JPS585114Y2 - gas compression equipment - Google Patents

gas compression equipment

Info

Publication number
JPS585114Y2
JPS585114Y2 JP1980044425U JP4442580U JPS585114Y2 JP S585114 Y2 JPS585114 Y2 JP S585114Y2 JP 1980044425 U JP1980044425 U JP 1980044425U JP 4442580 U JP4442580 U JP 4442580U JP S585114 Y2 JPS585114 Y2 JP S585114Y2
Authority
JP
Japan
Prior art keywords
oil
screw rotating
rotating machine
gas
rotors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980044425U
Other languages
Japanese (ja)
Other versions
JPS55137278U (en
Inventor
笠原敬介
Original Assignee
株式会社 前川製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 前川製作所 filed Critical 株式会社 前川製作所
Priority to JP1980044425U priority Critical patent/JPS585114Y2/en
Publication of JPS55137278U publication Critical patent/JPS55137278U/ja
Application granted granted Critical
Publication of JPS585114Y2 publication Critical patent/JPS585114Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は2台のスクリュー回転機を用い、一方のスクリ
ュー回転機を無接触型とし、他方のスクリュー回転機を
油噴射型とし、このスクリュー回転機を前記一方のスク
リュー回転機のタイミングギヤとしても作用させるよう
にしたものである。
[Detailed description of the invention] The present invention uses two screw rotating machines, one of which is a non-contact type, and the other screw rotating machine is an oil injection type. It is designed to also function as a timing gear for a rotating machine.

。2台のスクリュー回転機を高低2段にして使用するに
あたり、その倒れをも油噴射式スクリュー圧縮機とする
と、油噴射式は圧縮機のガス圧縮工程の途中に冷油を噴
射してガスのシール、ガスの冷却、ロータの潤滑をはか
るので高圧縮比を得るためには極めて有効であるが、油
の分離及び冷却に油分離器、油冷却器を必要として大き
なスペースを占めるばかりでなく、装置を極低温用のシ
ステムに利用した場合に極低温の温度が一り0℃〜−6
0℃程度になると液と油の分離が極めて困難になるとい
う欠点があり、また装置をヒートポンプシステムに利用
した場合には高温下におけるフレオン等の冷媒ガスと油
との共用に基く油の老化が生ずるため圧縮機の吐出ガス
の温度を余り上げられないという欠点がある。
. When two screw rotating machines are used in two stages, high and low, and the tilting is also used as an oil injection type screw compressor, the oil injection type injects cold oil during the gas compression process of the compressor to compress the gas. It is extremely effective for obtaining a high compression ratio because it seals, cools the gas, and lubricates the rotor, but it not only requires an oil separator and oil cooler to separate and cool the oil, but also takes up a large amount of space. When the device is used in a cryogenic system, the cryogenic temperature ranges from 0℃ to -6.
There is a disadvantage that it becomes extremely difficult to separate liquid and oil at temperatures around 0°C, and when the device is used in a heat pump system, oil aging occurs due to the shared use of refrigerant gas such as freon and oil at high temperatures. This has the disadvantage that the temperature of the discharged gas from the compressor cannot be raised much.

また2台のスクリュー回転機を何れも無接触型とし、タ
イミングギヤを設けてメス、オスロータを連動させるよ
うにした場合は、油によるガスのシールができないため
高い圧縮比が得られず高速回転させるためには増速装置
を必要とする。
In addition, if both screw rotating machines are non-contact type and a timing gear is installed to link the female and male rotors, a high compression ratio cannot be obtained because the oil cannot seal the gas, resulting in high speed rotation. This requires a speed increaser.

