JPS5852449A - Melting and refining method for metallic chromium - Google Patents
Melting and refining method for metallic chromiumInfo
- Publication number
- JPS5852449A JPS5852449A JP14961681A JP14961681A JPS5852449A JP S5852449 A JPS5852449 A JP S5852449A JP 14961681 A JP14961681 A JP 14961681A JP 14961681 A JP14961681 A JP 14961681A JP S5852449 A JPS5852449 A JP S5852449A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- melting
- chromium
- metallic
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は金属クロムの溶解精錬方法Kllする。[Detailed description of the invention] The present invention provides a method for melting and refining metallic chromium.
更に詳しくは金属クロムの消耗型中空電極のアーク溶解
による精錬方法に関する。More specifically, the present invention relates to a method for refining metal chromium by arc melting using a consumable hollow electrode.
機械9機器類の精密化又は高度の性能等が要求されるに
つれ、それらを構成する材料についても高純度品が求め
られている。As machines and equipment are required to be more precise and have higher performance, the materials that make up these devices are also required to be of high purity.
金属クロムの高純度品は、従来からクロム溶液の電解に
より製造されているが近時、工業の発展と共に益々高純
度品が望まれるようになり合金添加用原料のみならず金
属クロム自体での利用が考えられるようになってきた。High-purity products of metallic chromium have traditionally been produced by electrolysis of chromium solutions, but in recent years, with the development of industry, high-purity products have become increasingly desirable and are being used not only as raw materials for alloy addition, but also as metallic chromium itself. has become possible to think about.
金属クロムは極めて高融点(1890℃±10℃)の物
質であるため、その溶解には当然高温度が必要であシ、
又高温状態で金属クロムは活性であるので、溶解の際の
炉材を浸蝕しやすく炉材から不純分の混入が避けられな
い。又、高温度によ抄起る前記したような弊害を防ぐた
め真空炉等の減圧下で溶解を行うと蒸気圧が大きい(1
928℃/20 騙)ig )金属クロムは蒸発損失が
著しく多くなる。Metallic chromium is a substance with an extremely high melting point (1890°C ± 10°C), so naturally high temperatures are required to melt it.
Furthermore, since metallic chromium is active at high temperatures, it tends to corrode the furnace material during melting, and contamination of impurities from the furnace material is unavoidable. In addition, in order to prevent the above-mentioned disadvantages caused by high temperatures, melting is performed under reduced pressure in a vacuum furnace, etc., resulting in a high vapor pressure (1
928℃/20 ig) Metallic chromium has a significantly high evaporation loss.
従って通常の金属の精錬の如く、溶解工程の入る精練法
は、金属クロムの精錬には適用困難とされている。Therefore, it is difficult to apply a scouring method that involves a melting process like the usual smelting of metals to the smelting of metallic chromium.
金属の溶解精錬方法として、従来から被精錬金属の消耗
型電極を用いて、アーク熱により、該電極の先端から徐
々に溶解し、水冷鋳型で溶解物を凝固させ、高純度の鋳
塊(インゴット)を得る方法が提案されている。Traditionally, metal melting and refining methods use a consumable electrode for the metal to be refined. Arc heat gradually melts the metal from the tip of the electrode, solidifies the melt in a water-cooled mold, and produces a high-purity ingot. ) has been proposed.
この方法は、通常被溶解金属を電極形に溶解凝固させて
成形し、これをアーク熱によシ再溶解する方法である。This method usually involves melting and solidifying the metal to be melted into an electrode shape, and then remelting it using arc heat.
しかし金属クロムは前記した如く溶解が極めて困難であ
り、従来法のように溶融法による電極の形成が困難であ
る。However, as described above, metal chromium is extremely difficult to melt, making it difficult to form electrodes by the conventional melting method.
