JPS5852527A - Temperature sensor - Google Patents

Temperature sensor

Info

Publication number
JPS5852527A
JPS5852527A JP15099281A JP15099281A JPS5852527A JP S5852527 A JPS5852527 A JP S5852527A JP 15099281 A JP15099281 A JP 15099281A JP 15099281 A JP15099281 A JP 15099281A JP S5852527 A JPS5852527 A JP S5852527A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
temperature sensor
substrate
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15099281A
Other languages
Japanese (ja)
Inventor
Noboru Wakatsuki
昇 若月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15099281A priority Critical patent/JPS5852527A/en
Publication of JPS5852527A publication Critical patent/JPS5852527A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To remarkably elevate a characteristic, and to obtain a titled sensor which is excellent in its sensitivity and response speed, by using a piezoelectric crystal substrate itself on which a surface acoustic wave element has beed formed, as a light leading window. CONSTITUTION:An example in which a temperature sensor 6 has been formed on both a thin plate 12 and a substrate 13 having a lens-like reverse side is shown in the figure. Infrared rays from an object whose temperature is measured are made incident from the reverse side of an LiNbO3 crystal substrate, a piezoelectric crystal such as LiNbO3, etc. is transparent against the infrared rays, the quantity of absorption is extremely small, and its sensitivity and response speed become quicker than that which has used silicon or infrared ray transmitting glass as a transmitting window.

Description

【発明の詳細な説明】 本発明は弾性表面波素子を用い、感就および応答速度の
優れた温度センサに関1−る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature sensor that uses a surface acoustic wave element and has excellent sensitivity and response speed.

弾性表面波素子は圧電結晶面上に、電気信号を弾性表面
波lこ変換するための櫛形電極を設けた構造をとり、フ
ィルタ、遅延線、共振器等の機能をもつ同体素子である
A surface acoustic wave element has a structure in which comb-shaped electrodes are provided on a piezoelectric crystal surface for converting an electric signal into a surface acoustic wave, and is a solid element having functions such as a filter, a delay line, and a resonator.

第1図は力1′>る弾性表面波素子の正面図で、ニオブ
酸リチウム(LiNb03) 、タンタル酸リチウム(
LiTaO,)  などからなる圧電結晶基板1の上に
交差した櫛形電極をもつ入力トランスジウサ2と出力ト
ランスジウサ3が形成されており、入力トランスジウサ
2の電極4に電気信号を与える場合、この電気信号の周
波数が入カド2ンスジウサ2の中心周波数すなわち使用
する圧電結晶により定まる弾性表面波の伝播速度を櫛形
電極の周期で割って得られる周波数と一致する場合に最
もよく弾性表面波が発生し、これは基板1上を伝播して
出力トランスジウサ3に達してトランスジウサ3を励振
し電&5より再ひ電気信号がとり出される。
Figure 1 is a front view of a surface acoustic wave device with a force of 1'>.
An input transformer 2 and an output transformer 3 having intersecting comb-shaped electrodes are formed on a piezoelectric crystal substrate 1 made of LiTaO, etc. When an electric signal is applied to the electrode 4 of the input transformer 2, the frequency of this electric signal is Surface acoustic waves are best generated when the center frequency of the input square dielectric 2 matches the frequency obtained by dividing the propagation velocity of the surface acoustic wave determined by the piezoelectric crystal used by the period of the comb-shaped electrode. The signal propagates on the output transformer 3 and excites the transformer 3, and an electric signal is again taken out from the power &5.

か\る弾性表面波素子に用いられる基板材料としては次
の条件を満していることが必要である。
The substrate material used in such a surface acoustic wave device must satisfy the following conditions.

1.11気機械結合係数か大きいこと。すなイつち電気
信号を弾性表面波に変換する効率が大きいこと0 2、弾性表面波の伝播速度が小さいこと。すなわち素子
を小型化し得ること。
1.11 The mechanical coupling coefficient must be large. In other words, the efficiency of converting electrical signals into surface acoustic waves is high, and the propagation speed of surface acoustic waves is low. In other words, the device can be made smaller.

3、弾性表面波遅延時間温度係数が小さいこと。3.Surface acoustic wave delay time temperature coefficient is small.

すなわち周波数が温度によって変化しにくいこと0 4 弾性表面波の伝搬損失が少いこと。In other words, the frequency does not change easily with temperature0 4. Low propagation loss of surface acoustic waves.