本考案は、このような従来技術の欠点を除去するために
なされたものであって、互いに噛合して回転するねじ型
オス、メスロータにより流体の体積を変化させ得るスク
リュー回転機2基を軸方向に並設するとともにそれぞれ
のオスロータ同士を同軸にまたそれぞれのメスロータ同
士も同軸に連結してスクリュー回転機2基をそれぞれ別
個の流体流通サイクルに挿入し、被圧縮ガスの凝縮液の
一部がガス圧縮工程の途中に噴射される一方のスクリュ
ー回転機のオス、メスロータを無接触で噛合させ、油が
ガス圧縮工程の途中に噴射される他方のスクリュー回転
機のオス、メスロータを接触噛合させ、このスクリュー
回転機を前記一方のスクリュー回転機のタイミングギヤ
としても作用させるようにしたことを特徴とするガス圧
縮装置に関するものである。
The present invention was developed in order to eliminate such drawbacks of the conventional technology, and it uses two screw rotating machines that can change the volume of fluid using screw-type male and female rotors that rotate in mesh with each other in the axial direction. The male rotors are connected coaxially to each other, and the female rotors are also coaxially connected to each other, and the two screw rotating machines are inserted into separate fluid circulation cycles, so that a part of the condensate of the compressed gas is The male and female rotors of one screw rotating machine, where oil is injected during the gas compression process, are brought into contactless engagement, and the male and female rotors of the other screw rotating machine, where oil is injected during the gas compression process, are brought into contact engagement. The present invention relates to a gas compression device characterized in that a screw rotating machine also functions as a timing gear for the one screw rotating machine.

次に本考案の実施の二側を第1図、第2図について説明
する。
Next, two aspects of implementing the present invention will be explained with reference to FIGS. 1 and 2.

ケース体7に軸架した軸8,9の仕切壁10で仕切られ
た前後室にそれぞれスクリュー型の四枚歯のオスロータ
3,5、大枚歯のメスロータ4,6を軸架し、ロータ3
,4を互いに接触噛合させたスクリュー回転機1と、ロ
ータ5゜6を互いに無接触で噛合させたスクリュー回転
機2とを形成する。
Screw-type four-toothed male rotors 3, 5 and large-toothed female rotors 4, 6 are respectively mounted in the front and rear chambers of shafts 8, 9, which are mounted on a case body 7, separated by a partition wall 10.
, 4 in contact meshing with each other, and a screw rotating machine 2 in which rotors 5 and 6 are meshed with each other without contact.

オスロータ3,5は軸9により同軸に連結され、メスロ
ータ4,6は軸8により同軸に連結される。
The male rotors 3 and 5 are coaxially connected by a shaft 9, and the female rotors 4 and 6 are coaxially connected by a shaft 8.

オスロータ3,5はその歯形の大部分がピッチサークル
より外側のアデンダムによって形成され、メスロータ4
,6はその歯形の大部分がピッチサークルより内側のデ
デンダムによって形成されている。
Most of the tooth profile of the male rotors 3 and 5 is formed by the addenda outside the pitch circle, and the female rotor 4
, 6, most of the tooth profile is formed by the dedendum inside the pitch circle.

そしてスクリュー回転機1のオスロータ3に電動機11
からの駆動軸12が連結されている。
And the electric motor 11 is attached to the male rotor 3 of the screw rotating machine 1.
A drive shaft 12 from the above is connected.

なお駆動軸12はメスロータ4またはスクリュー回転機
2のオス、メス何れかのロータ5,6に連結されること
もある。
Note that the drive shaft 12 may be connected to the female rotor 4 or to either the male or female rotor 5 or 6 of the screw rotating machine 2.

図面中13は軸受メタル、14はメカニカルシールであ
る。
In the drawing, 13 is a bearing metal, and 14 is a mechanical seal.

また第1図は冷凍サイクルの実施例で圧縮器となるスク
リュー回転機1、吐出口15、吐出ガス管16、油分離
器17、凝縮器18、受液器19、液管20、膨張弁2
1、蒸発管22、吸入ガス管23、吸入口24によって
冷凍サイクルAが構成され、更に油分離器17から導出
された油管25には油ポンプ26、油冷却器27が挿入
され油冷却器27から導出された冷却油管28が前記ス
クリュー回転機1の吐出口15に、近いガス圧縮工程中
の高圧側位置の油噴射孔29に連通開口している。
FIG. 1 shows an example of a refrigeration cycle, including a screw rotating machine 1 serving as a compressor, a discharge port 15, a discharge gas pipe 16, an oil separator 17, a condenser 18, a liquid receiver 19, a liquid pipe 20, and an expansion valve 2.
1. A refrigeration cycle A is constituted by the evaporator pipe 22, the suction gas pipe 23, and the suction port 24, and an oil pump 26 and an oil cooler 27 are inserted into the oil pipe 25 led out from the oil separator 17. A cooling oil pipe 28 led out from the screw rotary machine 1 is connected to the discharge port 15 of the screw rotating machine 1 and to an oil injection hole 29 located on the high pressure side during the gas compression process.

