is always required to prevent coagulation of l2.

また上記本発明法によれば、上述したように、反応時の
生成熱から常に昇華熱が奪われるため、反応速度の割に
は発生熱は高くならず反応容器の高温腐食は抑えること
が出来、反応時における減圧等の作業は容易である。
Furthermore, according to the method of the present invention, as mentioned above, the heat of sublimation is constantly taken away from the heat generated during the reaction, so the heat generated does not become high compared to the reaction rate, and high-temperature corrosion of the reaction vessel can be suppressed. , operations such as depressurization during reaction are easy.

以上の実施例はスクリューフィーダーによる輸送供給に
ついて述べたが、他の方法によっても同一の目的を達成
することは可能である。
Although the above embodiments have been described in terms of transportation and supply using a screw feeder, it is possible to achieve the same objective by other methods.

即ち第3図の第2の実施例においてはピストンモーター
または油圧シリンダーによって往復運動を行うプッシャ
ー34によってZrCl4を反応容器に押込む方式であ
る。
That is, in the second embodiment shown in FIG. 3, ZrCl4 is pushed into the reaction vessel by a pusher 34 which is reciprocated by a piston motor or a hydraulic cylinder.

また第4図の第3の実施例はロータリーフィーダー23
から直接ZrCl4を反応容器内に装入する方式であり
、還元反応終了後ロータリーフィーダーを取外して、真
空蒸留のための装置を取付ける。
The third embodiment shown in FIG. 4 is a rotary feeder 23.
In this method, ZrCl4 is directly charged into the reaction vessel. After the reduction reaction is completed, the rotary feeder is removed and a device for vacuum distillation is installed.

尚上記第2及び第3の実施例において、第1の実施例と
対応する部分には、共通の符号を付してその詳細な説明
は省略した。
In the second and third embodiments described above, parts corresponding to those in the first embodiment are given the same reference numerals and detailed explanations thereof are omitted.

なお本発明はニオブおよびタンタルのハロゲン化物のマ
グネシウムもしくはナトリウム還元にも適用することが
できる。
The present invention can also be applied to magnesium or sodium reduction of niobium and tantalum halides.

この発明によるジルコニウムスポンジの製造方法によれ
ば、予じめ反応容器内に装入したアルカリ土類金属もし
くはアルカリ金属の還元剤に、直接固体状のハロゲン化
ジルコニウムを順次所定量づつ接触させて還元反応を行
なわせまたこの反応を、初期還元反応工程と続行反応工
程の少なくとも二段階に亘って、その都度フレッシュな
反応面を形成させて行なわせることを特徴とするもので
あるため、下記のような優れた効果が得られるものであ
る。
According to the method for producing a zirconium sponge according to the present invention, a predetermined amount of solid zirconium halide is brought into direct contact with an alkaline earth metal or alkali metal reducing agent charged in advance in a reaction vessel, and reduced. It is characterized by carrying out the reaction and carrying out this reaction in at least two stages, an initial reduction reaction step and a continuing reaction step, each time forming a fresh reaction surface. Excellent effects can be obtained.

(1) この発明による上記方法によれば、固体状ハ
ロゲン化ジルコニウムはその供給時不活性ガス中に拡散
することなくそのまま反応面に落下して反応するから反
応が直接的で一瞬であり、反応時、反応面に沿ってハロ
ゲン化ジルコニウムの濃縮ガス層が形成され、前記先願
のハロゲン化ジルコニウムガス供給法のように不活性ガ
ス中にハロゲン化ジルコニウムガスが拡散するというこ
とがなく、その反応密度が高く反応速度が早いという効
果がある。
(1) According to the above method according to the present invention, the solid zirconium halide does not diffuse into the inert gas when it is supplied, but instead falls onto the reaction surface and reacts, so the reaction is direct and instantaneous. During the reaction, a concentrated gas layer of zirconium halide is formed along the reaction surface, and the zirconium halide gas does not diffuse into the inert gas as in the zirconium halide gas supply method of the earlier application. It has the effect of high density and fast reaction rate.

実施例によれば、本発明の方法の方が、上記先願法より
も8.24倍も早くなるものである。
According to the example, the method of the present invention is 8.24 times faster than the method of the prior application.

(2)またこの発明によれば、上記反応は、少なくとも
初期反応工程と続行反応工程の二段階に行なわれ、その
都度反応による溶融塩の抜出が行なわれるから、該反応
面がその都度フレッシュであり、その反応密度は一層高
くなるという効果がある。
(2) Also, according to the present invention, the above reaction is carried out in at least two stages: an initial reaction step and a continuing reaction step, and the molten salt resulting from the reaction is extracted each time, so that the reaction surface is kept fresh each time. This has the effect of further increasing the reaction density.