本発明者らは金属クロムで形成した消耗型電極のアーク
溶解による金属精錬に於いて金属クロムの焼結によって
得た特殊な形状の電極を用いることにより、高純度金属
クロムを得る方法を見出し、本発明を完成した。The present inventors have discovered a method of obtaining high-purity metallic chromium by using a specially shaped electrode obtained by sintering metallic chromium in metal refining by arc melting of a consumable electrode formed of metallic chromium. The invention has been completed.
即ち本発明は、金属クロムを、長軸線方向に貫通した中
空孔を有する電極に焼結法によシ成形し、この電極の成
形過程に於いて原料クロムの予備精製を行い、更に該成
型体を消耗電極とし、前記中空孔から不活性ガス、又は
これと還元性ガスとの混合ガスを導入しながらこれをア
ーク溶解により溶解し、クロムを精錬する方法を提供す
るものである。That is, in the present invention, metallic chromium is formed into an electrode having a hollow hole penetrating in the long axis direction by a sintering method, the raw material chromium is pre-purified in the process of forming this electrode, and the molded body is further refined. The present invention provides a method for refining chromium by using a consumable electrode as a consumable electrode, and melting the gas by arc melting while introducing an inert gas or a mixed gas of this and a reducing gas through the hollow hole.
次に本発明を更に詳しく説明する。Next, the present invention will be explained in more detail.
本発明で用いる金属クロムは粉状物を主体とするもので
(以下、金属クロム粉と云う)、電解又は他の製錬法で
得だいずれのもので4良いが、純度の面で電解によシ得
られたものが好ましい。The metallic chromium used in the present invention is mainly powdered (hereinafter referred to as metallic chromium powder), and any material that can be obtained by electrolysis or other smelting methods may be used, but in terms of purity, it is preferable to use electrolytic chromium. It is preferable to obtain a good result.
金属クロム粉は粘結剤、例えば澱粉又はポリビニルアル
コール等の有機高分子物質と、及び必要に応じて炭素を
混合、混練し、ついで本発明を特徴付ける 長袖方向に
貫通する中空孔を有する形状に成形する。The metallic chromium powder is mixed and kneaded with a binder, for example, an organic polymer material such as starch or polyvinyl alcohol, and carbon if necessary, and then formed into a shape having hollow holes penetrating in the long sleeve direction, which characterizes the present invention. do.
前記成形は通常の成型法例えばラバープレス法等で行う
ことができる。又成型体の形状は長軸方向に貫通する中
空孔を有する以外は特に制限されるものでないが、その
外観は、一般電極の形状例えば、円柱、角柱等の棒状が
好ましい。The molding can be performed by a conventional molding method such as a rubber press method. Further, the shape of the molded body is not particularly limited except that it has a hollow hole penetrating in the longitudinal direction, but its appearance is preferably in the shape of a general electrode, such as a rod shape such as a cylinder or a prismatic cylinder.
成型体の長軸方向に貫通する中空孔の大きさけ、本発明
の実施の際に気体が円滑に流通しアークを安定させるに
充分な大きさで良く、その大きさは用いる電極によって
決められる。The size of the hollow hole penetrating the molded body in the long axis direction may be large enough to allow gas to flow smoothly and stabilize the arc during the implementation of the present invention, and the size is determined by the electrode used.
陶、前記成形の前に成型体の原料を予備乾燥し、該原料
中に含まれている水分の大部分を除去することが、後の
成形の際の成形性の改善に好結果を与える。Pre-drying the raw material for the molded body before the ceramic molding to remove most of the moisture contained in the raw material gives good results in improving the moldability during subsequent molding.
成型体の焼結は、不活性雰囲気下で好ましくは減圧下例
えば102〜10a)ig、 1200〜1500°C
の温度で1〜5時間行う。The molded body is sintered under an inert atmosphere, preferably under reduced pressure, e.g.
It is carried out for 1 to 5 hours at a temperature of .