油冷却器27には冷水管等の冷却管30が挿入されてい
る。
A cooling pipe 30 such as a cold water pipe is inserted into the oil cooler 27 .

また圧縮機となるスクリュー回転機2のロータ5.6は
同軸のロータ3,4がタイミングギヤとなって無接触で
駆動されるようになっており、スクリュー回転機2、吐
出口3:1、吐出ガス管32、凝縮器33、液管34、
膨張弁35、蒸発器36、吸入ガス管37、吸入口38
によって冷凍サイクルBを構成する。
The rotor 5.6 of the screw rotating machine 2, which serves as a compressor, is driven without contact with the coaxial rotors 3 and 4 serving as timing gears. Discharge gas pipe 32, condenser 33, liquid pipe 34,
Expansion valve 35, evaporator 36, suction gas pipe 37, suction port 38
The refrigeration cycle B is configured by:

また前記凝縮器33には凝縮管39と前記冷凍サイクル
Aの蒸発音22が挿入されて熱交換されるようになって
いる。
Further, a condensing pipe 39 and the evaporation sound 22 of the refrigeration cycle A are inserted into the condenser 33 to exchange heat.

更に蒸発器36には蒸発音40と負荷側冷却管41が挿
入されて熱交換されるようになっている。
Further, an evaporation sound 40 and a load-side cooling pipe 41 are inserted into the evaporator 36 for heat exchange.

なお前記凝縮器33、蒸発器36においてはそれぞれ蒸
発管22と凝縮管39、蒸発管4.0と冷却管41が熱
交換管として別々に挿入されているが、実際は凝縮器3
3と蒸発器36に熱交換管が操入されて管の内外におい
て裂交換される様式になっている。
In the condenser 33 and evaporator 36, the evaporator tube 22, the condenser tube 39, the evaporator tube 4.0, and the cooling tube 41 are inserted separately as heat exchange tubes, but in reality, the condenser 3
A heat exchange tube is inserted into the evaporator 36 and the evaporator 36, so that heat exchange is performed between the inside and outside of the tube.

更に前記液管34を途中で分岐した分岐液管42を、途
中に流量調整弁43を介してスクリュー回転機2の吐出
口31に近い高圧側のガス圧縮工程中の位置に開口させ
た液噴射孔44に連通させる。
Further, a branch liquid pipe 42 branched from the liquid pipe 34 midway is opened to a position near the discharge port 31 of the screw rotating machine 2 during the gas compression process on the high pressure side through a flow rate adjustment valve 43 midway for liquid injection. It communicates with the hole 44.

なお前記冷却油管28の油量調整弁45の先方から途中
を分岐した分岐油管46を途中に絞り調整孔47を介し
てスクリュー回転機1,2のメタル13、メカニカルシ
ール14、スラストベアリング、アンローダ油圧用にそ
れぞれ導入し、またこれらの導入部から導出した復帰油
管48を合流させた油吸入管49を油噴射側スクリュー
回転機1の油噴射孔29よりも低圧側のガス圧縮工程中
の油吸入孔50に連通させ油をスクリュー回転機1中に
吸入させる。
Note that a branch oil pipe 46 branched midway from the tip of the oil amount adjustment valve 45 of the cooling oil pipe 28 is connected to the metal 13 of the screw rotating machines 1 and 2, the mechanical seal 14, the thrust bearing, and the unloader hydraulic pressure through a throttle adjustment hole 47 midway. The oil suction pipe 49, in which the return oil pipes 48 led out from these introduction parts are merged, is used for oil suction during the gas compression process on the lower pressure side than the oil injection hole 29 of the oil injection side screw rotating machine 1. It communicates with the hole 50 to suck oil into the screw rotating machine 1.

次にこの実施例の作用を説明する。Next, the operation of this embodiment will be explained.

