JPS5851923A - Dry desulfurization of waste gas - Google Patents

Dry desulfurization of waste gas

Info

Publication number
JPS5851923A
JPS5851923A JP56149571A JP14957181A JPS5851923A JP S5851923 A JPS5851923 A JP S5851923A JP 56149571 A JP56149571 A JP 56149571A JP 14957181 A JP14957181 A JP 14957181A JP S5851923 A JPS5851923 A JP S5851923A
Authority
JP
Japan
Prior art keywords
desulfurizing agent
gas
steam
agent
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56149571A
Other languages
Japanese (ja)
Inventor
Takeo Komuro
小室 武勇
Norio Arashi
紀夫 嵐
Takao Hishinuma
孝夫 菱沼
Tsukasa Nishimura
西村 士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP56149571A priority Critical patent/JPS5851923A/en
Publication of JPS5851923A publication Critical patent/JPS5851923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To carry out the regeneration of a desulfurizing agent by heat desorption without deteriorating capacities thereof, by supplying steam to the heat desorbing and regenerating tower of a dry waste gas desulfurization apparatus to desorb a gas from the desulfurizing agent. CONSTITUTION:Steam 12 is supplied in the vicinity of the boundary part between the heating part 7 and the cooling part 9 of a dry waste gas desulfurization apparatus and raised to the side of the heating part while uniformly dispersed by a dispersing plate 13 having an L shaped cross area. By this mechanism, the desorbed gas desorbed from a desulfurizing agent 3 can be prevented from being diffused to the side of the cooling part 9 and can be prevented to be again readsorbed by the desulfurizing agent 3. As the result, the SO2 adsorbed desulfurizing agent is regenerated by heat desorption without generating the combustion of the desulfurizing agent and deteriorating the capacities of the regenerated desulfurizing agent.

Description

【発明の詳細な説明】 本発明は乾式排煙脱硫法に係り、特に排ガス中の硫黄酸
化物を吸着した脱硫剤を加熱脱着再生し、これを循環再
使用する工程を有する乾式排煙脱硫法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dry flue gas desulfurization method, and particularly to a dry flue gas desulfurization method that includes a step of thermally desorbing and regenerating a desulfurizing agent that has adsorbed sulfur oxides in flue gas, and recycling and reusing it. Regarding.

乾式排煙脱硫法では硫黄酸化物を5〜15%吸着した脱
硫剤を加熱脱着再生して新たな脱硫剤として循環使用す
る。通常、加熱脱着再生塔は上部が加熱部、下部が冷却
部から々す、上部から硫黄酸化物を吸着した脱硫剤を移
動流下させて加熱部に導き、加熱脱着後に冷却部に移動
流下させ脱硫剤を冷却して再生脱硫剤を得る。このとき
、脱着ガスが冷却部に拡散し再吸着を起こさせないよう
に、かつ加熱部での脱着効率を高めるために、冷却部と
加熱部との境界部に不活性ガスを挿入している。不活性
ガスとしてはN2ガスなどの純粋ガスを用いると、高価
となるので、酸素含量の少ない燃焼排ガスを用いていた
In the dry flue gas desulfurization method, a desulfurization agent that has adsorbed 5 to 15% of sulfur oxides is regenerated by thermal desorption and recycled as a new desulfurization agent. Normally, a thermal desorption regeneration tower has a heating section at the top and a cooling section at the bottom.The desulfurizing agent that has adsorbed sulfur oxides is moved down from the top and guided to the heating section, and after thermal desorption, it is moved down to the cooling section for desulfurization. The regenerated desulfurization agent is obtained by cooling the agent. At this time, an inert gas is inserted into the boundary between the cooling section and the heating section in order to prevent the desorption gas from diffusing into the cooling section and causing readsorption and to increase the desorption efficiency in the heating section. Since using a pure gas such as N2 gas as the inert gas would be expensive, combustion exhaust gas with a low oxygen content was used.

しかし、微量の酸素ガスが含有する場合、400〜50
0Cの温度下にある加熱部において、炭素質脱硫剤が燃
焼して機械的強度が低下するとともに脱硫剤の表面に酸
素が吸着されて表面酸化物が形成され、脱硫剤のSO2
吸着速度が低下する要因となっていた。
However, if a trace amount of oxygen gas is contained, 400 to 50
In the heating section at a temperature of 0C, the carbonaceous desulfurization agent burns and its mechanical strength decreases, while oxygen is adsorbed on the surface of the desulfurization agent to form surface oxides, and the SO2 of the desulfurization agent is
This was a factor in reducing the adsorption rate.

