JPS5852459A - Case hardened steel and its manufacture - Google Patents

Case hardened steel and its manufacture

Info

Publication number
JPS5852459A
JPS5852459A JP56148817A JP14881781A JPS5852459A JP S5852459 A JPS5852459 A JP S5852459A JP 56148817 A JP56148817 A JP 56148817A JP 14881781 A JP14881781 A JP 14881781A JP S5852459 A JPS5852459 A JP S5852459A
Authority
JP
Japan
Prior art keywords
less
steel
hardening steel
case
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56148817A
Other languages
Japanese (ja)
Inventor
Toshio Yanagiya
柳谷 敏夫
Kenji Isogawa
礒川 憲二
Hideaki Inaba
稲葉 英明
Kunio Yamaguchi
山口 國男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP56148817A priority Critical patent/JPS5852459A/en
Publication of JPS5852459A publication Critical patent/JPS5852459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce the amount of a strain produced during surface hardening and to reduce the disperion by manufaturing a case hardened steel contg. specified percentages of C, Si, Mn, Cr, Ni and Mo in Fe from an ingot having a specified central segregation degree of C. CONSTITUTION:A steel consisting of, by weight, <=0.4% C, <=1% Si, <=2% Mn, <=3% Cr, <=5% Ni, <=1% Mo and the balance Fe is prepared. The desired composition of the steel is composed of 0.25-0.35% C, <=0.5% Si, 0.7-1.5% Mn, 0.35-1% Cr, 0.01-0.06% Al, 0.01-0.025% N and the balance Fe or further contains <=2% Ni and/or <=0.3% Mo. The O content of the steel is adjusted to <=30ppm. When the steel is continuously cast, by regulating the superheating temp. during casting to <=40 deg.C and magnetic intensity during electromagnetic agitation at the solidification interface to >=40G, the central segregation degree of C is made 1.1-1.0.

Description

【発明の詳細な説明】 本発明は、浸炭あるいは浸炭窒化地理等の駅部用に適す
る低歪肌焼鋼およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low strain case hardening steel suitable for use in carburized or carbonitrided stations, and a method for manufacturing the same.

表面における耐摩耗性や疲れ強さなどが要求される部品
あるいは製品、例えけ歯車などに対して浸炭、浸炭窒化
および真空浸炭等の表面硬化処理を行なう機台には、素
材をいったん人、変態点以上の温度に加熱した後焼入れ
するようにしているため、変態による体積変化中熱応力
などKよって変形を生ずる。この変形量が大きくま几そ
のばらつきが大きいi′;後工程においてその修正に多
大な労力を必要とする。例えば、トランスミッション用
のメインシャフトの場合には表面硬化処理後に1本毎に
矯正を施す必要があり、また、デフリングギヤの場合に
はブレスクエンチが必須となっている。
Machines that perform surface hardening treatments such as carburizing, carbonitriding, and vacuum carburizing on parts or products that require surface wear resistance or fatigue strength, such as gears, are used to Since the material is quenched after being heated to a temperature above a point, deformation occurs due to K such as thermal stress during volume change due to transformation. The amount of deformation is large and the variation is large (i'); a great deal of effort is required to correct it in the subsequent process. For example, in the case of main shafts for transmissions, it is necessary to straighten each shaft after surface hardening treatment, and in the case of differential ring gears, breath quenching is essential.

そのため、表面硬化処理時の歪量が少なくかつそのばら
つきが小さい低歪肌焼鋼の開発が、表面硬化処理後の歪
の修正工程を簡略化する上で急務である。
Therefore, there is an urgent need to develop a low-strain case hardening steel that exhibits a small amount of strain during surface hardening treatment and has small variations thereof, in order to simplify the process of correcting strain after surface hardening treatment.

本発明は、上述した従来の問題点に着目してなされた4
ので、浸炭、浸炭窒化、真空浸炭等の表面硬化処理時の
歪量が少なくかつそのばらつきが小さい低歪肌焼鋼を提
供することを目的としている。
The present invention has been made by focusing on the above-mentioned conventional problems.
Therefore, it is an object of the present invention to provide a low-strain case hardening steel that has a small amount of strain and small variations in strain during surface hardening treatments such as carburizing, carbonitriding, and vacuum carburizing.

本発明は、駅部用に適する化学成分をもつ鋼の鋳片段階
におけるC(炭素)の中心偏析度(鋼片中心部C1/C
のレードル分析値)が1.1〜i、。
The present invention focuses on the center segregation degree of C (carbon) in the slab stage of steel having chemical composition suitable for station areas (center part of steel slab C1/C
ladle analysis value) of 1.1 to i.

の範囲にある鋳片から製造したことを特徴としており、
前記駅部用に適する鋼としてより望ましくは、重量−で
、C: 0.4%以下、Si:1%以下、Mn : 2
 %以下、Cr:3%以下、Ni:5%以下、Mo :
 1 %以下を含み、残部実質的にF・よりなるものを
選択し、さらにより望ましくは、C: 0.25〜0.
35 %、St : Q、5 %以下、Mn : 0.
7〜1.5チ、Cr : 0.35〜19b、At: 
0.01〜0.06 % 。
It is characterized by being manufactured from slabs in the range of
More preferably, the steel suitable for the station area has the following properties by weight: C: 0.4% or less, Si: 1% or less, Mn: 2
% or less, Cr: 3% or less, Ni: 5% or less, Mo:
1% or less, with the remainder substantially consisting of F., and even more preferably, C: 0.25 to 0.
35%, St: Q, 5% or less, Mn: 0.
7-1.5chi, Cr: 0.35-19b, At:
0.01-0.06%.

