JPS5852521B2 - spherical stainless steel powder - Google Patents

spherical stainless steel powder

Info

Publication number
JPS5852521B2
JPS5852521B2 JP54056288A JP5628879A JPS5852521B2 JP S5852521 B2 JPS5852521 B2 JP S5852521B2 JP 54056288 A JP54056288 A JP 54056288A JP 5628879 A JP5628879 A JP 5628879A JP S5852521 B2 JPS5852521 B2 JP S5852521B2
Authority
JP
Japan
Prior art keywords
powder
stainless steel
less
boron
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54056288A
Other languages
Japanese (ja)
Other versions
JPS55148701A (en
Inventor
哲男 加藤
建男 久田
勝司 草加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP54056288A priority Critical patent/JPS5852521B2/en
Publication of JPS55148701A publication Critical patent/JPS55148701A/en
Publication of JPS5852521B2 publication Critical patent/JPS5852521B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は球状度が高く、かつ焼結性の良好なステンレス
鋼粉末に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stainless steel powder having high sphericity and good sinterability.

最近公害対策機器が盛んに開発されており、これに伴な
って耐食性の優れた焼結フィルターの需要が年々増加し
ている。
Recently, pollution control equipment has been actively developed, and the demand for sintered filters with excellent corrosion resistance is increasing year by year.

焼結フィルター用の原料粉末としては、耐食性が良好で
あるとともに球状度の高いものが必要とされるが、従来
のステンレス鋼粉末は組成的に球状化しに(<、また噴
霧条件の選定によりある程度球状化させた粉末は焼結時
にネックとなる粒子相互の接触点が少ないため焼結が進
行しにくいなど多(の問題点をもっている。
The raw material powder for sintered filters needs to have good corrosion resistance and high sphericity, but conventional stainless steel powder does not tend to be spherical due to its composition. Spheroidized powder has a number of problems, including that sintering is difficult to proceed because there are few contact points between the particles, which can become a bottleneck during sintering.

したがって焼結フィルター用としては必らずしも好適な
原料粉末は見い出されていないのが現状である。
Therefore, at present, no raw material powder necessarily suitable for use in sintered filters has been found.

そこで本発明者等は上記のような用途にたいして好適な
原料粉末すなわち球状度が高く、かつ焼結性の良好なス
テンレス鋼粉末を開発するために合金組成の面から種々
検討した結果、従来のステンレス鋼組成にたいして適量
のボロンを合金化させることにより、合金粉末の球状化
が進み、かつ、焼結性も改善できることを見いだした。
Therefore, the present inventors conducted various studies in terms of alloy composition in order to develop a suitable raw material powder for the above-mentioned applications, that is, a stainless steel powder with high sphericity and good sinterability. It has been found that by alloying an appropriate amount of boron with respect to the steel composition, the spheroidization of the alloy powder can be promoted and the sinterability can also be improved.

すなわち本発明は、 ステンレス鋼の組成に0.05〜2.0%のBを添加し
た溶湯から噴霧法により製造したことを特徴とする焼結
性の良好な球状ステンレス鋼粉末である。
That is, the present invention is a spherical stainless steel powder with good sinterability, which is produced by a spraying method from a molten metal containing 0.05 to 2.0% of B added to the composition of stainless steel.

鋼にたいするボロンの添加は通常は焼入性の増大を目的
として0.001〜0.002%程度のごく少量を用い
るか、または高温クリープ強度の向上を狙いとして0.
02〜0.1係程度添加する場合もある。
Boron is usually added to steel in a very small amount of about 0.001 to 0.002% to increase hardenability, or in a very small amount of about 0.001 to 0.002% to improve high temperature creep strength.
In some cases, it may be added in an amount of about 0.02 to 0.1.

しかし従来のボロンを添加した鋼はいずれも溶製鋼であ
って本発明のごとくステンレス鋼粉末にボロンを含有さ
せたものとしては本発明者等の一部が先に提案した特願
昭52−27642号(特開昭53−113207号公
報)および特願昭53−129487号、(特開昭53
−58301号公報)などごく歩測にすぎない。
However, all of the conventional steels to which boron has been added are molten steels, and the invention in which boron is added to stainless steel powder as in the present invention is disclosed in Japanese Patent Application No. 52-27649, which was previously proposed by some of the present inventors. (Japanese Unexamined Patent Publication No. 53-113207) and Japanese Patent Application No. 129487-1987, (Unexamined Japanese Patent Application No. 53-129487)
-58301 Publication) is just a step-by-step measurement.