本発明の目的は、上記した従来技術の問題点を解消し、
脱硫剤の性能を劣化させることなく円滑に脱硫剤の加熱
吸着再生を行なうことができる乾式排煙脱硫法を提供す
ることにある。
The purpose of the present invention is to solve the problems of the prior art described above,
It is an object of the present invention to provide a dry flue gas desulfurization method that can smoothly perform heat adsorption regeneration of a desulfurization agent without deteriorating its performance.

本発明者らは、脱硫剤の加熱脱着再生に使用されるN2
、酸素含有の少ない燃焼排ガスに代わるパージガスにつ
いて鋏意探究した結果、スチームが極めて有効であるこ
とを見い出し、本発明に到達したのである。
The present inventors discovered that N2 used for thermal desorption regeneration of desulfurization agent
As a result of searching for a purge gas to replace combustion exhaust gas with low oxygen content, they discovered that steam is extremely effective, and arrived at the present invention.

すなわち、本発明は上部および下部にそれぞれ加熱部お
よび冷却部を備えた加熱脱着再生塔の加熱部に硫黄酸化
物を吸着した脱硫剤を移動流下させて硫黄酸化−を加熱
脱着し、次いで脱硫剤を冷却部に移動流下させて脱硫剤
を再生する乾式排煙脱硫法において、前記加熱脱着再生
塔にスチームを供給し、このスチームと脱硫剤から脱着
された脱着ガスとを前記加熱部から抜き出すことを特徴
以下、本発明の実施例を添付図面に基づいて説明する。
That is, in the present invention, a desulfurizing agent adsorbing sulfur oxides is moved and flowed down the heating section of a thermal desorption regeneration tower having a heating section and a cooling section at the upper and lower parts, respectively, to thermally desorb the sulfur oxides, and then the desulfurizing agent In the dry flue gas desulfurization method in which the desulfurization agent is regenerated by moving and flowing down into the cooling section, steam is supplied to the thermal desorption regeneration tower, and the steam and the desorption gas desorbed from the desulfurization agent are extracted from the heating section. Hereinafter, embodiments of the present invention will be described based on the accompanying drawings.

第1図において、ボイラ1から排出され、硫黄酸化物を
含む排ガスは吸着塔2に導入され、ここで排ガス中の硫
黄酸化物は脱硫剤3に吸着される。
In FIG. 1, exhaust gas containing sulfur oxides is discharged from a boiler 1 and is introduced into an adsorption tower 2, where the sulfur oxides in the exhaust gas are adsorbed by a desulfurizing agent 3.

吸着塔2から搬送してきた硫黄酸化物を吸着した脱硫剤
3は、第2図に示す加熱脱着再生塔4の上部ホッパ5に
供給され、脱硫剤3は移動量調整パルプ6から加熱部7
に移動流下する。加熱部7でfd温度400?r〜50
01Tに加熱され、脱硫剤3に吸着された硫黄酸化物が
脱着する。このとき加熱媒体8Aは脱硫剤3と間接熱交
換される。加熱脱着した脱硫剤3は加熱部7から移動流
下して冷却部9に達し、ここで温度150C以下に冷却
される。冷却媒体8Bは加熱脱着した脱硫剤3と間接熱
交換し再生脱硫剤を得る。再生脱硫剤10はバルブ11
によって抜き出し量が調整されながら抜き出され、吸着
塔2に再循環して使用する。
The desulfurizing agent 3 adsorbing sulfur oxides transported from the adsorption tower 2 is supplied to the upper hopper 5 of the thermal desorption regeneration tower 4 shown in FIG.
Move to flow down. FD temperature 400 in heating section 7? r~50
It is heated to 01T, and the sulfur oxides adsorbed on the desulfurizing agent 3 are desorbed. At this time, the heating medium 8A undergoes indirect heat exchange with the desulfurizing agent 3. The desulfurizing agent 3 that has been thermally desorbed moves down from the heating section 7 and reaches the cooling section 9, where it is cooled to a temperature of 150C or less. The cooling medium 8B exchanges indirect heat with the desulfurizing agent 3 that has been thermally desorbed to obtain a regenerated desulfurizing agent. Regenerated desulfurization agent 10 is valve 11
It is extracted while adjusting the extraction amount, and is recycled to the adsorption tower 2 for use.