N : 0.01〜0.025チ、必要に応じてNi:
2チ以下、!vlo : 0.3チ以下のうちの1種ま
たは2種を含み、残部実質的にF・よりなるものを選択
し、さらKより望ましくは、鋼中のO含有量を39 p
pm以下に抑えたものを選択する。tた、このような駅
部用圧適する化学成分の鋼を製造するにあたっては、前
記鋼を連続鋳造法により製造し、この際、鋳込時の過熱
温度(スーパーヒート;鋳込温度と凝固温度の差−)を
40℃以下にすると共に、電磁攪拌時の攪拌強度を凝固
界面で40ガウス以上として、C(炭素)の中心偏析度
が1.1〜1.0となるようにしたことを特徴としてい
る。
N: 0.01-0.025chi, Ni: if necessary
Less than 2 inches! vlo: Select one containing one or two of the following: 0.3 p or less, with the remainder substantially consisting of F, and more desirably, reduce the O content in the steel to 39 p.
Select one that is kept below pm. In addition, in producing steel with a chemical composition suitable for use in station areas, the steel is produced by a continuous casting method. The difference in -) was set to 40°C or less, and the stirring intensity during electromagnetic stirring was set to 40 Gauss or more at the solidification interface, so that the center segregation degree of C (carbon) was 1.1 to 1.0. It is a feature.

駅部用に適する鋼としては、機械構造用炭素鋼、含ニツ
ケルクロム低合金鋼、含ニツケルクロムモリブデン低合
金鋼、含クロム低合金鋼、含クロムモリブデン低合金鋼
、含マンガン低合金鋼、含マンガンクロム低合金鋼など
種々のものがあるが、このような鋼種において、より望
ましくは、重責sで、C: 0.4 %以下、Si:1
S以下、Mn : 2チ以下、Cr : 3%以下、N
15%以下、Mo:1−以下とし、必要に応じて適宜A
j : 0.01〜0.06 % 、 N : 0.0
1〜0.025 %%N1:2−以下、Mo : 0.
3 %以下の範囲のものを使用し、その他Nb# T’
 e Z’ e V + Ta等を添加したものを使用
するのが良いが、以下、この理由を説明する。
Steels suitable for station areas include carbon steel for machine structures, nickel-chromium-containing low-alloy steel, nickel-chromium-containing low-alloy steel, chromium-containing low-alloy steel, chromium-containing molybdenum low-alloy steel, manganese-containing low-alloy steel, There are various types of steel such as manganese chromium low alloy steel, but among these types of steel, it is more desirable to have a heavy duty, C: 0.4% or less, Si: 1
S or less, Mn: 2 inches or less, Cr: 3% or less, N
15% or less, Mo: 1- or less, and A as appropriate as necessary.
j: 0.01-0.06%, N: 0.0
1 to 0.025%%N1: 2- or less, Mo: 0.
3% or less, and other Nb#T'
It is preferable to use a material to which e Z' e V + Ta or the like is added, and the reason for this will be explained below.

C;Cは表面硬化処理において、必要な硬化層深さを確
保するのに有効な元素であり、例えば肌焼鋼素材から歯
車を成形した場合に、所要の鑓元硬さを維持する一方心
部硬さを低下させて浸炭、浸炭窒化、真空浸炭焼入れ等
の硬化処理に伴う歪を最小限に抑えると共に必要な有効
硬化層深さを確保する。しかしながら、0.44i越え
ると靭性ならびに被剛性が低下するので、より望ましく
は0.4チ以下とし、さらにより望ましくは上記した効
果を最大限に発揮させるために0.25〜0.35%の
範囲とするのがよい。
C; C is an effective element for securing the necessary depth of hardened layer in surface hardening treatment. For example, when forming gears from case hardened steel material, C is an element that is effective in maintaining the required base hardness while maintaining the required hardness. By lowering the hardness of the part, distortion caused by hardening treatments such as carburizing, carbonitriding, and vacuum carburizing and quenching can be minimized, and the required effective hardened layer depth can be secured. However, if it exceeds 0.44i, the toughness and stiffness will decrease, so it is more preferable to keep it below 0.4i, and even more preferably, to maximize the above-mentioned effect, the toughness and stiffness will decrease. It is better to set it as a range.

St:Siは溶解時における脱酸ならび°に脱硫元素と
して有効な元素であるが、含有量が多過ぎると浸炭性な
らびに被削−性が低下する傾向があるので、より望まし
くは1%以下とし、さらにより望ましくは帆5チ以下と
するのがよい。
St:Si is an effective element for deoxidizing during melting and as a desulfurizing element, but if the content is too large, carburizability and machinability tend to decrease, so it is more desirable to keep it at 1% or less. It is even more desirable that the sail length be 5 inches or less.