しかしながら本発明とはいずれもボロンの添加目的、効
果、含有量などに相違があり、本発明のごとく球状度お
よび焼結性を改善させるためには0.05〜2.0%の
ボロンを添加させることが有効であることを本発明者等
がはじめて見い出したものである。
However, there are differences between the present invention and the purpose of boron addition, effects, content, etc. In order to improve the sphericity and sinterability as in the present invention, 0.05 to 2.0% boron is added. The present inventors discovered for the first time that it is effective to do so.

なお本発明の対象となるステンレス鋼粉末とはJISお
よびAl5I規格に定められたステンレス鋼のすべてを
意味する。
Note that the stainless steel powder to which the present invention is applied means all stainless steels specified in JIS and Al5I standards.

すなわちCrを主合金成分とするフェライト系およびマ
ルテンサイト系のステンレス鋼ならびにCr v N
iを主合金成分とするオーステナイト系および二相ステ
ンレス鋼等が適用可能である。
That is, ferritic and martensitic stainless steels containing Cr as the main alloy component and Cr v N
Austenitic and duplex stainless steels having i as the main alloy component are applicable.

以下に適当なステンレス鋼組成を示す。Suitable stainless steel compositions are shown below.

N i −Cr系 C:0.30%以下、Si:1.50%以下、Mn:2
.0%以下、Ni : 2.0〜22.0 %、Cr
:10.0〜25.0%、B:0.05〜2.0係残
部Fe NiCr−Mo系 C:0.30%以下、Si:1.50%以下、Mn:2
.0%以下、Ni : 2.0〜22.0 %、Cr
:10.0〜25.0%、Mo : 0.50〜4.
0%、B:0.05〜2.0%、残部Fe Cr Mo系 C:1.20%以下、Si : 1.50茶以下、
Mn:2.0%以下、Cr : 10.0〜25.0
%、MO二〇、5〜4.0 %、B:0.05〜2.0
%、残部FeCr系 C:1.20%以下、Si:1.50%以下、Mn:2
.0%以下、Cr : 10.0〜25.0%、B:
0.05〜2.0 %、残部Fe 次に本発明ステンレス鋼粉末の成分組成範囲の限定理由
を以下に述べる。
Ni-Cr-based C: 0.30% or less, Si: 1.50% or less, Mn: 2
.. 0% or less, Ni: 2.0-22.0%, Cr
: 10.0 to 25.0%, B: 0.05 to 2.0 remaining part Fe NiCr-Mo type C: 0.30% or less, Si: 1.50% or less, Mn: 2
.. 0% or less, Ni: 2.0-22.0%, Cr
: 10.0-25.0%, Mo: 0.50-4.
0%, B: 0.05 to 2.0%, balance Fe Cr Mo type C: 1.20% or less, Si: 1.50 tea or less,
Mn: 2.0% or less, Cr: 10.0 to 25.0
%, MO20, 5-4.0%, B: 0.05-2.0
%, remainder FeCr-based C: 1.20% or less, Si: 1.50% or less, Mn: 2
.. 0% or less, Cr: 10.0-25.0%, B:
0.05-2.0%, balance Fe Next, the reason for limiting the composition range of the stainless steel powder of the present invention will be described below.

C:1.20幅以下 焼結体の強度を向上させるために有効な元素であるが多
量に添加するとステンレス鋼本来の耐食性が損なわれる
ため1.20%以下に限定した。
C: 1.20% or less This is an effective element for improving the strength of the sintered body, but if added in a large amount, the inherent corrosion resistance of stainless steel will be impaired, so it was limited to 1.20% or less.

Si:1.50%以下 粉末表面の耐酸化性を向上させるために有効な元素であ
るが多量に添加すると粉末の不規則形状化が進むため1
.50%以下に限定した。
Si: 1.50% or less It is an effective element for improving the oxidation resistance of the powder surface, but if added in a large amount, the powder will become irregularly shaped.
.. It was limited to 50% or less.