このような脱硫剤の加熱脱着再生プロセスにおいて、加
熱部7と冷却部9の境界部付近にスチーム12が供給さ
れ、このスチーム12は断面り字状の分散板13によっ
て均一に分散された後、加熱部7側に上昇する。この結
果、脱硫剤3から脱着された脱着ガスは冷却部9側に拡
散することが防止され、脱着ガスが再び脱硫剤3に再吸
着されることが防止される。
In such a thermal desorption and regeneration process of the desulfurizing agent, steam 12 is supplied near the boundary between the heating section 7 and the cooling section 9, and after this steam 12 is uniformly dispersed by the dispersion plate 13 having an angular cross section, It rises to the heating section 7 side. As a result, the desorption gas desorbed from the desulfurization agent 3 is prevented from diffusing to the cooling section 9 side, and the desorption gas is prevented from being readsorbed by the desulfurization agent 3 again.

スチーム12と脱着ガスとの混合ガス14は、次いで凝
縮器15に導入される。ここで混合ガス14を凝縮器1
5に導入する理由は次の通りである。
The mixed gas 14 of steam 12 and desorption gas is then introduced into a condenser 15 . Here, the mixed gas 14 is transferred to the condenser 1
The reason for introducing this in Section 5 is as follows.

不活性ガスとしてプロパンガスを理論空気状態で燃焼さ
せた燃焼排ガスとスチームとによって、SO2を吸着し
た脱硫剤を加熱脱着した際、第1図における加熱脱着再
生塔における流れ14のガス組成は次の通りでアル。
When the desulfurizing agent adsorbing SO2 is thermally desorbed by steam and the combustion exhaust gas obtained by burning propane gas as an inert gas in a stoichiometric air state, the gas composition of stream 14 in the thermal desorption regeneration tower in Fig. 1 is as follows. Al on the street.

燃焼排ガスの場合80214.5%、 CO212,8
%、 N20.36.2%、N236.6%に対して、
スチームの場合So、17.2%、CO216,8%。
For combustion exhaust gas: 80214.5%, CO212.8
%, N20.36.2%, N236.6%,
For steam, So: 17.2%, CO2: 16.8%.

H2O65,7%が得られた。65.7% of H2O was obtained.

すなわち、スチームをパージガスとして使用する場合、
加熱脱着再生塔から排出されるガス中の水分濃度が高い
。この結果、スチームと脱着ガスとの混合ガスをカーボ
ンとの接触還元塔およびクラウス反応器に供給し、硫黄
酸化物を元素状硫黄に還元する場合、式(1)の主反応
の他に式(2)〜式(5)の副反応が起こす、H2Sへ
の転換率が高くなる。
That is, when using steam as a purge gas,
The moisture concentration in the gas discharged from the thermal desorption regeneration tower is high. As a result, when a mixed gas of steam and desorption gas is supplied to a catalytic reduction tower with carbon and a Claus reactor to reduce sulfur oxides to elemental sulfur, in addition to the main reaction of formula (1), in addition to the main reaction of formula (1), 2) - The conversion rate to H2S caused by the side reactions of formulas (5) increases.

C+H20→C0−1−H,、・・・・・・・・・(2
)CO十H20→CO□十H2・・・・・・・・・(3
)したがって混合ガス14を接触還元プロセスに供給す
る前に水分を分縮させ、水分濃度を調整し、SO2の元
素状硫黄への還元を効率的にするものである。
C+H20→C0-1-H,,......(2
) CO1H20→CO□10H2・・・・・・・・・(3
) Therefore, before feeding the mixed gas 14 to the catalytic reduction process, the moisture is fractionated to adjust the moisture concentration and to improve the efficiency of the reduction of SO2 to elemental sulfur.