Mn : Mnは溶解時における脱酸ならびに脱硫元素
として有効な元素であるが、含有量が多過ぎると被剛性
が低下するので、より望ましくは2−以下とし、さらに
より望ましくは上記した効果を考慮して0.7〜1.5
チの範囲とするのがよい。
Mn: Mn is an effective element as a deoxidizing and desulfurizing element during melting, but if the content is too large, the stiffness decreases, so it is more preferably 2- or less, and even more preferably, taking into account the above effects. and 0.7-1.5
It is best to keep it within the range of

Cr : Crは表面硬化処理において所定の有効硬化
層深さを確保し、良好な浸炭性ならびに浸炭窒化性全維
持するために有効な元素であるが、多過ぎると6部硬さ
が大となり、高歪発生の原因となるので、より望ましく
は3%以下とし、さらKより望ましくは上記した効果を
考慮して0.35〜1饅の範囲とするのがよい。
Cr: Cr is an effective element for securing a predetermined effective hardening layer depth in surface hardening treatment and maintaining good carburizing and carbonitriding properties, but if it is too large, the 6-part hardness increases; Since K causes high distortion, it is more preferably 3% or less, and more preferably K is in the range of 0.35 to 1 kan, taking into consideration the above-mentioned effects.

AA:AAu表面硬化処理時においで、オーステナイト
結晶粒の成長を抑制すること釦より歪の発生を防止する
のに有効な元素であり、そのためには0.014以上含
有させる必要がある。しかし、0.06 %を越えると
鋼の清浄度が低下する。したがって、含有させる場合に
は0.01〜0.0616の範囲とするのが望ましい。
AA: An element effective in suppressing the growth of austenite crystal grains and preventing the occurrence of distortion during AAu surface hardening treatment, and for this purpose it is necessary to contain 0.014 or more. However, if it exceeds 0.06%, the cleanliness of the steel decreases. Therefore, when it is contained, it is desirable that it be in the range of 0.01 to 0.0616.

N:Nは上記Atと結合してAtNt形成することによ
り表面硬化処理時においてオーステナイト結0.01−
未満ではその効果が小さく、0.025 S t−越え
るとブローが発生しやすくなるので、含有させる場合に
は0.01〜0.025 %の範−とするのが5望まし
い。
N: N combines with the above-mentioned At to form AtNt, thereby forming an austenitic structure of 0.01-
If it is less than 0.025 St, the effect is small, and if it exceeds 0.025 St, blowing tends to occur. Therefore, when it is included, it is preferably in the range of 0.01 to 0.025%.

Ni:Niは浸炭性ならびに一浸炭窒化性を向上させる
と共に、例えば駅部品が歯車である場合にその歯車の歯
元硬さを維持できる上で効果がある。しかし、多過ぎる
と6部硬さも大となり、高歪発生10の原因となるので
、より望ましくは5嘔以下とし、さらにより望ましくは
2チ以下とするのがよい。
Ni: Ni is effective in improving carburizing properties and monocarbonitriding properties, and in maintaining the hardness of the tooth root of the gear, for example, when the station part is a gear. However, if it is too large, the hardness of the 6th part becomes large, which causes high distortion, so it is more desirable to set it to 5mm or less, and still more preferably to set it to 2mm or less.

Mo : MoはNiと同様に浸炭性ならびに浸炭窒化
性を向上させると共に、歯車の場合に歯元硬さを維持で
きる上で効果がある。しかし、多過ぎると15心部硬さ
も大となり、高歪発生の原因となるので、より望ましく
は1−以下とし、さらにより望ましくは0.3%以下と
する:のがよい。
Mo: Like Ni, Mo improves carburizing and carbonitriding properties, and is effective in maintaining root hardness in the case of gears. However, if the amount is too high, the hardness at the 15 core increases, causing high strain, so it is more preferably 1- or less, and even more preferably 0.3% or less.

0:0含有量が多過ぎると鋼の清浄度が悪くなり、疲れ
強さの低下を招くので、より望壕しくは3020 pp
m以下とするのがよい。
If the 0:0 content is too high, the cleanliness of the steel will deteriorate and the fatigue strength will decrease, so 3020 pp is more desirable.
It is better to set it to less than m.

その他、必要に応じて、Nb 、 Ti 、 Zr 、
 V 、 Ta等の元素を含有させることも当然ありう
る。
In addition, Nb, Ti, Zr, as necessary.
Naturally, elements such as V and Ta may also be contained.

C中心偏析度:1.1〜1.0 鋳片状態におけるCの中心偏析度が大きいと、こ2れを
素材とする圧延材にもCの中心偏析が残り、これが表面
硬化処理時に歪発生の原因となるため、鋳片状態におけ
るCの中心偏析を少なくする必要がある。この場合、鋳
片のし一ドル分析値と比較して鋳片中心部のctが1.
1 fflを超える偏析度を有すると歪の発生をおさえ
ることが困難となるため、i、i倍以下に限定した。
C center segregation degree: 1.1 to 1.0 If the center segregation degree of C in the slab state is large, center segregation of C will remain in the rolled material made from this material, and this will cause distortion during surface hardening treatment. Therefore, it is necessary to reduce center segregation of C in the slab state. In this case, the ct of the central part of the slab is 1.5% compared to the dollar analysis value of the slab.
If the degree of segregation exceeds 1 ffl, it will be difficult to suppress the occurrence of strain, so it is limited to i, i times or less.

