JP2004162540A - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
JP2004162540A
JP2004162540A JP2002326753A JP2002326753A JP2004162540A JP 2004162540 A JP2004162540 A JP 2004162540A JP 2002326753 A JP2002326753 A JP 2002326753A JP 2002326753 A JP2002326753 A JP 2002326753A JP 2004162540 A JP2004162540 A JP 2004162540A
Authority
JP
Japan
Prior art keywords
screw compressor
oil
liquid injection
rotor
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002326753A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
省二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002326753A priority Critical patent/JP2004162540A/en
Publication of JP2004162540A publication Critical patent/JP2004162540A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a screw compressor allowing simplification in structure, reduction in size and reduction in load of maintenance. <P>SOLUTION: This screw compressor 1 for a refrigerating device is provided with liquid injecting holes 16, 17 and 18 punched in a rotor casing 15 for storing a pair of female and male screw rotors 11 and 12 engaged with each other and bearing/shaft seal parts 13L and 13R and 14L and 14R for rotatably supporting rotor shafts 11L and 11R and 12L and 12R extended to both sides of the screw rotors 11 and 12 to guide liquid for lubricating or sealing to the bearing/shaft seal parts 13L and 13R and 14L and 14R. A liquid injecting pipe 19 is fitted into the liquid injecting holes 16, 17 and 18 without bringing one end into contact with inner wall surfaces of the liquid injecting holes 16, 17 and 18 to guide coolant after condensation in a coolant circulating flow passage repeating compression, condensation, expansion and evaporation of the coolant and before expansion. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、スクリュ圧縮機、特に冷凍装置における冷媒を圧縮する冷凍装置用スクリュ圧縮機に関するものである。
【0002】
【従来の技術】
従来、冷凍装置に適用されたスクリュ圧縮機は公知である(例えば、特許文献1〜3参照。)。
【0003】
【特許文献1】
特開平9−268988号公報(図1、図2、図4〜7)
【特許文献2】
特開平6−129370号公報(図1)
【特許文献3】
特開2001−317480号公報(図1)
【0004】
スクリュ圧縮機は、ロータ間、ロータとロータ室の内壁面との間のシール、圧縮に伴う昇温部の冷却、潤滑等の目的でロータ室内に油を注入する油冷式のスクリュ圧縮機と、ロータ室内に油を注入せず、軸受部がロータ室からシールにより完全に遮断され、雌雄ロータ間の回転駆動力伝達のために同期歯車が用いられる無給油式のスクリュ圧縮機とに大別される。圧縮機本体自体の構造は油冷式のスクリュ圧縮機に比して、無給油式のスクリュ圧縮機の方がかなり複雑であり、同一吐出風量とした場合、油冷式のスクリュ圧縮機に比して無給油式のスクリュ圧縮機の方が複雑化した分だけ高価となる。また、油冷式のスクリュ圧縮機に比して無給油式のスクリュ圧縮機の方が、ロータ間の隙間、及びロータとロータ室の内壁面との間の隙間は大きく、この隙間を介して漏れるガス量も多い。それ故に、圧縮ガス中に潤滑油が含まれるのが許されず、クリーンな圧縮ガスのみが要求される特別な用途以外では、一般的に、油冷式のスクリュ圧縮機が用いられ、無給油式のスクリュ圧縮機が用いられることはない。