(3)この発明の固体接触法によれば、上述したように
反応密度が高くなるため、反応容器をそれほど高温に保
つ必要がない。
(3) According to the solid contact method of the present invention, since the reaction density is increased as described above, it is not necessary to maintain the reaction container at a very high temperature.

従って、反応容器材のFe及びCr溶融と、これらZr
の共晶がほとんど生ぜず、高純度の製品が得られるもの
である。
Therefore, Fe and Cr melting of the reaction container material and these Zr
Almost no eutectic occurs and a highly pure product can be obtained.

前記実施例によれば、製品中の鉄不純物は先願法0.0
9%に対し本発明法0.05%、クローム不純物は先願
法0.01%に対し本発明法0.005%と著るしく改
善されている。
According to the above example, the iron impurity in the product is 0.0 according to the prior application method.
The amount of chromium impurities was significantly improved, as compared to 0.05% by the method of the present invention compared to 9% by the method of the present invention, and 0.005% by the method of the present invention compared to 0.01% by the prior application method.

(4)この発明によれば、上述したように反応容器がお
かされることがなく製品内の特に容器に接する部分にF
e、Cr等が混入するということがないから、製品の特
に外周部を切除させる必要がなく、高収率が可能となる
(4) According to this invention, as mentioned above, the reaction container is not disturbed, and F
Since there is no possibility of contamination of e.g., Cr, etc., there is no need to cut out the outer periphery of the product, making it possible to achieve a high yield.

実施例によれば、先願法による製品の実収率は95%で
あるのに対し、本発明法によれば97%である。
According to the example, the actual yield of the product according to the prior application method is 95%, while it is 97% according to the method of the present invention.

ジルコニウムは、高価な金属であるため、この本発明法
による高収率化は、工業上非常に有利である。
Since zirconium is an expensive metal, the high yield achieved by the method of the present invention is industrially very advantageous.

(5)この発明によれば、上述したように、反応容器を
高温に保つ必要がないため、該容器の寿命が長くなる。
(5) According to the present invention, as described above, there is no need to maintain the reaction container at a high temperature, so the life of the reaction container is extended.

(6)この発明によれば、上述した理由により、反応中
年活性ガス中にハロゲン化ジルコニウムガスの混合する
割合が極めて少なく、従って減圧操作時不活性ガスと共
にハロゲン化ジルコニウムが外部に取り出されることが
ほとんどなく、経済的であり、且つ上記取り出しパイプ
の閉塞等も生じないという効果がある。
(6) According to the present invention, for the above-mentioned reason, the proportion of zirconium halide gas mixed in the reactive middle-aged active gas is extremely small, and therefore, zirconium halide is taken out to the outside together with the inert gas during depressurization operation. This method has the advantage that it is economical and does not cause blockage of the above-mentioned take-out pipe.

(7)この発明による方法によれば、反応時の発生熱は
、上記先願法に比し約4倍と多くなるため、反応容器内
のMgC1の凝固防止及び反応促進のための加熱が不要
であって、経済的であるという効果がある。
(7) According to the method according to the present invention, the heat generated during the reaction is about four times as large as that of the above-mentioned prior application method, so there is no need for heating to prevent coagulation of MgCl in the reaction vessel and promote the reaction. This has the effect of being economical.

(8)またこの発明の上記固体供給法によれば、反応時
の生成熱から常に昇華熱が奪われるため、反応速度の割
には発生熱は高くならず、反応容器の高温腐食は抑える
ことが出来、また反応時における減圧等の作業も容易で
ある等の効果がある。
(8) Furthermore, according to the solid supply method of the present invention, the heat of sublimation is always taken away from the heat generated during the reaction, so the heat generated does not become high in relation to the reaction rate, and high-temperature corrosion of the reaction vessel can be suppressed. It is also effective in that operations such as pressure reduction during the reaction are easy.