このように、C、Si 、Mn 、CrおよびNi 。Thus, C, Si, Mn, Cr and Ni.

MO等の含有量を調整することによって、浸炭。Carburizing by adjusting the content of MO etc.

浸炭窒化、真空浸炭などの表面硬化処理において、表面
硬化特性を劣化させることなく歪の発生を少なくするこ
とができ、また、AA、Nを規定量含有させることによ
って、表面硬化処理中でのオーステナイト結晶粒の成長
を抑制することにより歪量の発生を低減でき、さらに加
えて、鋳片段階におけるC(炭素)の中心偏析度t−1
,1〜1.OKすることKよって、表面硬化処理による
歪の発生を著しく低減できる。
In surface hardening treatments such as carbonitriding and vacuum carburizing, it is possible to reduce the occurrence of distortion without deteriorating the surface hardening properties, and by containing specified amounts of AA and N, the austenite during the surface hardening treatment can be reduced. By suppressing the growth of crystal grains, the amount of strain can be reduced, and in addition, the center segregation degree t-1 of C (carbon) at the slab stage can be reduced.
, 1-1. By doing so, the occurrence of distortion due to surface hardening treatment can be significantly reduced.

本発明者らは、連続鋳造法によって製造され九鋳片の厚
さ方向の中央部には偏析によってC含有量が多くなると
いう現象つまり中心偏析に着目し、この中心偏析が表面
硬化処理品の厚さ変化(歪量)K及ぼす影響を調べ念。
The present inventors focused on the phenomenon that the C content increases due to segregation in the center of the thickness of nine cast slabs manufactured by continuous casting method, that is, center segregation, and found that this center segregation is caused by surface hardening treatment. Examine the effect of thickness change (strain amount) on K.

この場合、第1図に示すように、鋳片1の厚さTの中心
部すなわちT/2の部分において、31111間隔でC
濃度を測定して鋳−片中心部のCチを求め、この中心部
のC濃度とし一ドル中のCaI2(0%)との比で表わ
すことによりCの中心偏析度を調べ念。また、表面硬化
処理品の厚さ変化は次のようにして行なった。まず、第
2図および@3図に示すように、直径D□=60−9高
さH,−94mの素材2を熱間据込み鍛造し、第3図(
b)に示す直径D2= 95■、高さも=42−の形状
の中間素材6を製造し、さらに第3図(c)に示す直径
り、 = 961111 #高さH3= 40 wm 
In this case, as shown in FIG.
The degree of central segregation of C was determined by measuring the concentration and determining the C concentration at the center of the slab, and expressing the C concentration at the center as a ratio to CaI2 (0%) in one dollar. Further, the thickness of the surface hardened product was changed as follows. First, as shown in Figures 2 and 3, a material 2 with a diameter D = 60-9 and a height H of -94 m is hot upset forged, and as shown in Figure 3 (
An intermediate material 6 having a diameter D2 = 95cm and a height = 42cm as shown in b) was manufactured, and further the diameter D2 = 961111 #height H3 = 40wm as shown in Fig. 3(c).
.

中央部厚さT1=7閣のリング素材4に加工し、このリ
ング素材4″ft焼ならししたのち第3図(d)に示す
外径り。=90鴫、内径D1=45gIIM、厚さT4
=30■(目標)のリング状試験片5に加工した。
After processing into a ring material 4 with a center thickness T1 = 7 mm, and normalizing this ring material 4'', the outer diameter shown in Fig. 3(d) is 90mm, inner diameter D1 = 45gIIM, thickness T4
It was processed into a ring-shaped test piece 5 with a diameter of 30 mm (target).

