JPS5852462Y2 - Fusible device with backflow prevention valve for absorption refrigerator - Google Patents

Fusible device with backflow prevention valve for absorption refrigerator

Info

Publication number
JPS5852462Y2
JPS5852462Y2 JP15420879U JP15420879U JPS5852462Y2 JP S5852462 Y2 JPS5852462 Y2 JP S5852462Y2 JP 15420879 U JP15420879 U JP 15420879U JP 15420879 U JP15420879 U JP 15420879U JP S5852462 Y2 JPS5852462 Y2 JP S5852462Y2
Authority
JP
Japan
Prior art keywords
valve
container
pressure
absorption
backflow prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15420879U
Other languages
Japanese (ja)
Other versions
JPS5672155U (en
Inventor
邦彦 中島
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP15420879U priority Critical patent/JPS5852462Y2/en
Publication of JPS5672155U publication Critical patent/JPS5672155U/ja
Application granted granted Critical
Publication of JPS5852462Y2 publication Critical patent/JPS5852462Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【考案の詳細な説明】 第1図は従来の吸収冷凍機を示し、1は蒸発器、2は吸
収器、3は凝縮器、4は低圧再生器で、いずれも多数の
管群からなり、蒸発器1の管内には冷水が、吸収器2と
凝縮器3の管内には冷却水が流れており、低圧再生器4
の管内には蒸気が流れている。
[Detailed description of the invention] Fig. 1 shows a conventional absorption refrigerator, in which 1 is an evaporator, 2 is an absorber, 3 is a condenser, and 4 is a low-pressure regenerator, all of which are composed of a large number of tube groups. Chilled water flows in the pipes of the evaporator 1, cooling water flows in the pipes of the absorber 2 and condenser 3, and the low pressure regenerator 4
Steam is flowing inside the pipe.

そしてこれらは密閉容器を形成した管状のシェル内に内
蔵され、シェル内は完全に空気を排除し真空に保たれて
おり、それぞれの管群はシェルの両端の管板に穿設した
管孔にエキスバンドなどで固定され、それぞれヘッダを
介して所要の流体を管内に流通させる構造となっている
These are housed inside a tubular shell that forms a sealed container, and the inside of the shell is kept in a vacuum by completely excluding air. They are fixed with an extension band or the like, and have a structure that allows the required fluid to flow into the pipes via headers.

5は同様に多数の管群からなり管内に熱源から供給され
た蒸気などの加熱媒体が流れている高圧再生器、6は第
一熱交換器、7は第二熱交換器、8は熱回収器、9は冷
媒ポンプ、10は吸収液循環ポンプ、11は冷媒、12
は稀吸収液を示している。
5 is a high-pressure regenerator which similarly consists of a large number of tube groups and in which a heating medium such as steam supplied from a heat source flows, 6 is a first heat exchanger, 7 is a second heat exchanger, and 8 is a heat recovery device. 9 is a refrigerant pump, 10 is an absorption liquid circulation pump, 11 is a refrigerant, 12
indicates dilute absorption liquid.

第1図において、蒸発器1で冷却作用を行って蒸発した
冷媒蒸気が吸収器2で吸収液に吸収され、吸収液は濃度
が低下して下部に溜められる。
In FIG. 1, refrigerant vapor evaporated by cooling action in an evaporator 1 is absorbed by an absorption liquid in an absorber 2, and the concentration of the absorption liquid decreases and is stored in the lower part.

この稀薄の吸収液12を吸収液循環ポンプ10で配管1
3、第一熱交換器6、配管14、第二熱交換器7と配管
15を経て高圧再生器5に送り、蒸気で加熱して吸収さ
れていた冷媒を蒸発分離する。
This diluted absorption liquid 12 is passed through the pipe 1 by an absorption liquid circulation pump 10.
3. The refrigerant is sent to the high-pressure regenerator 5 via the first heat exchanger 6, piping 14, second heat exchanger 7, and piping 15, and is heated with steam to evaporate and separate the absorbed refrigerant.