冷凍サイクルAのスクリュー回転機1には7けン(R2
2)NH3等の冷媒を用い互いに接触噛合したロータ3
゜4に油噴射しロータ3,4の潤滑とガスのシール、冷
却しながら運転を行い、冷凍サイクルBの凝縮器33の
冷却をする。
The screw rotating machine 1 of the refrigeration cycle A has 7 cylinders (R2
2) Rotors 3 that contact and mesh with each other using a refrigerant such as NH3
The condenser 33 of the refrigeration cycle B is cooled by injecting oil to lubricate the rotors 3 and 4, sealing the gas, and cooling the rotors 3 and 4.

冷凍サイクルBはスクリュー回転機2のロータ5,6は
それぞれ同軸のロータ3,4をタイミングギヤとして無
接触で運転され液噴射孔44から凝縮液が噴射されて、
ガスのシール、ガスの冷却がなされる。
In the refrigeration cycle B, the rotors 5 and 6 of the screw rotating machine 2 are operated without contact using the coaxial rotors 3 and 4 as timing gears, and condensed liquid is injected from the liquid injection hole 44.
Gas sealing and gas cooling are performed.

冷凍サイクルBの被圧縮ガストしてプロパン、フレオン
等を使用した場合、これらのガスは油に溶解し易い性質
があるが、この実施例によれば、油を噴射しないですむ
ので液と油の分離という困難な問題は生じない。
When propane, freon, etc. are used as the compressed gas in refrigeration cycle B, these gases tend to dissolve in oil, but according to this example, there is no need to inject oil, so the separation between liquid and oil is reduced. The difficult problem of separation does not arise.

またこの実施例においては冷凍サイクルBの蒸発器36
に負荷側冷却管41が挿入されているが、冷凍サイクル
Bの凝縮器33から導出した液管34を膨張弁35を介
して例えば液体プロパンタンクに連通させこの液体プロ
パンタンクからの蒸発ガスが冷凍サイクルBの吸入ガス
管37よシスクリユー回転機2に吸入されるようにすれ
ばスクリュー回転機2が無給油冷凍機として作動し、油
が介入されない液化循環を行い、タンクを深冷にするこ
とができる。
Also, in this embodiment, the evaporator 36 of the refrigeration cycle B
A load-side cooling pipe 41 is inserted into the refrigeration cycle B, and the liquid pipe 34 led out from the condenser 33 of the refrigeration cycle B is connected to, for example, a liquid propane tank via an expansion valve 35, so that the evaporated gas from the liquid propane tank is frozen. If the suction gas pipe 37 of cycle B is sucked into the screw rotating machine 2, the screw rotating machine 2 will operate as an oil-free refrigerator, performing liquefaction circulation without oil intervention, and deep cooling the tank. can.

第3図に示す実施例は、圧縮機となるスクリュー回転機
1の噴射油の冷却に油冷却器27を用いずに冷媒液の噴
射によって冷却するようにし、また圧縮機となるスクリ
ュ−回転機2のガス圧縮工程の高圧側に液管34を連通
させ、ガス圧縮工程中の低圧側より、シール効果を果し
て圧力の下った冷媒液を導出して蒸発器36に導出する
ようにしたもので、この構造を図面について説明する。
In the embodiment shown in FIG. 3, the oil injected into the screw rotating machine 1 serving as a compressor is cooled by injection of refrigerant liquid without using an oil cooler 27. A liquid pipe 34 is connected to the high pressure side of the gas compression process in step 2, and the refrigerant liquid whose pressure has decreased due to the sealing effect is drawn out from the low pressure side during the gas compression process and is led out to the evaporator 36. , this structure will be explained with reference to the drawings.

冷凍サイクルAにおいて、油分離器17から導出した油
管25を途中に油ポンプ26を介してスクリュー回転機
1の高圧側に設けた油噴射孔29に連通させまた受液器
19から蒸発器22に導入される液管20の途中を分岐
し、この分岐液管51を途中に流量調整弁52を介して
スクリュー回転機1の油噴射孔29よりも低圧側に設け
た液噴射孔53に連通させる。
In the refrigeration cycle A, an oil pipe 25 led out from the oil separator 17 is communicated with an oil injection hole 29 provided on the high pressure side of the screw rotary machine 1 via an oil pump 26 midway, and from the liquid receiver 19 to the evaporator 22. The introduced liquid pipe 20 is branched in the middle, and this branched liquid pipe 51 is communicated with a liquid injection hole 53 provided on the lower pressure side than the oil injection hole 29 of the screw rotating machine 1 via a flow rate adjustment valve 52 in the middle. .