そして、このようなリング状試験片5を多数用意して各
試験片5の仕上が9厚さT4の寸法を正確に測定し、次
いで第4図に示す表面硬化処31t−行なった。すなわ
ち、試験片5?900Cに加熱して2時間の浸炭処理、
1時間の拡散処理を行ない、850℃に30分間保持し
たのち油冷し、次いで180℃で2時間加熱後空冷する
焼もどしを行なつ几。この後、各試験片5の厚さT4の
寸法を測定して厚さ変化量を求めた。すなわち、厚さ変
化量(pm) = ((浸炭焼入れ焼もどし処理後の厚
さく、、) ’) −(浸炭焼入れ焼もどし処理前の厚
さく−) ))X100Oで求めた。このようにして、
鋳片におけるCの中心偏析度と厚さ変化量との関係管調
べたところ、第5図に示すような結果を得九。第5図に
示すように、Cの中心偏析度が1.1−1.0の間にあ
れば、表面硬化処理による厚さ変化量すなわち歪量を著
しく低減できることが明らかとなっ、た。なお、ここで
リング状試験片5を用いたのは、駅部品として歯車を想
定し九九めであり、このリング状試験片5の歪と実際の
歯車の歪との間には明確な相関□関係あることが確認さ
れたことによる。
A large number of such ring-shaped test pieces 5 were prepared, and the finish of each test piece 5 was accurately measured to have a thickness T4, and then a surface hardening treatment 31t as shown in FIG. 4 was performed. That is, the test piece was heated to 5-900C and carburized for 2 hours,
A pot that undergoes diffusion treatment for 1 hour, holds at 850°C for 30 minutes, cools in oil, then heats at 180°C for 2 hours, and then performs tempering by cooling in air. Thereafter, the thickness T4 of each test piece 5 was measured to determine the amount of thickness change. That is, the thickness change amount (pm) = ((Thickness after carburizing, quenching and tempering treatment, )') - (Thickness before carburizing and quenching and tempering treatment -)))X100O. In this way,
When we investigated the relationship between the center segregation degree of C and the amount of thickness change in slabs, we obtained the results shown in Figure 5. As shown in FIG. 5, it has become clear that if the center segregation degree of C is between 1.1 and 1.0, the amount of thickness change, that is, the amount of strain caused by surface hardening treatment can be significantly reduced. The ring-shaped test piece 5 was used here because it was assumed that a gear would be used as a station component, and there is a clear correlation between the distortion of this ring-shaped test piece 5 and the distortion of the actual gear. This is because it has been confirmed that there is a relationship.

次に、鋳片におけるCの中心偏析度が1.1〜1.0で
あるようにするためには、いかなる鋳造条件を設定すれ
ばよいかについて、本発明者らはさらに実験研究を行な
った。
Next, the present inventors further conducted experimental research to determine what casting conditions should be set in order to maintain the center segregation degree of C in the slab between 1.1 and 1.0. .

そこでまず、連続鋳造法において、溶鋼の鋳込時の過熱
温度(スーパーヒート;鋳込温度と凝固@度の差)とC
の中心偏析度との関係を調べたところ、第6図に示す結
果を得九。なお、この際のCのレードル値は0.28重
tSであり、電磁攪拌(EMS)時の撹拌強度を凝固界
面で50ガウスとした。第6図の結果から、この場合に
過熱温度を40℃以下にすることによって、Cの中心偏
析度を1.1より十分小さくできることが明らかとなっ
た。
First of all, in the continuous casting method, the superheating temperature (superheat; the difference between the casting temperature and the solidification degree) during pouring of molten steel and the C
When we investigated the relationship between the degree of central segregation and the degree of central segregation, we obtained the results shown in Figure 6. Note that the ladle value of C at this time was 0.28 weight tS, and the stirring intensity during electromagnetic stirring (EMS) was 50 Gauss at the solidification interface. From the results shown in FIG. 6, it is clear that in this case, by setting the superheating temperature to 40° C. or lower, the center segregation degree of C can be made sufficiently smaller than 1.1.

次に、通常の溶製法により製造したインゴットと、連続
鋳造法により製造した鋳片について、その1ji1部(
To−p)と底部(Rot )との間におけるCの中心
偏析度を調べたところ、第7図に示す結果を得た。第7
図に示すように、通常の溶製法によ・るインゴットの場
合にはCの中心偏析度が1.1〜1.0の部分の割合が
かなり小さいため、歩留り上下別である。また、連続鋳
造法(CC)にLる場合において、過熱温度を45℃と
し、電磁攪拌(EMS)の強度を凝固界面で35ガウス
として製造しに鋳片ではすべてCの中心偏析度が1.1
を上回っている。これに対し、過熱温度を40℃としか
つ電磁攪拌の攪拌強度t−凝固界面で40ガウスとした
鋳片ではCの中心偏析度が1.1以下となっており、過
熱温度を30℃と小さくしかつ電磁攪拌強度を凝固界面
で45ガウスと大きくした場合にはCの中心偏析度がよ
り小さくなっている。したがって、電磁攪拌の攪拌強度
を凝固界面で40ガウス以上とするのが良い。そして、
第7図に示す結果から明らかなように、連続鋳造法を採
用することによってCの中心偏析度が同一チャージの部
位間で鋼塊鋳造法に比べてほぼ一定となっており、その
結果、同一チャージ内での部位間の歪量のばらつきが小
さくなり、歪量の一定化がはかれる点で連続鋳造法によ
ることが有利である。
Next, 1 ji 1 part (
When the central segregation degree of C between the (Top) and the bottom (Rot) was investigated, the results shown in FIG. 7 were obtained. 7th
As shown in the figure, in the case of ingots made by the usual melting method, the proportion of the portion where the center segregation degree of C is 1.1 to 1.0 is quite small, so the yield is different. In addition, when using the continuous casting method (CC), the superheating temperature is set to 45°C, and the strength of electromagnetic stirring (EMS) is set to 35 Gauss at the solidification interface, and the central segregation degree of C in all slabs is 1. 1
exceeds. On the other hand, in slabs where the superheating temperature was 40°C and the stirring intensity of electromagnetic stirring was 40 Gauss at the t-solidification interface, the center segregation degree of C was less than 1.1, and the superheating temperature was as small as 30°C. Moreover, when the electromagnetic stirring strength was increased to 45 Gauss at the solidification interface, the center segregation degree of C became smaller. Therefore, it is preferable that the stirring strength of the electromagnetic stirring is 40 Gauss or more at the solidification interface. and,
As is clear from the results shown in Figure 7, by adopting the continuous casting method, the center segregation degree of C is almost constant between parts of the same charge compared to the steel ingot casting method, and as a result, the Continuous casting is advantageous in that variations in the amount of strain between parts within the charge are reduced and the amount of strain can be made constant.