本発明は、前記した金属クロム成型体を消耗電極として
アーク溶解するが、金属クロムと酸化クロム及び炭素と
の混合物を成形し、焼結したものを電極として用いるこ
とができる。このような電極を用いることによりクロム
の製錬と精製を効率的に行うことができるので有利であ
る。In the present invention, the metal chromium molded body described above is arc melted as a consumable electrode, but a mixture of metal chromium, chromium oxide, and carbon can be molded and sintered to be used as the electrode. Use of such an electrode is advantageous because chromium can be efficiently smelted and purified.
この際、金属クロムに混合する酸化クロムの量は、クロ
ム純分として50重量旬ス加えることができる。At this time, the amount of chromium oxide to be mixed with metallic chromium can be 50% by weight as pure chromium.
Cr2O3−1−5C→20r+5c。Cr2O3-1-5C→20r+5c.
本発明では、上記化学式に基づく化学量論量及び金属ク
ロム粉のみを用いた際と同様に金属クロム粉に含まれる
酸素を除去するに充分な量を目安とした炭素を用いる。In the present invention, carbon is used in a stoichiometric amount based on the above chemical formula and in an amount sufficient to remove oxygen contained in the metal chromium powder, similar to when only the metal chromium powder is used.
金属クロム粉、酸化クロム。Metallic chromium powder, chromium oxide.
炭素め混合物は前記と同様に成形、焼結を行う。The carbonaceous mixture is shaped and sintered in the same manner as described above.
このような条件で焼結を行うと用いた酸化クロムは、は
とんど還元され金属クロムとなり、又消耗電極として用
いる際の強度及び導電性は金属クロム粉で構成した電極
と殆んど同じである。When sintering is performed under these conditions, the chromium oxide used is reduced to metallic chromium, and when used as a consumable electrode, the strength and conductivity are almost the same as electrodes made of metallic chromium powder. It is.
本発明は、アーク溶解の際消耗電極の長軸刃°向に貫通
する中空孔から、不活性ガス又は不活性ガスと還元性ガ
スとの混合ガスを溶解部に導入することが特徴である
本発明者は金属の消耗電極をアーク溶解する際1電極の
中空孔から不活性ガスを導入し、アークを安定させて溶
解する方法について先に特許出願した、(特許願 昭和
55年9月6日付出願)上記特許出願にかかる発明は、
炭素鋼、ステンレス鋼、その他多ぐの重金属又は軽金桝
からなる中空孔を持つ消耗電極を、その中空孔から不活
性ガス等を導入しながらアークにより再溶解し、精錬す
る方法に関するものである。The present invention is characterized in that during arc melting, an inert gas or a mixed gas of an inert gas and a reducing gas is introduced into the melting part through a hollow hole penetrating in the direction of the long axis of the consumable electrode. The inventor previously filed a patent application for a method of arc melting metal consumable electrodes by introducing inert gas through a hollow hole in one electrode to stabilize the arc and melt the metal consumable electrodes (patent application dated September 6, 1980). Application) The invention related to the above patent application is
This relates to a method for remelting and refining consumable electrodes with hollow holes made of carbon steel, stainless steel, and many other heavy metals or light metals using an arc while introducing an inert gas, etc. through the hollow holes. .
本発明者らは被溶解金属の内前記したように特に高融点
を持ち溶解が困難な金属クロムの溶解精錬にこの方法を
適用し、更に付随的に前述のように特殊な方法で得たク
ロム消耗電極を使用し得ることを見出し本発明を完成し
たものである。The present inventors applied this method to the melting and refining of metal chromium, which has a particularly high melting point and is difficult to melt, as described above, and incidentally, chromium obtained by a special method as described above. The inventors discovered that consumable electrodes could be used and completed the present invention.
本発明で用いるアーク溶解炉は、消耗電極を垂直に支持
し、これを上下に移動させる昇降装置、溶融金属を外気
から遮断するだめのシール部分、及びアーク発生用電源
からなる。The arc melting furnace used in the present invention comprises a lifting device that supports the consumable electrode vertically and moves it up and down, a seal portion that blocks the molten metal from the outside air, and a power source for generating an arc.