冷媒を分離して濃度の上昇した中間濃度の吸収液は配管
16を経て第二熱交換器7で稀吸収液と熱交換し温度が
下って配管17を経て熱回収器8に入り、高圧再生器5
から配管21を経て排出される加熱蒸気のドレーンによ
り再び加熱されて冷媒を蒸発分離し、吸収液は濃度が高
くなって配管23に入りこれより低圧再生器4に入る。
The intermediate concentration absorption liquid whose concentration has increased after separating the refrigerant passes through the pipe 16 and exchanges heat with the dilute absorption liquid in the second heat exchanger 7, and after its temperature drops, it passes through the pipe 17 and enters the heat recovery unit 8, where it is high-pressure regenerated. Vessel 5
The refrigerant is heated again by the drain of the heated steam discharged from the absorbent via the pipe 21, and the refrigerant is evaporated and separated, and the absorbed liquid becomes concentrated and enters the pipe 23 and then enters the low-pressure regenerator 4.

低圧再生器4には高圧再生器5で発生した温度・圧力の
高い冷媒蒸気が配管20を経て導びかれ、吸収液を加熱
し吸収液から更に冷媒が蒸発分離し、熱回収器8で蒸発
し配管24を通って流入する冷媒蒸気とともに凝縮器3
に入り、冷却水に熱を奪われて冷媒は復水する。
The high-temperature and high-pressure refrigerant vapor generated in the high-pressure regenerator 5 is led to the low-pressure regenerator 4 via a pipe 20, heats the absorption liquid, further evaporates and separates the refrigerant from the absorption liquid, and evaporates in the heat recovery unit 8. The condenser 3 along with the refrigerant vapor flowing through the pipe 24
The refrigerant enters the water, takes heat from the cooling water, and condenses.

低圧再生器4で濃度の上昇した濃吸収液は配管18を経
て第一熱交換器6で稀吸収液と熱交換して稀吸収液に熱
を与え、自らは温度が下って配管19を経て吸収器2に
入り再び吸収作用を行う。
The concentrated absorbent liquid whose concentration has increased in the low-pressure regenerator 4 passes through the pipe 18 and exchanges heat with the dilute absorbent liquid in the first heat exchanger 6 to give heat to the dilute absorbent liquid. It enters the absorber 2 and performs the absorption action again.

方、低圧再生器4で吸収液を加熱し自らは復水した冷媒
は凝縮器3に入り冷却水で冷却され、前述の熱回収器8
と低圧再生器からの冷媒とともに蒸発器1に戻り冷却作
用を行う。
On the other hand, the refrigerant that heats the absorption liquid in the low-pressure regenerator 4 and condenses itself enters the condenser 3 and is cooled by cooling water, and then passes through the aforementioned heat recovery device 8.
It returns to the evaporator 1 together with the refrigerant from the low-pressure regenerator and performs a cooling action.

上記作動状態を冷媒に水、吸収液として臭化リチウム水
溶液を使用する場合に・ついて各部の温度、濃度、圧力
で示すと、第2図において■が第一熱交換器6の入口の
稀吸収液、■が第二熱交換器入口の稀吸収液、■が第二
熱交換器出口の稀吸収液、■は高圧再生器5の出口の中
間濃度吸収液、■は第二熱交換器7の出口の中間濃度吸
収液、■は熱回収器出口の中間濃度吸収液、■は低圧再
生器4の出口の濃吸収液、■は第一熱交換器6の出口の
濃吸収液の状態を示す。
When the above operating state is shown in terms of temperature, concentration, and pressure at each part when water is used as the refrigerant and lithium bromide aqueous solution is used as the absorption liquid, ■ in Figure 2 shows the rare absorption at the inlet of the first heat exchanger 6. ■ is the dilute absorption liquid at the inlet of the second heat exchanger, ■ is the dilute absorption liquid at the outlet of the second heat exchanger, ■ is the intermediate concentration absorption liquid at the outlet of the high-pressure regenerator 5, and ■ is the dilute absorption liquid at the outlet of the second heat exchanger 7. ■ indicates the state of the intermediate concentration absorption liquid at the outlet of the heat recovery device, ■ indicates the state of the concentrated absorption liquid at the outlet of the low pressure regenerator 4, and ■ indicates the state of the concentrated absorption liquid at the outlet of the first heat exchanger 6. show.