実施例 表1に示すA−にの化学成分の鋼を溶製した後、鋳込時
の過熱温度を表1に示す値にして連続鋳造した。この際
電磁攪拌を加え、その攪拌強[を凝固界面で同じく表1
に示す磁束密度とした。また、C−の中心偏析度を前記
第1図をもとに説明したと同じ要領で測定した。さらに
1 リング状試験片の厚さ変化量を前記第2図〜第4図
をもとに説明したと同じ要領で測定した。これらの結果
を表1に示す。
Example Steel having the chemical composition A- shown in Table 1 was melted and then continuously cast at the superheating temperature shown in Table 1 at the time of casting. At this time, electromagnetic stirring was applied, and the stirring intensity [also shown in Table 1] was determined at the solidification interface.
The magnetic flux density was set as shown in . Further, the center segregation degree of C- was measured in the same manner as explained based on FIG. 1 above. Furthermore, the amount of change in thickness of the ring-shaped test piece was measured in the same manner as explained based on FIGS. 2 to 4 above. These results are shown in Table 1.

比較例 表2に示すL−8の化学成分の鋼を溶製したのち鋼塊鋳
造法によって鋼塊を製造した。また、T〜Yは鋳込時の
過熱温rl!Lを表2に示す値にして連続鋳造法によっ
て鋳片f:製造した鋼である。この際電磁攪拌を加え、
その攪拌強度を凝固界面で同じく表2に示す磁束密度と
した。また、鋼塊鋳造法および連続鋳造法によるものに
ついて、各々Cの中心偏析Ifを前記第1図をもとに説
明したと同じ要領で測定すると共に、リング試験片の厚
さ変化量を前記@2図〜第4図をもとに説明したと同じ
要領で測定した。これらの結果を表2に示す。
Comparative Example A steel having a chemical composition of L-8 shown in Table 2 was melted and then a steel ingot was manufactured by a steel ingot casting method. In addition, T to Y are superheating temperatures rl during casting! Slab f: Steel manufactured by continuous casting method with L as shown in Table 2. At this time, add electromagnetic stirring,
The stirring intensity was set to the magnetic flux density shown in Table 2 at the solidification interface. In addition, for the steel ingot casting method and the continuous casting method, the center segregation If of C was measured in the same manner as explained based on FIG. The measurement was carried out in the same manner as explained based on FIGS. 2 to 4. These results are shown in Table 2.

91および表2に示すように、Cの中心偏析度が1.1
〜1.0の範囲にある本発明によるものではリング状試
験片の厚さ変化量が小さく、ばらつきも小さな値になっ
ているのに対して、Cの中心偏析度が1.1を越える比
較例によるものではリング状試験片の厚さ変化量が大き
く、ばらつきも大きな値になっており、リング状試験片
の厚さ変化量の平均値が比較的小さい(R,U)ときで
もそのばらつきは本発明によるものより大きくなってお
り、本発明によるものでは歪が小さくかつ一定歪が得ら
れることが明らかである。
91 and Table 2, the central segregation degree of C is 1.1.
In the case of the present invention, which is in the range of ~1.0, the thickness change of the ring-shaped specimen is small and the variation is also small, whereas in comparison, the center segregation degree of C exceeds 1.1. In the example, the thickness change of the ring-shaped test piece is large and the variation is also large, and even when the average value of the thickness change of the ring-shaped test piece is relatively small (R, U), the variation is large. is larger than that according to the present invention, and it is clear that the strain according to the present invention is small and a constant strain can be obtained.

さらに、表1および表2に示すように、鋳込時の過熱温
度が40℃より高く、かつ電磁攪拌の強度が40ガウス
より小さい場合にはCの中心偏析度が1.1を越えてい
ることが明らかであり、また鋼塊鋳造法によってCの中
心偏析度1.1−1.0の部分を得ようとする場合にそ
の歩留りがかなり小さいことも確認された。
Furthermore, as shown in Tables 1 and 2, when the superheating temperature during casting is higher than 40°C and the intensity of electromagnetic stirring is lower than 40 Gauss, the center segregation degree of C exceeds 1.1. It is clear that this is true, and it has also been confirmed that when attempting to obtain a part with a C central segregation degree of 1.1-1.0 by the steel ingot casting method, the yield is quite small.