然し乍ら伝搬損失が少く、また低い周波数から高い周波
数まで使用できる材料は単結晶(こ限られており、また
絖べての会戦条件を充分に満す理想的な材料は未だ見出
されていない。第1表は現在使用されている主な弾性表
面波素子用結晶材料とその特性である。
However, the only material that has low propagation loss and can be used from low to high frequencies is single crystal (single crystal), and an ideal material that fully satisfies all battle conditions has not yet been found. Table 1 shows the main crystal materials currently used for surface acoustic wave devices and their properties.

第   1   表 こ−でLiNb0.結晶は第1表から判るよう)こ一気
機械結合係数が大きな材料であるが遅延時間温度係数も
大きく、逆にT、1Ta03結晶は遅延時間温度係数が
小さいが電気機械結合係数もまた小さい。
Table 1 shows LiNb0. As can be seen from Table 1, this material has a large mechanical coupling coefficient, but also a large delay time temperature coefficient. Conversely, T,1Ta03 crystal has a small delay time temperature coefficient, but also a small electromechanical coupling coefficient.

さて以上のようlこ総へての特性が優れている材料はな
くLiNbo3.LiTa0.などはキr性が適当に兼
ね合った材料として弾性表面波素子用基板として使われ
ている。
Now, as mentioned above, there is no material that has excellent overall properties, but LiNbo3. LiTa0. These materials are used as substrates for surface acoustic wave devices as materials with appropriate chirality.

こ\で本発明(こ係る温度センサは例えば目NbO。This invention is based on the present invention (such a temperature sensor is, for example, NbO).

結晶のように一気機械結合係数の大きな材料を使用する
場合に不可避的に現イつれる大きt3I′遅延時間悪度
係数を逆用し、これを温度測定素子として用いるもので
ある。
This method takes advantage of the large t3I' delay time coefficient of deterioration that inevitably occurs when a material with a large mechanical coupling coefficient, such as a crystal, is used, and uses this as a temperature measuring element.

すなわち結晶のカット面により異るが弾性表面波の伝搬
速度、入出力トランスジウザ間の距離、櫛形電極の経返
し周期なとが流度lこより変化し、これにより出力の振
幅特性、位相特性が変化するのを利用するもので弾性表
面波素子からなる温度センサはこのような特性の変化を
発振周波数の変化(こ変換しこ21.ζこより温度を測
定するものである。
In other words, although it varies depending on the cut surface of the crystal, the propagation speed of the surface acoustic wave, the distance between the input and output transformers, and the repeating period of the comb-shaped electrode change due to the flow rate, which changes the amplitude and phase characteristics of the output. Temperature sensors made of surface acoustic wave elements measure temperature by converting changes in such characteristics into changes in oscillation frequency (21.ζ).

3− 第2図は弾性表面波素子からなる従来の温度センサの構
成図であって、第1図類似の構成をとる温度センサ6は
絶縁基板7の上に装着されており、入力端子8および出
力端子9とは絶縁基板上のステムとワイヤボンティング
することにより接続されている。次(ここの絶縁基板7
の上(こは上部ζこ赤外線透過窓10を備えた全域キャ
ップ11を嵌挿し封着することζこよりセンサが構成さ
れている。
3- FIG. 2 is a configuration diagram of a conventional temperature sensor made of a surface acoustic wave element. A temperature sensor 6 having a configuration similar to that shown in FIG. 1 is mounted on an insulating substrate 7, and has an input terminal 8 and The output terminal 9 is connected to the stem on the insulating substrate by wire bonding. Next (Insulating board 7 here
The sensor is constructed by inserting and sealing the entire area cap 11 provided with the upper infrared transmitting window 10.

この場合、測温体より放射される赤外線は透過窓10よ
り入射されて絶縁基板7の上に装着されている温度セン
サ6に達する構成となっている0本発明は感度および応
答速kが向上した温度センサを提供することを目的とし
その方法としてLiNbO3などの素子基板の裏面を導
光窓として用いることを本旨とするものである。
In this case, the infrared rays emitted from the temperature measuring body are configured to enter through the transmission window 10 and reach the temperature sensor 6 mounted on the insulating substrate 7.The present invention has improved sensitivity and response speed k. The purpose of the present invention is to provide a temperature sensor that can provide a temperature sensor, and its main purpose is to use the back surface of an element substrate such as LiNbO3 as a light guide window.

以下本発明(こか−る構造の実施例を図面により膜間す
る。
Examples of the structure of the present invention will be described below with reference to the drawings.