アーク発生用電源は通常直流が使用され、直流正極性(
電極:負、金属:正)直流逆極性(電極:正、金属:負
)のいずれでも良い。又アークは交流でも可能である。DC power is usually used as the power source for arc generation, and DC positive polarity (
Either of DC reverse polarity (electrode: positive, metal: negative) (electrode: negative, metal: positive) may be used. The arc can also be an alternating current.
消耗電極の溶解に際しては消耗電極を貫通する中空孔の
上部から不活性ガス例えばアルゴンガス又は不活性ガス
と還元性ガス例えば水素ガスとの混合ガスを導入する。When melting the consumable electrode, an inert gas such as argon gas or a mixed gas of an inert gas and a reducing gas such as hydrogen gas is introduced from the upper part of the hollow hole penetrating the consumable electrode.
溶解中にこのようなガスを供給すると、電極のアークが
安定し電気的フリッカ−が少なくなり力率が向上す番な
ど操業が極めて効率的となり、又容易となる。Supplying such a gas during melting stabilizes the electrode arc, reduces electrical flicker, and improves the power factor, making operation extremely efficient and easy.
又、前記混合ガスを用いると、得られたインゴット中の
残留炭素を減少させる効′果がある。Further, the use of the mixed gas has the effect of reducing residual carbon in the obtained ingot.
前記ガスの供給速度は用いる電極の大きさによって異な
るが、アークが安定となるに適当な速度が必要で必要以
上に前記速度が大であると、アークが逆に不安定となる
ので好ましくない。The gas supply speed varies depending on the size of the electrode used, but a suitable speed is required for the arc to become stable, and if the speed is higher than necessary, the arc will become unstable, which is not preferable.
溶解は、鋳型底部に置かれた被溶解金属塊と電極を瞬間
的に接触させてスタートアークを発生させ溶解を開始す
る。溶解の進行とともに電極先端は溶融面と一定の距離
を保つように降下させ溶解を続ける。溶解で得たインゴ
ットの鋳肌を良好に保つこと、及び精錬(脱硫)を目的
として溶解中にフラックスを添加することが好ましい。Melting is performed by momentarily bringing an electrode into contact with the metal mass to be melted placed at the bottom of the mold to generate a starting arc and begin melting. As melting progresses, the electrode tip is lowered to maintain a constant distance from the melting surface to continue melting. It is preferable to add flux during melting for the purpose of maintaining a good casting surface of the ingot obtained by melting and for refining (desulfurization).
この除用いるフラックスはCaF、 を主成分とし他
に7フ化物、又は酸化物、塩化物等を添加した多成分系
の7ラツクス、例えばOaF、−NaF、 CaF2−
fiJ40g 、 CaF2 Cab、 0aF2
Aム03−Cab、 CaF2−Ba。The flux to be removed is a multi-component 7-lux consisting mainly of CaF and other heptafides, oxides, chlorides, etc., such as OaF, -NaF, CaF2-
fiJ40g, CaF2 Cab, 0aF2
Am03-Cab, CaF2-Ba.
C!aF、−BaC!4が好ましい。C! aF, -BaC! 4 is preferred.
本発明では更に、電極の溶解中に金属クロム粉末又は粒
を溶解部に添加し、これらを同時に溶解することができ
る。この際添加し得る金属クロムの量は、消耗電極の重
量の10〜50重量%まで可能で、電極の中空孔から、
又は、別系統で溶解部に添加する。Further, in the present invention, metallic chromium powder or grains can be added to the melting part during melting of the electrode, and these can be melted at the same time. The amount of metallic chromium that can be added at this time can range from 10 to 50% by weight of the weight of the consumable electrode.
Alternatively, add it to the dissolution section using a separate system.
この方法は高融点の金属クロムを効率良く溶解すること
を可能くする。This method makes it possible to efficiently melt chromium metal, which has a high melting point.