尚、蒸発器1、吸収器2を内蔵する密閉容器のシェル下
部室30の圧力は所要冷水温度などにより異なるが、通
常0.01 kg/cm2abs前後である。
Note that the pressure in the lower shell chamber 30 of the closed container housing the evaporator 1 and absorber 2 varies depending on the required cold water temperature, etc., but is usually around 0.01 kg/cm2abs.

一方、凝縮器3、低圧再生器4を内蔵するシェル上部室
31は冷却水温度などにより異なるが、通常は0.1k
g/cm2abs前後であって、仕切板で仕切られてい
るシェル下部室30より常に高圧となっている。
On the other hand, the shell upper chamber 31 containing the condenser 3 and low pressure regenerator 4 is normally 0.1k, although it varies depending on the cooling water temperature etc.
g/cm2abs, which is always higher than the lower shell chamber 30 which is partitioned by a partition plate.

また、高圧再生器5および配管20低圧再生器伝熱管内
は更に圧力が高く、通常0 + 9 kg/cm 2a
bs前後となっている。
In addition, the pressure inside the high pressure regenerator 5 and the low pressure regenerator heat exchanger tube 20 is even higher, usually 0 + 9 kg/cm 2a
It is around bs.

このように吸収冷凍機の内部の圧力は運転中あるいは保
管中は著しく圧力が低くくなる。
In this way, the pressure inside the absorption refrigerator drops significantly during operation or storage.

つまり、シェル下部室の吸収器、蒸発器などは6〜7m
mHg(絶対)で圧力の最も高いシェル上部室の低圧再
生器伝熱管内および高圧再生器でも700mmHg(絶
対)以下となっている。
In other words, the absorber, evaporator, etc. in the lower shell chamber are 6 to 7 m long.
Even in the low-pressure regenerator heat exchanger tube in the upper shell chamber, where the pressure is highest in mHg (absolute), and in the high-pressure regenerator, the pressure is 700 mmHg (absolute) or less.

このため、吸収冷凍機は気密性の高い構造に造られてい
る。
For this reason, absorption refrigerators are built with a highly airtight structure.

その理由は、外部から空気の洩れ込みがあると吸収冷凍
機の性能は著しく低下するし、使用材料の耐食性が著し
るしく害される。
The reason for this is that if air leaks from the outside, the performance of the absorption refrigerator will be significantly reduced and the corrosion resistance of the materials used will be significantly impaired.

このため一般のボイラや圧力容器のような機械式の安全
弁を設けることは、真空不良の原因となるため不適当で
ある。
For this reason, it is inappropriate to provide a mechanical safety valve such as in a general boiler or pressure vessel because it may cause a vacuum failure.

しかしながら、加熱量が著しく多くなったり、吸収器、
凝縮器を通る冷却水温度が設計値より高くなったり、外
部より加熱されたりすると、内部の圧力が大気圧を越え
、る可能性がある。
However, the amount of heating increases significantly, the absorber
If the temperature of the cooling water passing through the condenser becomes higher than the designed value, or if it is heated from the outside, the internal pressure may exceed atmospheric pressure.

このように圧力が高くなったとき内部の圧力を逃がすた
めに破裂板を設けることもできるが、破裂板の場合には
気密を保つためにある程度圧力が上昇しないと破裂しな
い。
A rupture disc may be provided to release the internal pressure when the pressure becomes high, but in the case of a rupture disc, it will not rupture unless the pressure rises to a certain extent in order to maintain airtightness.

この欠点を補うため、吸収冷凍機の内部の気相部は冷媒
蒸気が充満しており、この冷媒蒸気は圧力と温度の関係
が大気圧のとき100℃を示すので、この温度を利用し
て可溶栓を溶解させることが試みられている。
To compensate for this drawback, the gas phase inside the absorption refrigerator is filled with refrigerant vapor, and since the relationship between pressure and temperature of this refrigerant vapor is 100°C at atmospheric pressure, this temperature can be used to Attempts have been made to dissolve fusible plugs.

しかし、可溶栓だけを設けた場合には一度溶解すると取
替えるまでは、内部へ空気が逆流することとなり問題が
ある。
However, if only a fusible plug is provided, there is a problem in that once it is dissolved, air will flow back into the interior until it is replaced.