Mn : 2.0係以下 粉末の球状化に有効な元素であるが多量に添加すると表
面酸化が進み焼結性が損なわれるため2.0係以下に限
定した。
Mn: 2.0 coefficient or less Mn is an effective element for spheroidizing powder, but if added in a large amount, surface oxidation progresses and sinterability is impaired, so Mn is limited to 2.0 coefficient or less.

Ni : 2.0〜22.0%、Cr : 10.0〜
25.0%、Mo : 0.50〜4.0係 これらはステンレス鋼を構成するための元素であって、
含有量は前記したようにJISおよびAl5Iに規格化
されているNi−Cr系またはCr系ステンレス鋼の組
成範囲に準拠して定めた。
Ni: 2.0~22.0%, Cr: 10.0~
25.0%, Mo: 0.50 to 4.0% These are elements for forming stainless steel,
As described above, the content was determined based on the composition range of Ni-Cr or Cr stainless steel standardized by JIS and Al5I.

このほか上記組成またはその他の組成のステンレス鋼に
たいして合金自体の強度や耐食性を向上させる目的で、
CuまたはSnを添加したり、焼結体の被削性を向上さ
せる目的でS、Te、Se、Ca。
In addition, for the purpose of improving the strength and corrosion resistance of the alloy itself for stainless steel with the above composition or other compositions,
S, Te, Se, Ca for the purpose of adding Cu or Sn or improving the machinability of the sintered body.

pb等を添加したものも本発明で用いるステンレス鋼の
範囲に含まれる。
Stainless steels to which PB and the like are added are also included in the range of stainless steels used in the present invention.

B:0.05〜2.0係 粉末の球状化および焼結性の向上にきわめて有効な元素
であり少なくとも0.05%以上添加する必要がある。
B: This is an extremely effective element for improving the spheroidization and sinterability of powders with a ratio of 0.05 to 2.0, and it is necessary to add at least 0.05% or more.

Bの増加により球状化は進み1%程度の添加によりほぼ
真球となる。
As B increases, spheroidization progresses, and by adding about 1%, it becomes almost a true sphere.

ただし多量に添加するとポライドが過剰に生成され、ス
テンレス鋼本来の強度および耐食性が損なわれるため2
,0係以下に限定した。
However, if a large amount is added, polide will be generated excessively and the original strength and corrosion resistance of stainless steel will be impaired.
, limited to 0 or less.

これらの粉末の製造法は噴霧法であれば噴霧媒がガスあ
るいは水またはその他の物質であってもボロン添加の効
果は損なわれない。
If these powders are manufactured by a spraying method, the effect of boron addition will not be impaired even if the spray medium is gas, water, or other substance.

実施例 1 17Cr−13Ni−2Mo−Feを基本組成としこれ
に種々の量のボロンを添加した第1表に示すごとき組成
の溶湯かも、水噴霧法によりステンレス鋼粉末を製造し
た。
Example 1 Stainless steel powder was produced by a water spray method using molten metals having the basic composition of 17Cr-13Ni-2Mo-Fe and various amounts of boron added thereto as shown in Table 1.

−同表にみられるごとくボロンを含有しない/161の
比較粉末にたいしてボロンを含有した/162〜/16
6の本発明粉末は見掛密度が高く、ボロン量が多くなる
ほど見掛密度が向上する傾向がみもれる。
- As seen in the same table, compared to the comparison powder containing no boron /161, the powder contained boron /162 to /16
Powder No. 6 of the present invention has a high apparent density, and there is a tendency for the apparent density to improve as the amount of boron increases.

一方それぞれの粉末の粒度分布にはあまり差はみもれず
ボロン添加の影響はほとんどないことを確認した。
On the other hand, there was no noticeable difference in the particle size distribution of each powder, and it was confirmed that the addition of boron had almost no effect.

すなわち両者の結果から本発明ステンレス鋼粉末はボロ
ン黒添加粉末にくらべて球状化が進んでいることが容易
に推定できる。
That is, from both results, it can be easily inferred that the stainless steel powder of the present invention is more spheroidized than the boron black-added powder.

次に製造したステンレス鋼粉末の球形度を調べるために
高倍率で写真撮影後粉末の長短径比を測定した。
Next, in order to examine the sphericity of the produced stainless steel powder, a photograph was taken at high magnification, and the ratio of major axis to minor axis of the powder was measured.