本発明で得る金属クロムインゴットは高純度で溶解操作
を経たものであるので、合金原料としても溶解し易く、
又、金属クロム単体材料としても加工し利用することが
できる。The metal chromium ingot obtained by the present invention has high purity and has undergone a melting operation, so it can be easily melted as an alloy raw material.
It can also be processed and used as a single metal chromium material.
次に本発明を実施例で更に詳述する。Next, the present invention will be explained in more detail with reference to Examples.
実施例1
電解法により得た金属クロム粉末、−60メツシュ品2
部(11J+y)、−525メツシユ品1部(aS&9
)の混合物に人工黒鉛粉末(−525メツシユ)92.
49を添加し充分混合し喪後、16 wt%ポリビニー
ルアルコール水溶液500dを添加し、充分混練した。Example 1 Metallic chromium powder obtained by electrolytic method, -60 mesh product 2
(11J+y), -525 mesh product 1 part (aS & 9
) to the mixture of artificial graphite powder (-525 mesh) 92.
49 was added and mixed thoroughly, and then 500 d of a 16 wt% polyvinyl alcohol aqueous solution was added and thoroughly kneaded.
電解金属クロムの分析値及び粒度分布。Analysis values and particle size distribution of electrolytic metal chromium.
0−60メツシュ品 Cα021チ Sα022−Nα
0271G 0(L5411i
40upα2% 6ON100515%100−15
02FL6% 150〜200’1&6% 200”
ud2t1%
6−525メツシユ品 Cα025チ 8α024−
N1029% 0α56チ
200 up Q、 4 % 20G−525’FL
8* 525 ud9A8%
この混合物を120℃熱風乾燥機で約1時間予備乾燥し
中芯を有するゴム型に充填し静水圧プレスで5tβに加
圧し、成型した。成形品の太きさけ、外径19%φ中空
孔内径6xφ、全長310%で重量は約410gであっ
た。この成型体を120℃の熱風乾燥機で約6時間乾燥
した。0-60 mesh product Cα021chi Sα022-Nα
0271G 0(L5411i 40upα2% 6ON100515%100-15
02FL6% 150~200'1&6% 200"
ud2t1% 6-525 mesh product Cα025chi 8α024-
N1029% 0α56chi 200 up Q, 4% 20G-525'FL
8*525 ud9A8% This mixture was pre-dried for about 1 hour in a hot air dryer at 120°C, filled into a rubber mold having a core, and pressurized to 5tβ using a hydrostatic press to mold. The molded product was thick, had an outer diameter of 19%φ, a hollow hole inner diameter of 6×φ, a total length of 310%, and weighed about 410 g. This molded body was dried in a hot air dryer at 120° C. for about 6 hours.
次いでこの乾燥した成型体をカーボンヒーターを有する
抵抗加熱式真空炉に装入し1400°C9(L1〜5
Torrの条件で2時間焼結した。得られた焼結体中の
酸素tFi、α01チ(原料クロム中酸素ass’)で
あった。この焼結体に、鉄材の電源接続端子を取シ付け
、内径54%φ〜56%φ。Next, this dried molded body was placed in a resistance heating type vacuum furnace equipped with a carbon heater and heated at 1400°C9 (L1~5
Sintering was performed under Torr conditions for 2 hours. The oxygen tFi in the obtained sintered body was α01chi (oxygen ass' in the raw material chromium). A power connection terminal made of iron is attached to this sintered body, and the inner diameter is 54%φ to 56%φ.
深さ140%の逆テーパー状の銅製水冷鋳型底部へクロ
ム塊(20%φX20%)を装入しこれと消耗電極先端
を瞬時的に接触させアークを発生させた。A chromium ingot (20% φ x 20%) was charged into the bottom of a reversely tapered copper water-cooled mold with a depth of 140%, and the tip of the consumable electrode was brought into instantaneous contact to generate an arc.