凝縮器15において、流れ16から冷却媒体を供給し、
流れ17から排出されるガスを分析しながら冷却媒体量
を調整することによって流れ17から排出されるガス中
のH20/ s O2比を調整することができる。凝縮
器15で得られた凝縮水は流れ18から抜き出され、加
熱脱着再生塔4に供給されるだめのスチーム源として利
用するためにスチーム発生器19に供給される。スチー
ム発生器19には流れ20から水が補給され、スチーム
12を発生する。なお、スチームは別系統21からの補
給も可能であり、所要のスチーム量を得るようになって
いる。
In the condenser 15, supplying a cooling medium from stream 16;
By adjusting the amount of cooling medium while analyzing the gas discharged from stream 17, the H20/sO2 ratio in the gas discharged from stream 17 can be adjusted. The condensed water obtained in the condenser 15 is withdrawn from stream 18 and fed to a steam generator 19 for use as a source of steam for supplying the thermal desorption regeneration tower 4 . Steam generator 19 is supplied with water from stream 20 and generates steam 12. Note that steam can also be supplied from another system 21, so that the required amount of steam can be obtained.

凝縮器15から排出されたガスは、接触還元塔22、硫
黄凝縮器23.クラウス反応器24及び硫黄凝縮器25
を経て単体硫黄として回収される。
The gas discharged from the condenser 15 is sent to a catalytic reduction tower 22, a sulfur condenser 23. Claus reactor 24 and sulfur condenser 25
It is recovered as elemental sulfur.

ここで脱着ガス中のスチーム濃度が高い場合、凝縮器1
5においてガス中のN20/So□が調整されるが、I
−I□Sへの転換率が高くなった場合でも、このH2S
とSO2との反応をクラウス反応器24で行なうことが
できるので最終的なS回収率が向上する。
Here, if the steam concentration in the desorption gas is high, the condenser 1
In step 5, N20/So□ in the gas is adjusted, but I
-Even if the conversion rate to I□S becomes high, this H2S
Since the reaction between S and SO2 can be carried out in the Claus reactor 24, the final S recovery rate is improved.

なお、本発明において、分散板の代りに脱硫剤の移動流
下を阻害しない範囲で線速度を高める構造のものを用い
ることができる。
In the present invention, instead of the dispersion plate, one having a structure that increases the linear velocity within a range that does not inhibit the movement and flow of the desulfurizing agent may be used.

以上の通り、本発明によれば脱硫剤の燃焼および再生脱
硫剤の性能劣化を来だすことなく、SO□を吸着した脱
硫剤を加熱脱着して再生することができる。捷たN2、
燃焼排ガスを用いると脱ガスがN2等で希釈されるため
、SO3濃度が低くなり、接触還元塔およびクラウス反
応器における反応性が低下する。一方、本発明ではSO
2はN20で希釈されるが、このN20はクラウス反応
に関与するH2Sを生成する要因となる。
As described above, according to the present invention, the desulfurizing agent that has adsorbed SO□ can be thermally desorbed and regenerated without burning the desulfurizing agent or deteriorating the performance of the regenerated desulfurizing agent. The broken N2,
When combustion exhaust gas is used, the degassed gas is diluted with N2, etc., so the SO3 concentration decreases, and the reactivity in the catalytic reduction tower and Claus reactor decreases. On the other hand, in the present invention, SO
2 is diluted with N20, and this N20 becomes a factor in generating H2S involved in the Claus reaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一例を示すフローシート、第2図は第
1図に用いられる加熱脱着再生塔の概略構成図である。 1・・・ボイラ、2・・・吸着塔、4・・・加熱脱着再
生塔、7・・・加熱部、9・・・冷却部、10・・・再
生脱硫剤、12・・・スチーム、13・・・分散板、1
5・・・凝縮器、19・・・スチーム発生器、22・・
・接触還元塔、23゜25・・・硫黄凝縮器、24・・
・クラウス反応器。 代理人 弁理士 高橋明夫
FIG. 1 is a flow sheet showing an example of the present invention, and FIG. 2 is a schematic diagram of the thermal desorption regeneration tower used in FIG. 1. DESCRIPTION OF SYMBOLS 1... Boiler, 2... Adsorption tower, 4... Thermal desorption regeneration tower, 7... Heating part, 9... Cooling part, 10... Regeneration desulfurization agent, 12... Steam, 13... Dispersion plate, 1
5... Condenser, 19... Steam generator, 22...
・Catalytic reduction tower, 23゜25...Sulfur condenser, 24...
- Claus reactor. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】 1、上部および下部にそれぞれ加熱部および冷却部を備
えた加熱脱着再生塔の加熱部に硫黄酸化物を吸着した脱
硫剤を移動流下させて硫黄酸化物を加熱脱着し、次いで
脱硫剤を冷却部に移動流下させて脱硫剤を再生する乾式
排煙脱硫法において、前記加熱脱着再生塔にスチームを
供給し、このスチームと脱硫剤から脱着された脱着ガス
とを前記加熱部から抜き出すことを特徴とする乾式排煙
脱硫法。 2、特許請求の範囲第1項において、スチームを加熱部
と冷却部との境界部に導入することを特徴とする乾式排
煙脱硫法。 3、特許請求の範囲第1項において、スチームと脱着ガ
スとの混合ガスを凝縮器に導入し、ここでH20/SO
2比を調整した後、接触還元塔に導入することを特徴と
する乾式排煙脱硫法。
[Claims] 1. A desulfurizing agent adsorbing sulfur oxides is moved and flowed down the heating section of a thermal desorption regeneration tower having a heating section and a cooling section at the upper and lower parts, respectively, to thermally desorb sulfur oxides, In the dry flue gas desulfurization method in which the desulfurization agent is then moved down to the cooling section to regenerate the desulfurization agent, steam is supplied to the thermal desorption regeneration tower, and the steam and the desorption gas desorbed from the desulfurization agent are transferred to the heating section. A dry flue gas desulfurization method that is characterized by extracting gas from 2. The dry flue gas desulfurization method according to claim 1, characterized in that steam is introduced into the boundary between the heating section and the cooling section. 3. In claim 1, a mixed gas of steam and desorption gas is introduced into a condenser, where H20/SO
A dry flue gas desulfurization method characterized by adjusting the two ratios and then introducing the flue gas into a catalytic reduction tower.
JP56149571A 1981-09-24 1981-09-24 Dry desulfurization of waste gas Pending JPS5851923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56149571A JPS5851923A (en) 1981-09-24 1981-09-24 Dry desulfurization of waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56149571A JPS5851923A (en) 1981-09-24 1981-09-24 Dry desulfurization of waste gas