その結果を第2表に併記した。同表にみられるごとく比
較粉末/I61では長短径比が1.5以上の形状を示し
ているのにたいして本発明粉末層3〜6では1〜1.3
程度の長短径比を示し球状度がきわめて高いことを確認
した。
The results are also listed in Table 2. As seen in the same table, the comparison powder/I61 has a shape with a major axis ratio of 1.5 or more, whereas the present invention powder layers 3 to 6 have a shape of 1 to 1.3.
It was confirmed that the sphericity was extremely high.

次に製造したステンレス鋼粉末の焼結性を調べるために
、まず内径20mの磁製管Aと外径が151g1tの磁
製管Bを同心円上に配置し、その隙間に第1表に示した
ステンレス鋼粉末を充填した。
Next, in order to examine the sinterability of the manufactured stainless steel powder, first, a porcelain tube A with an inner diameter of 20 m and a porcelain tube B with an outer diameter of 151 g1t were placed concentrically, and the particles shown in Table 1 were placed in the gap between them. Filled with stainless steel powder.

その接種々の温度で真空焼結し、しかるのち磁製管を破
壊して外径201mX内径15itmX高さ10のすン
グ状試験片を製造した。
Vacuum sintering was carried out at the temperature of the inoculation, and then the porcelain tube was broken to produce a ring-shaped test piece with an outer diameter of 201 m, an inner diameter of 15 itm, and a height of 10m.

これらの試験片について圧壊試験を行なった。A crush test was conducted on these test pieces.

その結果を第3表に示し☆☆た。The results are shown in Table 3.

ボロン無添加の比較粉末/161では焼結温度が120
0℃以下では磁製管をとりのぞくと粉末が崩れ試験片を
採取することができなかった。
Comparative powder without boron addition/161 has a sintering temperature of 120
At temperatures below 0°C, the powder collapsed when the porcelain tube was removed, making it impossible to collect a test piece.

一方焼結温度が1250℃以上において焼結体が得られ
たが、圧壊強度は低く焼結性もきわめて悪いことを確認
した。
On the other hand, although a sintered body was obtained at a sintering temperature of 1250° C. or higher, it was confirmed that the crushing strength was low and the sinterability was also extremely poor.

これにたいして適量のボロンを添加した本発明粉末/1
63〜7は1200℃以下の焼結においても圧壊強度は
低いが焼結することが可能であった。
Powder of the present invention to which an appropriate amount of boron is added/1
No. 63 to 7 could be sintered even at 1200° C. or lower, although the crushing strength was low.

1250℃以上の高温度の焼結においては圧壊強度も高
く、良好な焼結性を示した。
When sintered at a high temperature of 1250°C or higher, the crushing strength was high and good sinterability was exhibited.

ただしボロン添加量が低い比較粉末A2では焼結後の圧
壊強度は充分でなくボロンの効果が顕著にみられない。
However, the comparative powder A2 with a low boron content did not have sufficient crushing strength after sintering, and the effect of boron was not noticeable.

またボロンを多量に含有した比較粉末/167において
も圧壊強度の向上はそれほど望めなく、むしろポライド
の生成による耐食性の低下をみるため好ましくない。
Comparative powder/167 containing a large amount of boron cannot be expected to improve the crushing strength so much, but rather shows a decrease in corrosion resistance due to the formation of polide, which is not preferable.

実施例 2 水噴霧法によって5US301,5US304,5US
410.5US430,5US434,5US440鋼
に相当するステンレス鋼粉末およびこれに適量のボロン
を添加した本発明ステンレス鋼粉末を製造した。
Example 2 5US301, 5US304, 5US by water spray method
Stainless steel powders corresponding to 410.5 US 430, 5 US 434, and 5 US 440 steels and stainless steel powders of the present invention were produced by adding an appropriate amount of boron to the stainless steel powders.

第4表に供試粉末の成分組成を示す。Table 4 shows the composition of the sample powder.

第4表の供試粉末を用いて実施例1と同様に粉末の見掛
密度長短径比および焼結後の圧壊強度を※※測測定た。
Using the sample powders in Table 4, the apparent density ratio of major axis to minor axis and crushing strength after sintering were measured in the same manner as in Example 1.