本考案は前記問題点を解決したものであって、吸収冷凍
機の内部すなわち密閉容器のシェル内へ空気が可溶栓の
溶解時に逆流することを防止することができるようにし
たものである。
The present invention solves the above-mentioned problems and makes it possible to prevent air from flowing back into the interior of the absorption refrigerator, that is, into the shell of the closed container when the fusible plug is melted.

以下第3図に示す実施例に基づき本考案を説明する。The present invention will be explained below based on the embodiment shown in FIG.

第3図において、41は本装置の筒状体よりなる弁箱で
前記シェル上部室31の外面に穿った通孔44の個所に
弁箱41の底部中央に穿設した弁孔48を合わせて位置
せしめ弁箱をシェルに溶接によって固着しである。
In FIG. 3, reference numeral 41 denotes a valve box made of a cylindrical body of the present device, and a valve hole 48 formed at the bottom center of the valve box 41 is aligned with a through hole 44 formed on the outer surface of the shell upper chamber 31. Once in place, the valve box is fixed to the shell by welding.

弁孔48の廻りには弁座52を突設し、これより上方に
大きい弁室50が形成され、この弁室50には通路49
が連なって設けである。
A valve seat 52 is protruded around the valve hole 48, and a large valve chamber 50 is formed above the valve seat 52, and a passage 49 is formed in this valve chamber 50.
are set up in succession.

一方、43はカップ状の逆流防止弁体で弁箱41の弁室
50及び通路49に嵌装されて底部下面が通常の状態で
は弁座52に着座している。
On the other hand, 43 is a cup-shaped non-return valve body which is fitted into the valve chamber 50 and passage 49 of the valve box 41, and whose bottom surface is seated on the valve seat 52 under normal conditions.

又、この逆流防止弁体43の側面には複数個の通孔53
が穿設しである。
In addition, a plurality of through holes 53 are formed on the side surface of this backflow prevention valve body 43.
is perforated.

そして、弁箱41の上端面には気密性を維持するパツキ
ン47を介して約100℃で容易に溶解する金属で作ら
れた可溶栓が固定板45によりボルトで締付けて取付け
られている。
A fusible plug made of metal that easily melts at about 100° C. is attached to the upper end surface of the valve box 41 via a packing 47 that maintains airtightness by tightening bolts using a fixing plate 45.

この固定板45に穿設した通孔51の径d2は前記逆流
防止弁体43の外径d1よりも小さくする必要がある。
The diameter d2 of the through hole 51 formed in the fixed plate 45 needs to be smaller than the outer diameter d1 of the check valve body 43.

すなわち、d2〈dlに設定することによりシェル31
の内部aの圧力が上昇したとき弁体43が外部に飛び出
さないためである。
That is, by setting d2<dl, shell 31
This is to prevent the valve body 43 from jumping out when the pressure inside a increases.

弁体43は通常の状態下では弁座52は自重によって図
示のごとく着座しシールするように本装置をシェルに取
付ける。
The device is attached to the shell so that under normal conditions, the valve body 43 seats and seals the valve seat 52 as shown in the figure under its own weight.

このような取付構造で保温しなければ、シェルがら弁箱
41及び弁体43を通って可溶栓42に伝った熱が大気
へ放熱されてしまうので、可溶栓部分には冷媒蒸気から
直接熱が伝わる。
If heat is not insulated with such a mounting structure, the heat transmitted from the shell through the valve box 41 and valve body 43 to the fusible plug 42 will be radiated to the atmosphere, so the fusible plug portion will not be directly exposed to refrigerant vapor. Heat is transmitted.

さて、通常運転時あるいは保管中は吸収冷凍機の内部が
真空であるから、密閉容器内a、弁室50及び通路49
のいずれの個所も真空状態にあり、外部との気密は主と
して可溶栓42とパツキン4/及びパツキン47と弁箱
41の夫々相互間の締付は力で保たれている。
Now, during normal operation or storage, the inside of the absorption refrigerator is in a vacuum, so the inside of the sealed container a, the valve chamber 50 and the passage 49 are
All parts are in a vacuum state, and airtightness with the outside is mainly maintained by force between the fusible plug 42 and the packing 4/and the packing 47 and the valve body 41, respectively.