伺、電極中空孔よりアルゴンガスを1217+で、又ガ
スシール部へFia&分で供給し、更に溶解中に計10
9のCaF、を順次添加した。溶解の条件は次のとおシ
である。Then, argon gas was supplied from the electrode hollow hole at 1217+ and to the gas seal section at Fia & min, and then a total of 10
9 of CaF were added sequentially. The conditions for dissolution are as follows.
電圧:16〜52V、[流:50G 〜800A。Voltage: 16-52V, Current: 50G-800A.
所要時間=155秒、溶解量:275F、溶解量[:1
22秒分、極性:直流正極性
得られた金属クロムインゴットの分析値は、酸素:α0
5%、炭素:(102%、窒素:(LOO4チ、硫黄:
[LO15チであった。Required time = 155 seconds, Dissolution amount: 275F, Dissolution amount [:1
22 seconds, polarity: DC positive polarity The analysis value of the obtained metal chromium ingot is: Oxygen: α0
5%, Carbon: (102%, Nitrogen: (LOO4CH, Sulfur:
[LO15 was.
実施例2
電解金属クロムの一60メツシユ粉10kl、同一32
5メツシユ粉5J9及び顔料用酸化クロム7.5j9.
人工黒鉛粉(−525メツシユ)1.7852及び16
vt%ポリビニールアルコール水溶液600dをニー
ダ−タイプの混合機で充分混合。Example 2 Electrolytic metal chromium 160 mesh powder 10kl, same 32
5 mesh powder 5J9 and chromium oxide for pigments 7.5j9.
Artificial graphite powder (-525 mesh) 1.7852 and 16
Thoroughly mix 600 d of vt% polyvinyl alcohol aqueous solution with a kneader type mixer.
混練し実施例1と同様に予備乾燥、成型し、次いで同様
の真空炉で焼結した、(1400℃l11〜8 Tor
r+ ’時間)焼結後の成型体は酸素(LO49G。The mixture was kneaded, pre-dried and molded in the same manner as in Example 1, and then sintered in the same vacuum furnace (1400°C 11-8 Torr).
r+' hours) The molded body after sintering is exposed to oxygen (LO49G.
炭素a5チであった。It was carbon a5chi.
次いで実施例1と同様に電源接続端子を取付け、同様の
アーク炉を用いアルゴンと水素の混合ガス(水素1o
vots )を中空孔から15d、ガスシール部へは、
アルゴンガスを844で供給し、又、CaaF、80
%、 Caa020 %の組成の7ラツクス計409を
添加して、溶解した。溶解条件は、電圧: 19〜54
V、電流=500〜80oA、所要時間=156秒、
溶解量:240F、溶解速度: 9297%、極性:直
流正極性であった。Next, a power supply connection terminal was attached in the same manner as in Example 1, and a mixed gas of argon and hydrogen (hydrogen 1 oz.
vots) from the hollow hole to the gas seal part,
Argon gas was supplied at 844, and CaaF, 80
A total of 409 lacs of 7 lux having a composition of 0.2% and 0.2% Caa were added and dissolved. The melting conditions are voltage: 19-54
V, current = 500 to 80oA, time required = 156 seconds,
Dissolution amount: 240F, dissolution rate: 9297%, polarity: DC positive polarity.
得られた金属クロ台インゴットは均質で、酸素:104
%、炭素:α05チ、窒素:l1oosl。The obtained metal black ingot was homogeneous and had an oxygen content of 104
%, carbon: α05ti, nitrogen: l1oosl.
硫黄:nooB%を含むものであった。Sulfur: Contained nooB%.