その結果をまとめて第5表に示した。The results are summarized in Table 5.

同表にみもれるごとくいずれの鋼種系においてもボロン
を添加した本発明粉末は見掛密度が高くかつ長短径比は
小さい。
As can be seen in the same table, in all steel types, the boron-added powder of the present invention has a high apparent density and a small axis ratio.

すなわちボロンを合金化することにより粉末の球状化が
強く促進されたことを示している。
This indicates that alloying boron strongly promoted the spheroidization of the powder.

また焼結後の圧壊強度もボロンを添加した本発明粉末は
いずれも高く良好な焼結性を示すことを確認した。
It was also confirmed that the powders of the present invention to which boron was added had high crushing strength after sintering and exhibited good sinterability.

以上のどと(本発明は0.05〜2.0多のボロンを合
金化することにより粉末の球状塵および焼結性を向上さ
せたステンレス鋼粉末であって上記の特性が要求される
用途たとえば焼結フィルター用の原料粉末、およびショ
ツトブラスト粉などに好適である。
The present invention is a stainless steel powder that has improved spherical dust and sinterability by alloying with 0.05 to 2.0 boron, and is used for applications requiring the above characteristics, such as Suitable for raw material powder for sintered filters, shot blast powder, etc.

)

Claims (1)

【特許請求の範囲】 1□ステンレス鋼の組成に0.05〜2.0%のBを添
加した溶湯から噴霧法によ−り製造したことを特徴とす
る焼結性の良好な球状ステンレス鋼粉末。 2 粉末の成分組成がC:0.30%以下、Sl :1
.50%以下、Mn : 2.0%以下、Ni:2.0
〜22.0%、 Cr : 10.0〜25.0 %、
B:0.05〜2.0%、残部が実質的にFeかもなる
第1請求項記載の球状ステンレス鋼粉末。 3 粉末の成分組成がC:0.30%以下、Si :1
.50%以下、Mn : 2.0%以下、 Ni 二
2.0〜22.0%、Cr : 10.0〜25.0%
、Mo :0.504.0%、B : 0.05〜2.
0%、残部が実質的にFeからなる第1請求項記載の球
状ステンレス鋼粉末。 4 粉末の成分組成が゛C:1.20幅発下、Si :
150%以下、Mn : 2.0%以下、Cr:10.
0〜25.0係、B:0.05〜2.0係を含有し残部
が実質的にFeからなる第1請求項記載の球状ステンレ
ス粉末。 5 粉末の成分組成がC:1.20係以下、Si :1
.50%以下、Mn : 2.0 %以下、Cr:10
.0〜25.0%、Mo:0.50〜4.0%、B:0
.05〜2.0係残部が実質的にFeかもなる第1請求
項記載の球状ステンレス鋼粉末。
[Claims] 1□ Spherical stainless steel with good sinterability, characterized in that it is produced by a spraying method from a molten metal with 0.05 to 2.0% B added to the composition of stainless steel. powder. 2 Powder composition: C: 0.30% or less, Sl: 1
.. 50% or less, Mn: 2.0% or less, Ni: 2.0
~22.0%, Cr: 10.0~25.0%,
The spherical stainless steel powder according to claim 1, wherein B: 0.05 to 2.0%, the balance being substantially Fe. 3 Powder composition: C: 0.30% or less, Si: 1
.. 50% or less, Mn: 2.0% or less, Ni 2.0-22.0%, Cr: 10.0-25.0%
, Mo: 0.504.0%, B: 0.05-2.
The spherical stainless steel powder according to claim 1, wherein the spherical stainless steel powder comprises 0% Fe and the remainder substantially Fe. 4 The composition of the powder is ゛C: 1.20 width, Si:
150% or less, Mn: 2.0% or less, Cr: 10.
The spherical stainless steel powder according to claim 1, containing B: 0.05 to 2.0, and the remainder substantially consisting of Fe. 5 The component composition of the powder is C: 1.20 or less, Si: 1
.. 50% or less, Mn: 2.0% or less, Cr: 10
.. 0-25.0%, Mo: 0.50-4.0%, B: 0
.. The spherical stainless steel powder according to claim 1, wherein the 05-2.0 residual portion is also substantially Fe.
JP54056288A 1979-05-10 1979-05-10 spherical stainless steel powder Expired JPS5852521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54056288A JPS5852521B2 (en) 1979-05-10 1979-05-10 spherical stainless steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54056288A JPS5852521B2 (en) 1979-05-10 1979-05-10 spherical stainless steel powder