【0005】
上記特許文献1には、図4に示す油冷式の2段形スクリュ圧縮機30が開示されている。この2段形スクリュ圧縮機30は、一体的に結合されたモーターケーシング31、低圧側の第1段ローターケーシング32及び高圧側の第2段ローターケーシング33を備え、第1段ローターケーシング32には吸込口34が設けられ、第2段ローターケーシング33からは油分離回収器35が介設された吐出流路36が延びている。また、モーターケーシング31内にはモータ37が収容され、第1段及び第2段ローターケーシング32及び33内には、それぞれ互いに噛合う雌雄一対のスクリュロータ38,39及び41,42が収容されている。第1段のスクリュロータ38及び39の両側に延びたロータ軸38L,38R及び39L,39Rのそれぞれは軸受・軸封部43L,43R及び44L,44Rにより回転可能に支持されている。さらに、第2段のスクリュロータ41及び42の両側に延びたロータ軸41L,41R及び42L,42Rのそれぞれは軸受・軸封部45L,45R及び46L,46Rにより回転可能に支持されている。そして、モータ37の出力軸47と第1段のスクリュロータ38のロータ軸38L,38Rと第2段のスクリュロータ41のロータ軸41L,41Rは同軸上に配置され、一体回転可能に結合されている。
【0006】
一方、油分離回収器35の下部は油溜まり部51になっており、ここから油冷却器52及び油フィルタ53を経由して第1段及び第2段ローターケーシング32及び33内のロータ室及び軸受・軸封部に通じる油流路54が延びている。さらに詳しく説明すると、第1段ローターケーシング32及び第2段ローターケーシング33には、軸受・軸封部43L,43R及び44L,44R、軸受・軸封部45L及び46Lに通じる注液孔55,56,57が穿設され、油流路54は注液孔55,56,57に接続されている。
【0007】
そして、モータ37によりスクリュロータ38及び41が駆動され、スクリュロータ38及び41とともにスクリュロータ39及び42が回転し、吸込口34から吸込まれたガスが油注入を受けつつスクリュロータ38,39により圧縮され、さらに油注入を受けつつスクリュロータ41,42により圧縮されて、油を随伴して吐出流路36に吐出される。油とともに吐出流路36に吐出されたガスは油分離回収器35にて油分離されて、油分離回収器35の上方から吐出流路36の延設部に送り出される一方、分離された油は一旦油溜まり部51に溜められる。この油溜まり部51の油は、油冷却器52、油フィルタ53を経て、上記ロータ室に注入されるとともに、潤滑及びシールのために注液孔55,56,57を経て上記軸受・軸封部に導かれる。そして、これらの油はやがてガスとともに吐出流路36に導かれて、繰返し循環させられる。
なお、2段形スクリュ圧縮機30が冷凍装置用として用いられる場合、上記ガスは冷媒であり、凝縮器、膨張弁、蒸発器を含む流路を循環し、圧縮、凝縮、膨張、蒸発を繰返す。
【0008】
上記特許文献2には、油分離回収器から油冷却器、油フィルタ及び油ポンプを経て注液孔から軸受・軸封部に通じる油流路を備えた油冷式スクリュ圧縮機が開示されている。
上記特許文献3には、デミスタ及び油溜めを含む油分離回収器を有する油冷式スクリュ圧縮機が開示されている。
そして、これらの油冷式スクリュ圧縮機も冷凍装置用として適用可能であることは言うまでもない。
【0009】
【発明が解決しようとする課題】
冷凍装置用として上述した特許文献1に開示の2段形スクリュ圧縮機30及び特許文献2及び3に開示の油冷式スクリュ圧縮機を用いた場合、少なくとも油分離回収器を要するとともに、油流路のための油用配管を要し、これらが装置全体の容積に占める割合は大きく、装置が嵩高となり、その設置スペースが大きくなるとともに、装置が複雑な構造になり、それだけ高コストのものになるのに加えて、メンテナンスに多大な負担が強いられる等の問題があった。
本発明は、斯る従来の問題をなくすことを課題としてなされたもので、構造の単純化、小型化、メンテナンスの負担軽減等を可能としたスクリュ圧縮機を提供しようとするものである。
【0010】
【課題を解決するための手段】
上記課題を解決するために、第1発明は、互いに噛合う雌雄一対のスクリュロータと、このスクリュロータの両側に延びたロータ軸を回転可能に支持する軸受・軸封部とを収容したローターケーシングに穿設され、上記軸受・軸封部に潤滑及びシール用として液を導く注液孔を備えたスクリュ圧縮機において、一端が上記注液孔の内壁面に接触することなく上記注液孔内に嵌入させられた注液管を設けた構成とした。
【0011】
第2発明は、第1発明の構成に加えて、上記注液孔の内壁面と上記注液管との間に断熱材を介在させた構成とした。
【0012】
【発明の実施の形態】
次に、本発明の実施形態を図面にしたがって説明する。
図1及び2は第1発明に係る冷凍装置用スクリュ圧縮機1を示し、このスクリュ圧縮機1は、互いに噛合う雌雄一対のスクリュロータ11,12と、このスクリュロータ11,12の両側に延びたロータ軸11L,11R及び12L,12Rを回転可能に支持する軸受・軸封部13L,13R,14L,14Rとを収容したローターケーシング15を有している。また、このローターケーシング15には、軸受・軸封部13L,13R,14L,14Rに通じる注液孔16,17,18が穿設されている。
【0013】