更に冷凍サイクルBの凝縮器33から導出した液管34
をスクリュー回転機2の高圧側1:こ設けた液噴射孔5
4を連通させ、またスクリュー回転機2の低圧側のガス
:閉じ込み後の位置に設けた液排出孔55より導出した
低圧液管56を途中に流量調整弁57を介し、て蒸発器
36に導入する。
Furthermore, a liquid pipe 34 led out from the condenser 33 of the refrigeration cycle B
The high pressure side 1 of the screw rotating machine 2: The liquid injection hole 5 provided here
Gas on the low-pressure side of the screw rotating machine 2: A low-pressure liquid pipe 56 led out from a liquid discharge hole 55 provided at a position after confinement is connected to the evaporator 36 through a flow rate adjustment valve 57 in the middle. Introduce.

次にこの実施例の作用を説明:する。Next, the operation of this embodiment will be explained.

冷凍サイクルAにおいては分岐液管51より液の二部が
スクリュー回転機1に噴射され、これがスクリュー回転
機1内で吸熱膨張してガスと油を混入しながら冷却を行
い、油、ガスは等温圧縮に近づいた圧縮で吐出される。
In the refrigeration cycle A, two parts of the liquid are injected from the branch liquid pipe 51 to the screw rotating machine 1, which expands endothermically within the screw rotating machine 1 and cools it while mixing gas and oil, so that the oil and gas are at the same temperature. It is discharged with compression close to compression.

これによってスクリュー回転機1内は冷却されるから、
油噴射孔29から噴射される油は冷却する必要がなく油
冷却器は不要となる。
This cools the inside of the screw rotating machine 1, so
The oil injected from the oil injection hole 29 does not need to be cooled, and an oil cooler becomes unnecessary.

また冷凍サイクルBにおいて液管34をスクリュー回転
機2の高圧側の液噴射孔54に連通させ凝縮液を比較的
多量に噴射することによりロータ5゜6のガスシールと
冷却がなされ、同時にどの液は遠心力によりケース体7
の内周面に移行し、該内周面とオス・メスロータ羽根先
端との間の隙間を流れて低圧側に移行しながら減圧され
るため、スクリュー回転機2はこの点で膨張機の作用も
することになり膨張弁は不要となり低圧液管56には流
量調整弁57を取付けるのみで良い。
In addition, in the refrigeration cycle B, the liquid pipe 34 is connected to the liquid injection hole 54 on the high pressure side of the screw rotary machine 2, and a relatively large amount of condensed liquid is injected to achieve gas sealing and cooling of the rotor 5. case body 7 due to centrifugal force
The screw rotating machine 2 also acts as an expander in this respect because the pressure is reduced as it moves to the inner circumferential surface of the rotor, flows through the gap between the inner circumferential surface and the tips of the male and female rotor blades, and moves to the low pressure side. This eliminates the need for an expansion valve, and it is sufficient to simply attach the flow rate regulating valve 57 to the low pressure liquid pipe 56.

なお他の部分の構造及び作用は、第1図、第2図に示す
実施例と同様である。
The structure and operation of other parts are similar to the embodiment shown in FIGS. 1 and 2.

また周知のようにスクリュー回転機2の軸受メタル13
にはロータ5.6の端面に油が漏れないようなメカニカ
ルシール14などが設けられている。
Also, as is well known, the bearing metal 13 of the screw rotating machine 2
A mechanical seal 14 or the like is provided on the end face of the rotor 5.6 to prevent oil from leaking.

また駆動軸12はメスロータ4に連結してもよい。Further, the drive shaft 12 may be connected to the female rotor 4.