Publications (2)

Publication Number Publication Date
JPS55148701A JPS55148701A (en) 1980-11-19
JPS5852521B2 true JPS5852521B2 (en) 1983-11-24

Family

ID=13022901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54056288A Expired JPS5852521B2 (en) 1979-05-10 1979-05-10 spherical stainless steel powder

Country Status (1)

Country Link
JP (1) JPS5852521B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516716A (en) * 1982-11-18 1985-05-14 Gte Products Corporation Method of brazing with iron-based and hard surfacing alloys
JPS59219161A (en) * 1983-05-27 1984-12-10 Ito Kiko Kk Surface finishing method by stainless ball powder
FR2685883B1 (en) * 1992-01-08 1994-05-27 Amp Grenailles Sa METHOD OF ENGRAVING ON STONE AND DEVICE FOR ITS IMPLEMENTATION.
FR2686539B1 (en) * 1992-01-08 1994-03-25 Amp Grenailles Sa METHOD OF ENGRAVING ON STONE AND DEVICE FOR ITS IMPLEMENTATION.
DE19815087A1 (en) * 1998-04-06 1999-10-07 Vulkan Strahltechnik Gmbh Stainless abrasive
SE523855C2 (en) 2000-11-10 2004-05-25 Alfa Laval Corp Ab Iron-based brazing material for joining elm and soldered product made herewith
SE524928C2 (en) 2001-06-05 2004-10-26 Alfa Laval Corp Ab Iron-based brazing material for joining elements through brazing and brazed product made herewith
ITTV20010155A1 (en) * 2001-11-27 2003-05-27 Pometon S P A PROCEDURE FOR OBTAINING AN ABRASIVE MIXTURE PARTICULARLY FOR SEGMENT OF MARBLES AND PRODUCT SO OBTAINED
CN104325128B (en) * 2014-09-29 2016-09-28 华中科技大学 A kind of 3D prints with heat-resisting die Steel material and preparation method thereof
CN105648303B (en) * 2016-03-02 2017-09-22 南京理工大学 Method for improving sphericity of stainless steel powder prepared by atomization method

Also Published As

Publication number Publication date
JPS55148701A (en) 1980-11-19

Similar Documents

Publication Publication Date Title
US5856625A (en) Stainless steel powders and articles produced therefrom by powder metallurgy
JPS5852521B2 (en) spherical stainless steel powder
US4435483A (en) Loose sintering of spherical ferritic-austenitic stainless steel powder and porous body
JP4201830B2 (en) Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body
JPH10102105A (en) Manufacture of fine metallic powder
US3716354A (en) High alloy steel
JPH0638998B2 (en) Fe-based overlay alloy powder
JPH06510331A (en) Iron-based powder composition with good dimensional stability after sintering
US3591365A (en) Heat resisting corrosion resisting iron chromium alloy
US3798022A (en) Pre-alloyed nickel-free silicon-free minimal oxide low alloy iron powder
US5590384A (en) Process for improving the corrosion resistance of stainless steel powder composition
JP2003027109A (en) Method for producing oxide dispersion type alloy
KR100875327B1 (en) Metal powder for thermal spray coating of substrate
US4028094A (en) Stainless steel powder
JP2926397B2 (en) Impact-resistant iron-based alloy spherical particles
JP3682556B2 (en) Heat and wear resistant sintered stainless steel
JPS6021201B2 (en) Method for producing spherical magnetic stainless steel powder
US4350529A (en) Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom
US3708283A (en) Process for preparing cemented ferrochrome
JPH0436436A (en) High toughness tungsten sintered alloy
US3676103A (en) Pre-alloyed nickel-free silicon-free minimal-oxide low-alloy iron powder and method of making the same
US3900936A (en) Cemented ferrochrome material
JPH0543913A (en) Fe base sintered alloy valve seat with extremely low attackability against object
EP0903417A1 (en) Powder ferrous metal compositions containing aluminum
JP2705376B2 (en) Valve seat made of Fe-based sintered alloy with high strength and toughness