第3図(5)および(ハ)は本発明にか\る基板の構造
で第3図(イ)は従来と同様な薄板12の上また同図面
lゴ1ノツプ計0)k面シ本つ其篇13のトに第1図4
− 類似の構成をとる温度センサ6がパターン形成されてい
る。
Figures 3 (5) and (c) show the structure of the substrate according to the present invention, and Figure 3 (a) shows the structure of a thin plate 12 similar to the conventional one. Part 13, Figure 1, 4
- A temperature sensor 6 of similar construction is patterned.

次にか\るセンサの実装法として測温対象物が第2図の
リード線方向にある用途に対しては第4図の絶縁基板7
の中央部(こ導光窓14を設け、センサ6は従来と同様
に固定し、一方絶縁基板7の上に嵌挿到着される金網キ
ャンプ(こは従来と異なり赤外線透過用の窓は設けらn
ていない。
Next, as a mounting method for the sensor, for applications where the object to be measured is in the direction of the lead wires as shown in Fig. 2, an insulating substrate 7 as shown in Fig. 4 is used.
A wire mesh camp (unlike in the conventional case, a window for transmitting infrared rays is not provided) is installed in the central part of the frame (a light guide window 14 is provided, and the sensor 6 is fixed in the same way as in the conventional case). n
Not yet.

すなわち測温対象物からの赤外線はLiNb0゜結晶基
板の裏面から入射さIt、るがLiNbO3などの圧電
結晶は赤外線lこ対し透明であり吸収損が極めて少く、
従来構造のものがシリコン或は赤外線透過用ガラスを透
過窓としていたのに較べ、より直接的であり感度および
応答速度が速くなる。
In other words, infrared rays from the object to be measured enter from the back surface of the LiNb0° crystal substrate, but piezoelectric crystals such as LiNbO3 are transparent to infrared rays and have extremely low absorption loss.
Compared to conventional structures in which silicon or infrared transmitting glass is used as a transmission window, the structure is more direct, and sensitivity and response speed are faster.

また第3図σカは基板裏面をレンズ状に彎曲することに
より集光度を高めた構造で、第2図(5)に示す従来構
造をとる場合は絶R基板7の上(こセンサ6を下面に向
けて装着が行4つ71.また第5図の磁器基板15に装
着Tる場合はこの上(こ設けらII、ている印刷配線1
6の端子部と偏置センサ6の人出力端子とを接合するこ
とにより装着される。
In addition, Fig. 3 σ shows a structure in which the back surface of the substrate is curved into a lens shape to increase the light condensing power.When using the conventional structure shown in Fig. 2 (5), the sensor 6 is There are four rows 71 of mounting facing the bottom surface.Also, when mounting on the ceramic board 15 shown in Fig. 5, the printed wiring 1
It is attached by joining the terminal portion of 6 and the human output terminal of the eccentric sensor 6.

さてこの場合はレンズ状の裏面をもつ基板13が外装を
兼ねると共に集光効果を示すため温度センサとして効率
的である。
In this case, the substrate 13 having a lens-shaped back surface also serves as an exterior and exhibits a light condensing effect, making it efficient as a temperature sensor.

なお本発明を実施する場合はセンサ面に薄く例えは弾性
表面波の1/10以下の厚さζこカーボン等の吸温剤を
負空蒸着しておけは伝播(こは影智を血涙遅延時間温度
糸数をもっており、これを利用して温腋センサが作られ
ているが、この感度および応答速度を東に向上するため
になされたもので弾+J−衣面波素子が形成されている
圧電結晶基板自体を導光窓とする構成をとることにより
特性を大幅ζこ向上することができた。
In addition, when implementing the present invention, a heat absorbing material such as carbon, which is thinly deposited on the sensor surface to a thickness of 1/10 or less of the surface acoustic wave, should be deposited in a negative atmosphere to delay the propagation (this will delay the flow of blood). It has a number of time-temperature threads, and this is used to make an armpit temperature sensor.In order to improve the sensitivity and response speed of this sensor, it is a piezoelectric sensor formed of a bullet + J-cloth surface wave element. By adopting a configuration in which the crystal substrate itself serves as a light guide window, the characteristics could be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は弾性表面波フィルタの構成を示す正面図、第2
図は従来のセンサの斜視図で(5)は累子装着部0は金
稙キャップ部、第3図は本発明にか5る弾性表面波素子
の斜視図、第4図および第5図図において6は温度セン
サ、7は絶縁基板、1゜は赤外線透過窓、11は金属キ
ャンプ、12は薄板、13はレンズ状の裏面をもつ基板
、14は導光窓、15は磁器基板。
Figure 1 is a front view showing the configuration of a surface acoustic wave filter, Figure 2 is a front view showing the configuration of a surface acoustic wave filter.
The figure is a perspective view of a conventional sensor, (5) is a receptacle mounting part 0 is a metal cap part, FIG. 3 is a perspective view of a surface acoustic wave element according to the present invention, and FIGS. 4 and 5. , 6 is a temperature sensor, 7 is an insulating substrate, 1° is an infrared transmitting window, 11 is a metal camp, 12 is a thin plate, 13 is a substrate with a lens-shaped back surface, 14 is a light guiding window, and 15 is a ceramic substrate.