更に製作に際しては、スクリュー回転機1,2のケース
体7を仕切壁10を軸方向に二つ割にして軸8,9を挾
持させた後ロータ3,4,5,6とともにケース体7に
挿入すればケース体7の加工が容易となる。
Furthermore, during manufacturing, the case body 7 of the screw rotary machines 1 and 2 is divided into two along the partition wall 10 in the axial direction, and the shafts 8 and 9 are sandwiched between them, and then the case body 7 is assembled with the rotors 3, 4, 5, and 6. Once inserted, processing of the case body 7 becomes easy.

本考案によれば、軸方向に並設した2基のスクリュー回
転機のそれぞれのオスロータ同士及びそれぞれのメスロ
ータ同士を同軸に連結し、被圧縮ガスの凝縮液の一部が
ガス圧縮工程の途中に噴射させる一方のスクリュー回転
機のオス、メスロータを無接触で噛合させ(オイルフリ
一式ねじ圧縮機とし)、油がガス圧縮工程の途中に噴射
される他方のスクリュー回転機のオス、メスロータを接
触噛合させ(油噴射式ねじ圧縮機とし)、この油噴射式
のスクリュー回転機をガスの圧縮用とすると同時に、前
記無接触噛合のスクリュー回転機のタイミングギヤとし
ても用いたから、無接触噛合のスクリュー回転機を用い
るにもかかわらずタイミングギヤを省略してスペースを
節約することができる。
According to the present invention, the male rotors and the female rotors of two screw rotating machines arranged in parallel in the axial direction are coaxially connected, so that a part of the condensate of the gas to be compressed is absorbed during the gas compression process. The male and female rotors of one screw rotating machine that is to be injected are meshed without contact (as an oil-free screw compressor), and the male and female rotors of the other screw rotating machine that is injected during the gas compression process are brought into contact meshing. (An oil injection type screw compressor) This oil injection type screw rotating machine was used for compressing gas and at the same time was used as the timing gear of the non-contact meshing screw rotating machine, so the non-contact meshing screw rotating machine However, the timing gear can be omitted to save space.

そして無接触噛合のスクリュー回転機はオイルフリーで
あって油を使用しないので、本考案を極低温用のシステ
ムとして用いる場合において該回転機を低段側に用いれ
ば、従来技術のように冷媒液と油の分離が困難になると
いう欠点を防止することができ、また逆に本考案をヒー
トポンプシステムとして用いる場合においては該回転機
を高段側に用いれば、従来技術のように高温による油の
老化を生ずることがなくしたがって吐出ガスの温度(凝
縮温度5を上昇させることができ、高温度で動作するヒ
ートポンプシステムを得ることができる。
Since the non-contact meshing screw rotary machine is oil-free and does not use oil, when the present invention is used as a system for cryogenic temperatures, if the rotary machine is used on the lower stage side, the refrigerant liquid can be used as in the conventional technology. On the other hand, when the present invention is used as a heat pump system, if the rotary machine is used on the high stage side, it is possible to prevent oil from being separated due to high temperatures as in the conventional technology. It is therefore possible to increase the temperature of the discharged gas (condensation temperature 5) without causing aging, and to obtain a heat pump system that operates at high temperatures.

また無接触噛合のスクリュー回転機においては被圧縮ガ
スの凝縮液の一部が圧縮工程の途中に噴噴されから、こ
の液によってガスのシールと冷却の作用をさせることが
でき、無接触であっても高圧縮比を得ることができる。
In addition, in a non-contact meshing screw rotating machine, a part of the condensed liquid of the compressed gas is injected during the compression process, and this liquid can seal and cool the gas. A high compression ratio can be obtained even if the