以上説明してきたように、本発明は表面硬化処理におけ
る歪の発生が小さくかつ、発生する歪のばらつきも小さ
いという特徴を有する肌焼鋼およびその製造法を提供す
るものであり、工業的価値は絶大である。
As explained above, the present invention provides a case-hardened steel and a method for producing the same, which are characterized by low strain generation during surface hardening treatment and small variation in strain generated, and have industrial value. It is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCの中心偏析度の測定要領を示す説明図、第2
図および第3図(a)〜(d)は光面硬化処理品の厚さ
変化を測定するための試験片の作成工程を示すそれぞれ
工程図および加工状況の説明図、第4図は表面硬化処理
条件の説明図、第5図はCの中心偏析度と厚さ変化量と
の関係の一例を示すグラフ、第6図は鋳込時の過熱温度
とCの中心偏析度との関係の一例を示すグラフ、第7図
は鋳片および鋳塊の部位によるCの中心偏析度の変化を
調べた結果の一例を示すグラフである。 特許出願人  大同特殊鋼株式会社 代理人弁理士   小  塩     豊第1@ 第2図 第3図 (a)        (1)) (C)(山 第4図
Figure 1 is an explanatory diagram showing the procedure for measuring the degree of central segregation of C;
Figures 3 and 3 (a) to 3 (d) are process diagrams and explanatory diagrams of processing conditions, respectively, showing the process of creating test pieces for measuring thickness changes of light surface hardened products, and Figure 4 is surface hardening. An explanatory diagram of processing conditions. Figure 5 is a graph showing an example of the relationship between the central segregation degree of C and the amount of thickness change. Figure 6 is an example of the relationship between the superheating temperature during casting and the central segregation degree of C. FIG. 7 is a graph showing an example of the results of investigating changes in the center segregation degree of C depending on the location of the slab and ingot. Patent Applicant Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Oshio 1 @ Figure 2 Figure 3 (a) (1)) (C) (Mountain Figure 4)

Claims (8)

【特許請求の範囲】[Claims] (1)  連続鋳造によって製造した肌焼鋼であって、
C(炭素)の中心偏析度が1.1− i、oの範囲にあ
る一片から製造したことを特徴とする低歪肌焼鋼。
(1) Case-hardened steel manufactured by continuous casting,
A low-strain case-hardening steel characterized in that it is manufactured from a piece having a center segregation degree of C (carbon) in the range of 1.1-i,o.
(2)肌焼鋼が、重量−で、C: 0.4 S以下、3
1:1%以下、Mn : 2 S以下、Cr : 3−
以下、Ni:5−以下、MO: 1 %以下t−含−>
、残部実質的にF・よりなる特許請求の範囲第(1)項
記載の低歪肌焼鋼。
(2) The case hardening steel has a weight of -, C: 0.4 S or less, 3
1: 1% or less, Mn: 2S or less, Cr: 3-
Below, Ni: 5- or less, MO: 1% or less t-containing->
, the balance substantially consisting of F. according to claim (1).
(3)肌焼鋼が、重量−で、C: 0.25〜0.35
 % 。 3i : 0.5 S以下、Mn : 0.7〜1.5
 % %Cr : 0.35〜1 %、 ht : 0
.01〜0.06 %、N : 0.01〜0.025
チを含み、残部実質的にF・よりなる特許請求の範囲第
(1)項記載の低歪肌焼鋼。
(3) Case hardening steel has a weight of -C: 0.25 to 0.35
%. 3i: 0.5 S or less, Mn: 0.7 to 1.5
%%Cr: 0.35-1%, ht: 0
.. 01-0.06%, N: 0.01-0.025
The low strain case-hardening steel according to claim 1, which comprises F. and the remainder substantially F.
(4)  肌fi 鋼d!、重t*i”、C: 0.2
5〜0.35 S 。 St : 0.5%以下、Mn : 0.7〜1.5 
%、(:r : 0.35〜1 qlb %*t : 
0.01〜0.06 %、N : 0.01−0.02
5チ、Nl : 2−以下を含み、残部実質的KF・よ
りなる特許請求の範囲第(1)項記載の低歪肌焼鋼。
(4) Hada fi steel d! , weight t*i”, C: 0.2
5-0.35S. St: 0.5% or less, Mn: 0.7 to 1.5
%, (:r: 0.35-1 qlb%*t:
0.01-0.06%, N: 0.01-0.02
5, Nl: 2- or less, and the remainder substantially consists of KF.
(5)肌焼鋼が、重量%で、C: 0.25〜0.35
 % 。 St : 0.5 S以下、Mn : 0.7〜1.5
 % %Cr : 0.35〜1−1AA : 0.0
1〜0.06チ、N : 0.01〜0.025%、M
o : 0.3 ’14以下を含み、残部実質的にF・
よりなる特許請求の範囲第(1)項記載の低歪肌焼鋼。
(5) Case hardening steel has C: 0.25 to 0.35 in weight%
%. St: 0.5 S or less, Mn: 0.7 to 1.5
%%Cr: 0.35-1-1AA: 0.0
1~0.06chi, N: 0.01~0.025%, M
o: 0.3'14 or less, the rest is substantially F・
A low strain case hardening steel according to claim (1).
(6)肌焼鋼が、重量−で、C: 0.25〜0.35
 % 。 si : o、s s以下、Mn : 0.7〜1.5
%、Cr : 0.35〜1%、)L : 0.01〜
0.06 %%N : 0.01〜0.025チ、Ni
:2%以下、Mo : 0.316以下を含み、残部実
質的にFeよりなる特許請求の範囲第(1)項記載の低
歪肌焼鋼。
(6) Case hardening steel has a weight of -C: 0.25 to 0.35
%. si: o, s or less, Mn: 0.7 to 1.5
%, Cr: 0.35~1%,)L: 0.01~
0.06%%N: 0.01-0.025chi, Ni
2% or less, Mo: 0.316 or less, and the remainder substantially consists of Fe.
(7)肌焼鋼が、o : a o ppm以下である特
許請求の範囲第(1)項ないし第(6)項のいずれかに
記載の低歪肌焼鋼。
(7) The low strain case hardening steel according to any one of claims (1) to (6), wherein the case hardening steel has an o: a o ppm or less.
(8)低歪肌焼鋼を製造するにあたり、前記鋼を連続鋳
造法により製造し、この際、鋳込時の過熱温度を40℃
以下にすると共に、電磁攪拌時の攪拌強度を凝固界面で
40ガウス以上とすることを特徴とする低歪肌焼鋼の製
造方法。
(8) In producing low-strain case hardening steel, the steel is produced by continuous casting, and at this time, the superheating temperature during casting is set to 40°C.
A method for producing a low strain case hardening steel, characterized in that the stirring intensity during electromagnetic stirring is 40 Gauss or more at the solidification interface.
JP56148817A 1981-09-22 1981-09-22 Case hardened steel and its manufacture Pending JPS5852459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56148817A JPS5852459A (en) 1981-09-22 1981-09-22 Case hardened steel and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56148817A JPS5852459A (en) 1981-09-22 1981-09-22 Case hardened steel and its manufacture