実施例5
電解金属クロム粉1019(80〜150メツシュ=4
五4%、150〜200メッシ、:29.3%、200
〜250メツジユニア、21,250メツシュ:2α1
チ)及び−525メツシュ粉5J19人工黒鉛粉(−5
25メ、シュ) 97 f!、 16wtチボリビニー
ルアルコール水溶液450−を実施例1と同様に処理し
てクロム消耗電極を得た。Example 5 Electrolytic metal chromium powder 1019 (80-150 mesh = 4
54%, 150-200 Messi: 29.3%, 200
~250 mesh unia, 21,250 mesh: 2α1
h) and -525 mesh powder 5J19 artificial graphite powder (-5
25 me, sh) 97 f! , 16wt Tivoli vinyl alcohol aqueous solution 450- was treated in the same manner as in Example 1 to obtain a chromium consumable electrode.
このものを用いて電極の中空孔よ)アルゴンガスヲ16
L15+、シール部へ10々分供給し更に電極の周囲か
ら金属クロム粉([L1〜5’X) 100 gとフラ
ックス(CaF、二40%、j403[0%。Use this material to fill the hollow hole of the electrode with argon gas.
L15+ was supplied to the sealing part for 10 minutes, and then 100 g of metal chromium powder ([L1 to 5'X) and flux (CaF, 240%, j403 [0%) were supplied from around the electrode.
CaO:50%の組成で粒度(Ll 〜2%)459を
、溶解中に全て装入する様に添加し溶解を行った。CaO: 50% composition and particle size (Ll ~2%) 459 were added and dissolved so that they were all charged during melting.
溶解条件は、電圧:17〜62v、電流=500〜80
0 A、所要時間:175秒。溶解量:580g、溶解
速度+150g贋、極性:直流正極性
電極周囲から添加したクロム粉は全て溶解され、得られ
たクロムインゴットは均質で、酸素α06−1炭素α0
1チ、窒素α007チ、硫黄α015−であシ、硬度は
ビッカース硬度(20峠荷重)で120〜140で容易
に機械加工のできるものであった。The melting conditions are voltage: 17-62v, current = 500-80v.
0 A, Required time: 175 seconds. Dissolution amount: 580 g, dissolution rate + 150 g Counterfeit, polarity: DC positive polarity All the chromium powder added from around the electrode was dissolved, and the obtained chromium ingot was homogeneous, containing oxygen α06-1 carbon α0
It was made of 100% nitrogen, α007% nitrogen, and 015% sulfur, and had a Vickers hardness (20 pass load) of 120 to 140, making it easy to machine.
特許出願人 東洋曹達工業株式会社 特許出願人 草 川−隆 次Patent applicant: Toyo Soda Kogyo Co., Ltd. Patent applicant: Takashi Kusakawa
Claims (1)
る形状に焼結成形し、該成型体を消耗電極として、前記
中空孔から不活性ガス又は不活性ガスと還元性ガスの混
合ガスを導入しながらこれをアーク溶解することを特徴
とする金属クロムの溶解精錬方法。 (2) 不活性ガスとしてアルゴン、還元性ガスとして
水素を用いる特許請求の範囲第(1)項記載の方法。 (6)金属クロム、酸化クロム及び炭素を焼結成形した
成型体を消耗電極として用いる特許請求の範囲第1又は
第2項記載の方法。 (4) 金属クロム粒を消耗電極中空孔′!たは別系
統より溶解部へ添加し消耗電極と共に溶解する、特許請
求の範囲第1項、第2項又は第5[Scope of Claims] (1) Metallic chromium is sintered and formed into a shape having a hollow hole penetrating in the long sleeve direction, and the molded body is used as a consumable electrode to reduce inert gas or inert gas from the hollow hole. A method for melting and refining metallic chromium, which is characterized by arc melting the mixed gas while introducing it. (2) The method according to claim (1), wherein argon is used as the inert gas and hydrogen is used as the reducing gas. (6) The method according to claim 1 or 2, in which a molded body obtained by sintering and forming metal chromium, chromium oxide, and carbon is used as a consumable electrode. (4) Electrode hollow hole that consumes metal chromium grains! or added to the melting part from a separate system and dissolved together with the consumable electrode, claim 1, 2 or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14961681A JPS5852449A (en) | 1981-09-24 | 1981-09-24 | Melting and refining method for metallic chromium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14961681A JPS5852449A (en) | 1981-09-24 | 1981-09-24 | Melting and refining method for metallic chromium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5852449A true JPS5852449A (en) | 1983-03-28 |
Family