更に無接触噛合のスクリュー回転機においては油を使用
しないで、前記のような極低温のシステムに本考案を使
用しない場合であっても、油と分離し難い冷媒を用いる
冷凍サイクルや、油の介入が特に忌避されるガスの圧縮
に用いるに好適であることは勿論である。
Furthermore, even if oil is not used in non-contact meshing screw rotating machines and the present invention is not used in cryogenic systems such as those mentioned above, it is difficult to use oil in refrigeration cycles that use refrigerants that are difficult to separate from oil. It is of course suitable for use in compressing gases where intervention is particularly avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施の一例を示すフローシートダイヤ
グラム、第2図は同上圧縮機の横断平面図、第3図は他
の実施例のフローシートダイヤプラムである。 1.2・・・・・・スクリュー回転機、3.5・・・・
・・オスロータ、4,6・・・・・・メスロータ、A、
B・・・・・・流体流通サイクルとしての冷凍サイクル
FIG. 1 is a flow sheet diagram showing an example of the implementation of the present invention, FIG. 2 is a cross-sectional plan view of the same compressor, and FIG. 3 is a flow sheet diaphragm of another embodiment. 1.2... Screw rotating machine, 3.5...
...Male rota, 4,6...Female rota, A,
B: Refrigeration cycle as a fluid circulation cycle.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 互いに噛合して回転するねじ型オス、メスロータにより
流体の体積を変化させ得るスクリュー回転機2基を軸方
向に並設するとともに、それぞれのオスロータ同士を同
軸に、またそれぞれのメスロータ同士も同軸に連結して
スクリュー回転機2基をそれぞれ別個の流体流通サイク
ルに挿入し、被圧縮ガスの凝縮液の一部がガス圧縮工程
の途中に噴射される一方のスクリュー回転機のオス、メ
スロータを無接触で噛合させ、油がガス圧縮工程の途中
に噴射される他方のスクリュー回転機のオス、メスロー
タを接触噛合させ、このスクリュー回転機を前記一方の
スクリュー回転機のタイミングギヤとしても作用させる
ようにしたことを特徴とするガス圧縮装置。
Two screw rotating machines that can change the volume of fluid with screw-type male and female rotors that mesh with each other and rotate are installed in parallel in the axial direction, and the male rotors are connected coaxially to each other, and the female rotors are also connected coaxially to each other. Then, the two screw rotating machines are inserted into separate fluid circulation cycles, and a part of the condensate of the compressed gas is injected during the gas compression process. The male and female rotors of the other screw rotating machine, which are in mesh with each other and oil is injected during the gas compression process, are brought into contact mesh with each other, so that this screw rotating machine also functions as a timing gear for the one screw rotating machine. A gas compression device featuring:
JP1980044425U 1980-04-02 1980-04-02 gas compression equipment Expired JPS585114Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980044425U JPS585114Y2 (en) 1980-04-02 1980-04-02 gas compression equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980044425U JPS585114Y2 (en) 1980-04-02 1980-04-02 gas compression equipment

Publications (2)

Publication Number Publication Date
JPS55137278U JPS55137278U (en) 1980-09-30
JPS585114Y2 true JPS585114Y2 (en) 1983-01-28

Family

ID=28920724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980044425U Expired JPS585114Y2 (en) 1980-04-02 1980-04-02 gas compression equipment

Country Status (1)

Country Link
JP (1) JPS585114Y2 (en)

Also Published As

Publication number Publication date
JPS55137278U (en) 1980-09-30

Similar Documents

Publication Publication Date Title
US3848422A (en) Refrigeration plants
US7914267B2 (en) Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
US6644045B1 (en) Oil free screw expander-compressor
US4020642A (en) Compression systems and compressors
CN103939343A (en) Rolling piston refrigeration compressor with low backpressure
JP3026819B2 (en) Rotary compressor with oil discharge device
US3931718A (en) Refrigerant screw compression with liquid refrigerant injection
US3945219A (en) Method of and apparatus for preventing overheating of electrical motors for compressors
JPH11351168A (en) Screw type refrigerating device
EP2639530B1 (en) Screw expander liquid pump
JPS585114Y2 (en) gas compression equipment
AU2005314950A1 (en) Rotary compressor with reduced refrigeration gas leak during compression while preventing seizure
JP2000337282A (en) Two-stage type screw compressor
US1797803A (en) Compressor
JP2003322093A (en) Screw type fluid machine and refrigerating device provided with the same
JP2004162540A (en) Screw compressor
JPS6123392B2 (en)
JP2001074325A (en) Two-stage compression type freezing and refrigerating system
JP2005016320A (en) Heat pump
CN214700237U (en) High-pressure oil pump
CN216342795U (en) Double-screw refrigerating compressor with elastic heating material
JPH04112990A (en) Closed type rotary compressor
EP0478939A2 (en) Two-stage rotary compressor for refrigerating plants
JPH0329961B2 (en)
CN207246078U (en) A kind of centrifugal compressor of cooling device