(9)この発明の方法によれば、供給装置から漏れるハ
ロゲン化ジルコニウムのガスは、供給装置によって反応
容器内に送出されてくる固体状ハロゲン化ジルコニウム
内に凝縮して有効に捕捉されるから材料の損失もほとん
どなく供給装置が閉塞する虞れもないという効果がある
(9) According to the method of the present invention, the zirconium halide gas leaking from the supply device is condensed in the solid zirconium halide delivered into the reaction vessel by the supply device and is effectively captured. This has the effect that there is almost no loss of energy and there is no risk of clogging of the supply device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の実施に使用されるジルコニウ
ムスポンジの製造装置の一例を示す断面図、第2図は同
供給装置の拡大断面図、第3図は同地の実施例に係る製
造装置における供給装置の断面図、第4図は同さらに他
の実施例に係る製造装置の断面図である。 1・・・反応容器、13・・・供給装置、26・・・操
作パイプ。
Fig. 1 is a cross-sectional view showing an example of a zirconium sponge manufacturing apparatus used in carrying out the method of the present invention, Fig. 2 is an enlarged cross-sectional view of the same supply apparatus, and Fig. 3 is a manufacturing apparatus according to an embodiment of the invention. FIG. 4 is a cross-sectional view of the supply device in the apparatus, and FIG. 4 is a cross-sectional view of the manufacturing apparatus according to still another embodiment. DESCRIPTION OF SYMBOLS 1... Reaction container, 13... Supply device, 26... Operation pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 予じめ反応容器内部にアルカリ土類金属もしくはア
ルカリ金属の還元剤を収納させると共に不活性ガス出し
入れ用の内圧調整パイプから不活性ガスを充填させた反
応容器内に、供給装置によってハロゲン化ジルコニウム
を供給させ、これにより上記アルカリ土類金属もしくは
アルカリ金属の還元剤にハロゲン化ジルコニウムを接触
させて還元反応を行なわせるようになし、上記反応容器
内の中間部に先端開口部が突出された操作パイプより反
応容器から上記還元反応によって生じる溶融塩を抜き出
し及び還元剤を適宜追加装入させて上記還元反応を続行
させるようにしたジルコニウムスポンジの製造方法にお
いて、上記供給装置から反応容器内にまず反応開始時に
固体状としたままのハロゲン化ジルコニウムを所定量直
接供給させ、この固体状のハロゲン化ジルコニウムを固
体状としたままで上記還元剤に接触させて初期還元反応
を行なわせ、この初期還元反応の終了後、この初期還元
反応によって生じる溶融塩を抜き出し還元剤を追加装入
させて上記供給装置から反応容器内に固体状としたまま
のハロゲン化ジルコニウムを順次所定量づつ直接供給さ
せ、この固体状のハロゲン化ジルコニウムを固体状とし
たままで上記還元剤に接触させて還元反応を続行させる
ようにしたことを特徴とするジルコニウムスポンジの製
造方法。
1. Zirconium halide is added by a supply device into a reaction container which has previously stored an alkaline earth metal or alkali metal reducing agent inside the reaction container and has also been filled with inert gas from an internal pressure adjustment pipe for introducing and discharging inert gas. is supplied, thereby bringing the zirconium halide into contact with the alkaline earth metal or alkali metal reducing agent to perform a reduction reaction, and an operation in which a tip opening is protruded from the middle part of the reaction vessel. In the method for manufacturing zirconium sponge, the molten salt produced by the reduction reaction is extracted from the reaction vessel through a pipe, and a reducing agent is added as needed to continue the reduction reaction. At the start, a predetermined amount of zirconium halide in a solid state is directly supplied, and this solid zirconium halide is brought into contact with the above-mentioned reducing agent while in a solid state to perform an initial reduction reaction. After the completion of the reaction, the molten salt produced by this initial reduction reaction is extracted, a reducing agent is additionally charged, and a predetermined amount of zirconium halide in a solid state is directly supplied into the reaction vessel from the above-mentioned supply device, and this solid A method for producing a zirconium sponge, characterized in that the reduction reaction is continued by bringing the zirconium halide in a solid state into contact with the above-mentioned reducing agent.
JP50017474A 1975-02-13 1975-02-13 Zirconium sponge Ruino Seizouhouhou Oyobi Sonosouchi Expired JPS585252B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP50017474A JPS585252B2 (en) 1975-02-13 1975-02-13 Zirconium sponge Ruino Seizouhouhou Oyobi Sonosouchi
FR7534493A FR2300816A1 (en) 1975-02-13 1975-11-12 PROCESS AND APPARATUS FOR THE MANUFACTURE OF A ZIRCONIUM FOAM
US05/679,624 US4105192A (en) 1975-02-13 1976-04-23 Process and apparatus for producing zirconium sponge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50017474A JPS585252B2 (en) 1975-02-13 1975-02-13 Zirconium sponge Ruino Seizouhouhou Oyobi Sonosouchi

Publications (2)

Publication Number Publication Date
JPS5192711A JPS5192711A (en) 1976-08-14
JPS585252B2 true JPS585252B2 (en) 1983-01-29

Family

ID=11944992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50017474A Expired JPS585252B2 (en) 1975-02-13 1975-02-13 Zirconium sponge Ruino Seizouhouhou Oyobi Sonosouchi

Country Status (3)

Country Link
US (1) US4105192A (en)
JP (1) JPS585252B2 (en)
FR (1) FR2300816A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441520A (en) * 1987-08-08 1989-02-13 Nippon Denso Co Optical switch