注液孔16,17,18のそれぞれには、スクリュ圧縮機1が冷凍装置に用いられた場合に、冷媒の圧縮、凝縮、膨張、蒸発が繰返される冷媒循環流路における凝縮後で、かつ膨張前の冷媒を軸受・軸封部13L,13R,14L,14Rに潤滑及びシール用として導く注液管19の一端が、注液孔16,17,18の内壁面に接触することなく嵌入させられている。この一端は出来る限り軸受・軸封部13L,13R,14L,14Rに近接するのが望ましい。注液孔16の箇所のみ、図2に拡大して示してあるが、注液孔17,18の箇所についても同様に形成されている。
また、上記同様にして、スクリュ圧縮機1のロータ室に凝縮後で、かつ膨張前の冷媒を供給するようにしてもよい。
【0014】
なお、ローターケーシング15には、一体的にモータケーシング21が結合され、ここに収容されたモータ22の出力軸23とロータ軸11Rとは同軸上に配置され、一体回転可能に結合している。また、モータケーシング21には、フィルタ24が設けられた冷媒流入口25が形成されている。そして、冷媒流入口25から流入した冷媒ガスはモータ22を通過した後、スクリュロータ11,12により吸込口26から吸込まれて、圧縮され、図示しない吐出口から吐出される。
ところで、スクリュ圧縮機1の運転中は、ローターケーシング15の温度が上昇しており、凝縮された冷媒が注液孔16,17,18の内壁面に接触すると、冷媒が過熱され、軸受・軸封部13L,13R,14L,14Rに液状態の冷媒が供給されなくなる可能性がある。軸受に液状態の冷媒が供給されないと、潤滑不良を起こし、軸受の焼き付き原因となる。
【0015】
しかしながら、スクリュ圧縮機1の場合、上述したように注液管19の一端が、注液孔16,17,18の内壁面に接触することなく嵌入させられているため、凝縮された冷媒は、ローターケーシング15の温度上昇の影響を受けることなく、液状態のまま軸受・軸封部13L,13R,14L,14Rに導かれ、この箇所での潤滑及びシールの役割を果たすことが可能となっている。
【0016】
この結果、スクリュ圧縮機1は上述した無給油式のスクリュ圧縮機のように複雑な構造でなく、油冷式のスクリュ圧縮機の単純な構造で、冷凍装置に用いられても、軸受・軸封部13L,13R,14L,14Rの潤滑及びシール用として、潤滑油を必要としなくなる。このため、スクリュ圧縮機1では、従来潤滑油を用いていた場合には、構造が複雑化するという面において、さらに装置全体の容積、設置面積の増大及びコスト上昇という面においてかなり大きな比重を占めていた油分離回収器、油冷却器、油フィルタ、これらの潤滑油用機器を含む潤滑油循環のための油用配管が一切不要となり、潤滑油を用いた場合に負担となっていた潤滑油関連のメンテナンスも不要となる。
【0017】
図3は、第2発明に係る冷凍装置用スクリュ圧縮機における注液孔16の箇所のみ拡大して示したものであり、この注液孔16及び注液孔17,18の箇所を除き、他はスクリュ圧縮機1と変わるところはなく、図3において、図2と共通する部分については同一番号を付してある。
この第2発明に係る冷凍装置用スクリュ圧縮機では、注液孔16の内壁面と注液管19との間に断熱材27を介在させてあり、注液孔17及び18についても同様に断熱材27を介在させてある。
【0018】
【発明の効果】
以上の説明より明らかなように、第1発明によれば、軸受・軸封部に潤滑及びシール用として液を導く注液孔を備えたスクリュ圧縮機において、一端が上記注液孔の内壁面に接触することなく上記注液孔内に嵌入させられた注液管を設けた構成としてある。
また、第2発明によれば、第1発明の構成に加えて、上記注液孔の内壁面と上記注液管との間に断熱材を介在させた構成としてある。
【0019】
このため、このスクリュ圧縮機では、凝縮された冷媒を液状態のまま軸受・軸封部に供給でき、潤滑及びシール用として利用でき、潤滑油が不要となり、この結果、構造の複雑化、及び装置全体の容積、設置面積の増大及びコスト上昇という面においてかなり大きな比重を占めていた潤滑油用の油分離回収器、油冷却器、油フィルタ、これらを含む潤滑油循環のための油用配管が一切不要となり、装置全体の構造が簡素化され、かつコンパクトになるとともに、潤滑油を用いた場合に負担となっていた潤滑油関連のメンテナンスも不要となる等、種々の効果を奏する。
【0020】
特に、冷媒の圧縮、凝縮、膨張、蒸発が繰返される冷媒循環流路における凝縮後で、かつ膨張前の冷媒を上記注液孔を通じて上記軸受・軸封部に導くように構成された冷凍装置用のスクリュ圧縮機として本発明を適用すれば、好ましい効果が得られる。
【図面の簡単な説明】
【図1】第1発明に係る冷凍装置用スクリュ圧縮機の断面図である。
【図2】図1に示す冷凍装置用スクリュ圧縮機における一注液孔の箇所の部分拡大断面図である。
【図3】第2発明に係る冷凍装置用スクリュ圧縮機における一注液孔の箇所の部分拡大断面図である。
【図4】従来の油冷式2段形スクリュ圧縮機の断面図である。
【符号の説明】
1 冷凍装置用スクリュ圧縮機 11 スクリュロータ
11L,11R ロータ軸 12 スクリュロータ
12L,12R ロータ軸 13L,13R 軸受・軸封部
14L,14R 軸受・軸封部 15 ローターケーシング
16,17,18 注液孔 19 注液管
21 モータケーシング 22 モータ
23 出力軸 24 フィルタ
25 冷媒流入口 26 吸込口
27 断熱材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a screw compressor, and more particularly to a screw compressor for a refrigeration system that compresses a refrigerant in a refrigeration system.
[0002]
[Prior art]