Claims (1)

【特許請求の範囲】[Claims] 圧電結晶からなる基板上に入カトランスジウサおよび出
力トランスジウサがあり、該トランスジウサ間を伝播す
る弾性表面波の遅延時間温度係数の温度依存性を利用し
て温度検知を行う弾性表面波素子(こおいて、前記基板
の裏面を赤外線導入窓として構成されていることを特徴
とする温度センサ0
An input transducer and an output transducer are disposed on a substrate made of a piezoelectric crystal, and a surface acoustic wave element detects temperature by utilizing the temperature dependence of the temperature coefficient of delay time of a surface acoustic wave propagating between the transducers. A temperature sensor 0 characterized in that the back surface of the substrate is configured as an infrared introduction window.
JP15099281A 1981-09-24 1981-09-24 Temperature sensor Pending JPS5852527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15099281A JPS5852527A (en) 1981-09-24 1981-09-24 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15099281A JPS5852527A (en) 1981-09-24 1981-09-24 Temperature sensor

Publications (1)

Publication Number Publication Date
JPS5852527A true JPS5852527A (en) 1983-03-28

Family

ID=15508911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15099281A Pending JPS5852527A (en) 1981-09-24 1981-09-24 Temperature sensor

Country Status (1)

Country Link
JP (1) JPS5852527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053824A (en) * 1983-09-02 1985-03-27 Matsushita Electric Ind Co Ltd Elastic surface wave element
JPS6074853A (en) * 1983-09-30 1985-04-27 Mitsubishi Electric Corp Waveform shaping device
JPS62179899A (en) * 1986-01-31 1987-08-07 Fukui Shintaa Kk Production of flange for locking guide roller in guide member for tape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053824A (en) * 1983-09-02 1985-03-27 Matsushita Electric Ind Co Ltd Elastic surface wave element
JPS6074853A (en) * 1983-09-30 1985-04-27 Mitsubishi Electric Corp Waveform shaping device
JPH0561828B2 (en) * 1983-09-30 1993-09-07 Mitsubishi Electric Corp
JPS62179899A (en) * 1986-01-31 1987-08-07 Fukui Shintaa Kk Production of flange for locking guide roller in guide member for tape

Similar Documents

Publication Publication Date Title
US4081769A (en) Acoustic surface wave resonator with suppressed direct coupled response
US6508133B1 (en) Ultrasonic flowmeter and ultrasonic generator/detector
JPH0218614B2 (en)
US3678304A (en) Acoustic wave device for converting bulk mode waves to surface waves and vice versa
JPH0388406A (en) Surface acoustic wave element
US4422055A (en) Strain relief technique for surface acoustic wave devices
US4634913A (en) Application of lithium tetraborate to electronic devices
CN215773066U (en) Novel surface acoustic wave filter reflection grating structure and surface acoustic wave filter
US4322651A (en) Acoustic surface wave device
JPS5852527A (en) Temperature sensor
JPH04109709A (en) Surface acoustic wave element
US4065734A (en) Elastic surface wave devices
US3453456A (en) Ultrasonic transducer
JPS56160123A (en) Elastic surface wave device
JPS5748820A (en) Surface acoustic wave element
JPS5841005B2 (en) surface acoustic wave device
JPS5827687B2 (en) Dansei Hiyoumenhasouchi
JP3365069B2 (en) Surface acoustic wave device
JPS57208719A (en) Surface acoustic wave device
JPS6148216A (en) Surface acoustic wave element
SU849554A1 (en) Piezoelectric transducer
JPS587705Y2 (en) surface acoustic wave device
JPS57162817A (en) Surface acoustic wave element
JPS635294Y2 (en)
JPS5916410A (en) Surface acoustic wave element