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2434209A1 (en) * 1978-08-25 1980-03-21 Inst Titana Magnesium-thermic redn. of chloride(s) - using single appts. for redn. and vacuum refining
US4440384A (en) * 1980-09-08 1984-04-03 Westinghouse Electric Corp. Retort pipe seal
CA1179144A (en) * 1981-04-04 1984-12-11 Hiroshi Ishizuka Method and an apparatus for producing titanium metal from titanium tetrachloride
JPS57185940A (en) * 1981-05-12 1982-11-16 Hiroshi Ishizuka Vacuum separator
JPS58174530A (en) * 1982-04-06 1983-10-13 Hiroshi Ishizuka Apparatus and method for obtaining metal from metal chloride
US4556420A (en) * 1982-04-30 1985-12-03 Westinghouse Electric Corp. Process for combination metal reduction and distillation
CA1202183A (en) * 1982-05-31 1986-03-25 Hiroshi Ishizuka Apparatus and method for producing purified refractory metal from a chloride thereof
US4447045A (en) * 1982-07-21 1984-05-08 Mitsubishi Kinzoku Kabushiki Kaisha Apparatus for preparing high-melting-point high-toughness metals
US4511399A (en) * 1983-10-04 1985-04-16 Westinghouse Electric Corp. Control method for large scale batch reduction of zirconium tetrachloride
GB2185493B (en) * 1985-05-27 1990-02-14 Univ Melbourne Metal production
FR2604184B1 (en) * 1986-09-19 1988-11-10 Cezus Co Europ Zirconium PROCESS AND DEVICE FOR MANUFACTURING METAL ZIRCONIUM BY REDUCTION OF ZIRCONIUM TETRACHLORIDE
US4711664A (en) * 1987-03-23 1987-12-08 Westinghouse Electric Corp. Process for producing zirconium sponge with a very low iron content
WO2015031682A1 (en) * 2013-08-29 2015-03-05 Weimer Alan W Carbothermal reduction reactor system, components thereof, and methods of using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118608A (en) * 1973-03-16 1974-11-13

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2663634A (en) * 1950-05-27 1953-12-22 Nat Lead Co Production of titanium metal
US2825642A (en) * 1954-03-09 1958-03-04 Du Pont Method of producing group iv-a metals
GB788174A (en) * 1955-02-07 1957-12-23 Ici Ltd Improvements in or relating to the manufacture of titanium
US3069255A (en) * 1957-11-25 1962-12-18 Jr Don H Baker Production of high purity titanium by metallic sodium reduction of titanic halide
US3113017A (en) * 1960-07-06 1963-12-03 Vernon E Homme Method for reacting titanic chloride with an alkali metal
US3684264A (en) * 1971-01-06 1972-08-15 Vasily Ivanovich Petrov Apparatus for reduction of titanium halides and subsequent vacuum separation of reduction products
FR2123151A1 (en) * 1971-01-25 1972-09-08 Inst Aljuminievoi Titanium halogenide extraction and condensation plant - - comprises three component parts
US3966460A (en) * 1974-09-06 1976-06-29 Amax Specialty Metal Corporation Reduction of metal halides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49118608A (en) * 1973-03-16 1974-11-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441520A (en) * 1987-08-08 1989-02-13 Nippon Denso Co Optical switch

Also Published As

Publication number Publication date
JPS5192711A (en) 1976-08-14
FR2300816B1 (en) 1979-06-15
US4105192A (en) 1978-08-08
FR2300816A1 (en) 1976-09-10

Similar Documents

Publication Publication Date Title
JPS585252B2 (en) Zirconium sponge Ruino Seizouhouhou Oyobi Sonosouchi
US2205854A (en) Method for manufacturing titanium and alloys thereof
US4902341A (en) Method for producing titanium alloy
JPS6121290B2 (en)
US4441925A (en) Method and an apparatus for producing titanium metal from titanium tetrachloride
JPS62103328A (en) Production of zirconium or hafnium
US4216010A (en) Aluminum purification system
US2787539A (en) Production of refractory metals
US2763542A (en) Method of producing refractory metals
US3715205A (en) Method for reducing chlorides and a device therefor
US3597192A (en) Preparation of tantalum metal
US4419126A (en) Aluminum purification system
RU2406767C1 (en) Procedure for metal-thermal metal and alloy melting
JPS6112838A (en) Manufacturing apparatus of spongy titanium
US2744006A (en) Method of producing refractory metals
JP2689520B2 (en) Method for producing metallic titanium
US2426814A (en) Method for treating metals with noble gases
JPS6137338B2 (en)
US4242136A (en) Process for producing metallic zirconium
JPS5942060B2 (en) Method for producing metal Ti
JPH059498B2 (en)
JPS6112836A (en) Manufacture of sponge titanium
US2391193A (en) Process for the production of magnesium
US2870006A (en) Process for melting metals
Beard et al. Kilogram scale reductions of vanadium pentoxide to vanadium metal