加熱量が増えたときなどで異常に低圧再生器4内の圧力
が上昇して、密閉容器内aの圧力が高くなると、逆流防
止弁体43が上方に押し上げられて、冷媒蒸気が弁室5
0、通路49に流出して可溶枠42を溶かす。
When the pressure inside the low-pressure regenerator 4 abnormally rises due to an increase in the amount of heating, etc., and the pressure inside the closed container a increases, the check valve body 43 is pushed upward, and the refrigerant vapor flows into the valve chamber 5.
0, flows into the passage 49 and melts the fusible frame 42.

一方、通常吸収冷凍機では圧力が上昇して大気圧に近づ
くと、加熱源を遮断する安全装置が付いており、可溶枠
42が溶けて内部の冷媒蒸気を逃がすとともに加熱源が
遮断されて内部の圧力が低下し大気圧以下となる。
On the other hand, normal absorption refrigerators are equipped with a safety device that shuts off the heating source when the pressure rises and approaches atmospheric pressure, and the fusible frame 42 melts to release the internal refrigerant vapor and shut off the heating source. The internal pressure decreases to below atmospheric pressure.

この時弁体43は自重で落下し弁座52の上に戻り、大
気圧と内部圧力との差で着座部分の気密が保たれるよう
になる。
At this time, the valve body 43 falls under its own weight and returns to the top of the valve seat 52, and the seated portion is kept airtight due to the difference between atmospheric pressure and internal pressure.

従って可溶枠42が溶けても内部に空気が侵入すること
が殆んどない。
Therefore, even if the fusible frame 42 melts, there is almost no chance of air entering inside.

以上のように構成した本考案によれば、密閉容器内の異
常圧力上昇時にシェルに取付けた可溶枠の溶解後器内圧
力が大気圧以下となったとき、冷媒蒸気によって弁室上
方に押し上げられている逆流防止弁体が自重によって落
下して弁座に着座してシールするようにしたから、可溶
枠が溶けても外気が容器内に流入するのを防止すること
ができる。
According to the present invention configured as described above, when the pressure inside the vessel falls below atmospheric pressure after the melting of the fusible frame attached to the shell when the pressure inside the closed vessel rises abnormally, the refrigerant vapor pushes it upward into the valve chamber. Since the non-return valve body which is attached to the container falls under its own weight and seats on the valve seat to form a seal, it is possible to prevent outside air from flowing into the container even if the fusible frame melts.