Publications (1)

Publication Number Publication Date
JPS5851923A true JPS5851923A (en) 1983-03-26

Family

ID=15478091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56149571A Pending JPS5851923A (en) 1981-09-24 1981-09-24 Dry desulfurization of waste gas

Country Status (1)

Country Link
JP (1) JPS5851923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483077B1 (en) * 2002-10-28 2005-04-14 한국전력공사 wet exhaust gas desulfurization apparatus be utilized an improved gas distribution plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483077B1 (en) * 2002-10-28 2005-04-14 한국전력공사 wet exhaust gas desulfurization apparatus be utilized an improved gas distribution plate

Similar Documents

Publication Publication Date Title
US2992065A (en) Process for removing sulfur oxides from gases
US4053554A (en) Removal of contaminants from gaseous streams
JP2002540222A (en) Sulfur and hydrogen recovery system from sour gas
CN103170223A (en) Rotational flow strengthening method and device for purifying sulfur production tail gases by Claus method
JPH0345118B2 (en)
WO2012145910A1 (en) Method and device for producing methanol
CN112708477A (en) Method for increasing combustion heat value of blast furnace gas and simultaneously removing organic sulfur and inorganic sulfur
KR20200092360A (en) Process for recovery of sulfur from acid gas streams without catalytic cloth reactor
CN111375274B (en) Containing SO 2 Gas treatment method and apparatus
JP5270903B2 (en) Blast furnace gas calorie increase method
US4842843A (en) Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream
CN105921104A (en) Industrial sulfur-containing waste gas modified carbon-based adsorbent and preparation method and application thereof
JPS5851923A (en) Dry desulfurization of waste gas
CA1056126A (en) Process of producing sulfur
JP2948846B2 (en) Method for removing hydrogen sulfide from gas mixtures
US10689254B1 (en) Methods for SO2 recoveries from sulfur plants
JPS5864117A (en) Dry stack-gas desulfurization process
WO2001052974A1 (en) Method for removing sulfur compounds from gas mixtures
JPS5936527A (en) Dry type stack gas desulfurization process
JPH0790137B2 (en) Refining method for high temperature reducing gas
JPS55155728A (en) Dry type exhaust gas desulfurizing method
JPH06293888A (en) Method for recovering sulfur from plant for gasifying coal and device therefor
TW202246168A (en) Dilute sulfuric acid production device and dilute sulfuric acid production method
JPS6260132B2 (en)
CN109370622A (en) A kind of activated coke dry gas-cleaning system and its technique