Publications (1)

Publication Number Publication Date
JPS5852459A true JPS5852459A (en) 1983-03-28

Family

ID=15461374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56148817A Pending JPS5852459A (en) 1981-09-22 1981-09-22 Case hardened steel and its manufacture

Country Status (1)

Country Link
JP (1) JPS5852459A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075547A (en) * 1983-09-28 1985-04-27 Aichi Steel Works Ltd Steel for carburization
JPS6447838A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Curburizing steel
US9422613B2 (en) 2012-01-26 2016-08-23 Nippon Steel & Sumitomo Metal Corporation Case hardened steel having reduced thermal treatment distortion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915625A (en) * 1972-06-03 1974-02-12
JPS4945971B1 (en) * 1969-09-09 1974-12-07
JPS50131632A (en) * 1974-04-08 1975-10-17
JPS5465132A (en) * 1977-11-02 1979-05-25 Kobe Steel Ltd Continuous casting method
JPS54125132A (en) * 1978-03-24 1979-09-28 Nisshin Steel Co Ltd Continuous casting of ferite stainless steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945971B1 (en) * 1969-09-09 1974-12-07
JPS4915625A (en) * 1972-06-03 1974-02-12
JPS50131632A (en) * 1974-04-08 1975-10-17
JPS5465132A (en) * 1977-11-02 1979-05-25 Kobe Steel Ltd Continuous casting method
JPS54125132A (en) * 1978-03-24 1979-09-28 Nisshin Steel Co Ltd Continuous casting of ferite stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075547A (en) * 1983-09-28 1985-04-27 Aichi Steel Works Ltd Steel for carburization
JPS6447838A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Curburizing steel
US9422613B2 (en) 2012-01-26 2016-08-23 Nippon Steel & Sumitomo Metal Corporation Case hardened steel having reduced thermal treatment distortion

Similar Documents

Publication Publication Date Title
US6702981B2 (en) Low-carbon, low-chromium carburizing high speed steels
JP7252761B2 (en) Precipitation hardening steel and its manufacture
JP6628014B1 (en) Steel for parts to be carburized
JP2016003395A (en) Steel for surface treatment machine component having excellent properties, component of the steel and manufacturing method therefor
JP2002226939A (en) Non-refining steel for soft-nitriding
JP6729686B2 (en) Non-heat treated steel for induction hardening
JPH08127845A (en) Graphite steel,its article and its production
US5536335A (en) Low silicon rapid-carburizing steel process
WO2013120903A1 (en) A bearing steel composition
JP2009191330A (en) Electric resistance steel tube
JPS6033338A (en) Steel to be carburized
JPS59182952A (en) Case hardening steel
JPH07173530A (en) Production of high toughness rail having pearlite metallic structure
JPS6365020A (en) Manufacture of surface hardened steel for rapid heating and quenching
JPS6223929A (en) Manufacture of steel for cold forging
JPS5852459A (en) Case hardened steel and its manufacture
US4853049A (en) Nitriding grade alloy steel article
JPH03254342A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
JPH08269564A (en) Production of nonmagnetic thick stainless steel plate
JP2017179394A (en) Case hardened steel
US2585372A (en) Method of making low-alloy steel
JP3409275B2 (en) Case hardened steel with little heat treatment distortion
WO1987004731A1 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability
JP7205067B2 (en) Non-heat treated steel for induction hardening
JPS59123743A (en) Carburizing steel producing slight strain due to heat treatment