特に、吸収冷凍機を運転していても、逆流防止弁体で外
部とシールされているので、可溶枠を容易に取替えるこ
とができ、しかも保管中でも内部に不活性ガスを入れて
大気圧まで圧力を上昇させることなく取替えることもで
きる。
In particular, even when the absorption refrigerator is in operation, the fusible frame can be easily replaced because it is sealed from the outside with a backflow prevention valve, and even during storage, an inert gas can be filled inside to bring it up to atmospheric pressure. It can also be replaced without increasing the pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二重効用吸収冷凍機を示す系統図、第2
図は第1図の冷凍サイクルを示す特性曲線図、第3°図
は本考案の実施例を示す縦断側面図である。 30・・・・・・シェル下部室、31・・・・・・シェ
ル上部、41・・・・・・弁箱、42・・・・・・可溶
枠、43・・・・・・逆流防止弁体、44,51゜53
・・・・・・通孔、45・・・・・・固定板、46・・
・・・・ボルト、47・・・・・・パツキン、48・・
・・・・弁孔、49・・・・・・通路、50・・・・・
・弁室、52・・・・・・弁座。
Figure 1 is a system diagram showing a conventional dual-effect absorption refrigerator;
The figure is a characteristic curve diagram showing the refrigeration cycle of Fig. 1, and Fig. 3 is a longitudinal sectional side view showing the embodiment of the present invention. 30: Lower shell chamber, 31: Upper shell, 41: Valve box, 42: Fusible frame, 43: Backflow Prevention valve body, 44, 51゜53
...Through hole, 45...Fixing plate, 46...
...Bolt, 47...Patsukin, 48...
... Valve hole, 49 ... Passage, 50 ...
・Valve chamber, 52... Valve seat.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)蒸発器、吸収器、凝縮器、再生器を密閉容器に内
蔵し、例えば冷媒に水、吸収液に臭化リチウム水溶液を
使用し、吸収液循環系に熱交換器を配してなる吸収冷凍
機において、外部よりの加熱等で器内圧力上昇による容
器破損を防止するため容器を形成したシェルに取付けら
れた可溶栓で、溶解後容器温度が低下し、器内圧力が大
気圧以下となった時外気が容器内に流入することのない
ような逆流防止弁を備えたことを特徴とする吸収冷凍機
の逆流防止弁付可溶装置。
(1) An evaporator, an absorber, a condenser, and a regenerator are built in a sealed container, and for example, water is used as the refrigerant, lithium bromide aqueous solution is used as the absorption liquid, and a heat exchanger is arranged in the absorption liquid circulation system. In an absorption refrigerator, a fusible plug is attached to the shell that forms the container to prevent damage to the container due to an increase in internal pressure due to external heating, etc. After melting, the container temperature decreases and the internal pressure decreases to atmospheric pressure. A fusible device with a backflow prevention valve for an absorption refrigerator, characterized in that it is equipped with a backflow prevention valve that prevents outside air from flowing into the container when the following conditions occur.
(2)前記逆流防止弁の弁体が可溶栓を溶かす冷媒蒸気
によって上方へ押し上げられるとともに自重によって落
下して弁座に着座し得るようにしである実用新案登録請
求の範囲第1項に記載の吸収冷凍機の逆流防止弁付可溶
装置。
(2) Claim 1 of the Utility Model Registration Claim, wherein the valve element of the check valve is pushed upward by the refrigerant vapor that melts the fusible plug and falls under its own weight to be seated on the valve seat. A fusible device with a backflow prevention valve for absorption refrigerators.
JP15420879U 1979-11-08 1979-11-08 Fusible device with backflow prevention valve for absorption refrigerator Expired JPS5852462Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15420879U JPS5852462Y2 (en) 1979-11-08 1979-11-08 Fusible device with backflow prevention valve for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15420879U JPS5852462Y2 (en) 1979-11-08 1979-11-08 Fusible device with backflow prevention valve for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS5672155U JPS5672155U (en) 1981-06-13
JPS5852462Y2 true JPS5852462Y2 (en) 1983-11-29

Family

ID=29384862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15420879U Expired JPS5852462Y2 (en) 1979-11-08 1979-11-08 Fusible device with backflow prevention valve for absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS5852462Y2 (en)

Also Published As

Publication number Publication date
JPS5672155U (en) 1981-06-13

Similar Documents

Publication Publication Date Title
EP0550748B1 (en) Solid/gas reaction cooling plant having a reactor equipped with cooling means
US3491545A (en) Absorption refrigeration system
US3690121A (en) Absorption refrigeration system
JP4353026B2 (en) Pure water boiling cooling device with cooling medium opening and closing means
JPS5852462Y2 (en) Fusible device with backflow prevention valve for absorption refrigerator
US2290532A (en) Refrigeration
US2473389A (en) Low-pressure absorption refrigerating system
JPH0346747B2 (en)
JP3766233B2 (en) Ammonia absorption refrigeration equipment
SU1384896A1 (en) Solar power adsorption refrigerating installation
JPS6023266B2 (en) Double effect absorption chiller
JPS6038854Y2 (en) Accumulator with receiver
JPS60162166A (en) Multiple effect absorption type refrigerator
JP3429906B2 (en) Absorption refrigerator
JPH0710215Y2 (en) Absorption refrigerator extraction device
JPS6118370Y2 (en)
JPS5849017Y2 (en) Accumulator with receiver
JPS6024380B2 (en) Absorption chiller control device
JP2957112B2 (en) Regenerator for absorption refrigeration system
JP2517303B2 (en) Refrigerant freeze prevention device for absorption refrigerator
JPH0325104Y2 (en)
JPS5818139Y2 (en) Double effect absorption chiller
JPS5852463Y2 (en) Water-lithium salt compact absorption refrigerator
JP2645828B2 (en) Double effect absorption refrigerator
JPS63187075A (en) Absorption type refrigerator