ID=15479100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14961681A Pending JPS5852449A (en) | 1981-09-24 | 1981-09-24 | Melting and refining method for metallic chromium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5852449A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0456349A2 (en) * | 1990-04-09 | 1991-11-13 | Tosoh Corporation | Corrosion-resistant material for sulfur-containing alkali metal salts and equipment for producing polyarylene sulfide using the same, and polyarylene sulfide and process for producing the same |
JPH0610075A (en) * | 1992-06-29 | 1994-01-18 | Japan Metals & Chem Co Ltd | Method and apparatus for producing high purity metallic chromium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5215142A (en) * | 1975-07-28 | 1977-02-04 | Takenaka Komuten Co | Method of joining composite reinforcement |
JPS5339202A (en) * | 1976-09-21 | 1978-04-11 | Daido Steel Co Ltd | Method of melting and refining plasma |
-
1981
- 1981-09-24 JP JP14961681A patent/JPS5852449A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5215142A (en) * | 1975-07-28 | 1977-02-04 | Takenaka Komuten Co | Method of joining composite reinforcement |
JPS5339202A (en) * | 1976-09-21 | 1978-04-11 | Daido Steel Co Ltd | Method of melting and refining plasma |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0456349A2 (en) * | 1990-04-09 | 1991-11-13 | Tosoh Corporation | Corrosion-resistant material for sulfur-containing alkali metal salts and equipment for producing polyarylene sulfide using the same, and polyarylene sulfide and process for producing the same |
JPH0610075A (en) * | 1992-06-29 | 1994-01-18 | Japan Metals & Chem Co Ltd | Method and apparatus for producing high purity metallic chromium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050074388A1 (en) | Medium purity metallurgical silicon and method for preparing same | |
JPS59162289A (en) | Production of solid cathode | |
US4216010A (en) | Aluminum purification system | |
CN1040666C (en) | Production process of ferro-titanium alloy | |
JPS5852449A (en) | Melting and refining method for metallic chromium | |
WO2001066809A1 (en) | Chromium-containing metal and method for producing the same | |
CN110205652B (en) | Preparation method and application of copper-scandium intermediate alloy | |
JPH0238545B2 (en) | ||
CN113430398B (en) | JCr 98-grade metallic chromium containing vanadium element and preparation method thereof | |
US5011798A (en) | Chromium additive and method for producing chromium alloy using the same | |
US3929456A (en) | Carbothermic production of aluminum | |
JPS55141534A (en) | Manufacture of metallic magnesium | |
CN109487091B (en) | Electroslag remelting arc striking agent and preparation method thereof | |
JPH0820829A (en) | Method for melting copper or copper alloy having low sulfur content | |
US4374667A (en) | Ferrovanadium carbide addition agents and process for their production | |
US4177059A (en) | Production of yttrium | |
JP2568076B2 (en) | Method for preventing the formation of deposits on the walls of metallurgical vessels and metallurgical vessels suitable for carrying out this method | |
JPS5940210B2 (en) | Melting method of titanium alloy for hydrogenation | |
FI69647C (en) | FOERFARANDE FOER FRAMSTAELLNING OCH BEHANDLING AV FERROKROM | |
US4052195A (en) | Method for melting iron-containing material | |
US3114629A (en) | Production of columbium and tantalum | |
JPH0834628A (en) | Production of high-purity quartz glass crucible | |
CN106947893A (en) | A kind of electronic package shell and preparation method thereof | |
JP2004360053A (en) | Method for manufacturing low-carbon metallic titanium with direct electrolysis method | |
RU2148102C1 (en) | Method of preparing ferromanganese |