Conventionally, screw compressors applied to refrigeration systems are known (for example, see Patent Documents 1 to 3).
[0003]
[Patent Document 1]
JP-A-9-268988 (FIGS. 1, 2, and 4 to 7)
[Patent Document 2]
JP-A-6-129370 (FIG. 1)
[Patent Document 3]
JP 2001-317480 A (FIG. 1)
[0004]
The screw compressor is an oil-cooled screw compressor that injects oil into the rotor chamber for the purpose of sealing between the rotors, sealing between the rotor and the inner wall surface of the rotor chamber, cooling of the heating section due to compression, lubrication, etc. Oil-filled screw compressors, which do not inject oil into the rotor chamber, seal the bearing section completely from the rotor chamber, and use synchronous gears to transmit rotational driving force between the male and female rotors Is done. The structure of the compressor itself is considerably more complicated with an oil-free screw compressor than with an oil-cooled screw compressor. In addition, a non-lubricating screw compressor is more expensive because of its complexity. In addition, the gap between the rotors and the gap between the rotor and the inner wall surface of the rotor chamber are larger in the oilless screw compressor than in the oil-cooled screw compressor. A large amount of gas leaks. Therefore, except for special applications where compressed gas is not allowed to contain lubricating oil and only clean compressed gas is required, oil-cooled screw compressors are generally used, No screw compressor is used.
[0005]
Patent Document 1 discloses an oil-cooled two-stage screw compressor 30 shown in FIG. The two-stage screw compressor 30 includes a motor casing 31 integrally connected, a first-stage rotor casing 32 on a low-pressure side, and a second-stage rotor casing 33 on a high-pressure side. A suction port 34 is provided, and a discharge flow path 36 in which an oil separation / recovery device 35 is provided extends from the second-stage rotor casing 33. A motor 37 is housed in the motor casing 31, and a pair of male and female screw rotors 38, 39 and 41, 42 meshing with each other are housed in the first and second stage rotor casings 32 and 33, respectively. I have. Rotor shafts 38L, 38R and 39L, 39R extending on both sides of the first-stage screw rotors 38 and 39 are rotatably supported by bearing / shaft seals 43L, 43R and 44L, 44R. Further, rotor shafts 41L, 41R and 42L, 42R extending on both sides of the second-stage screw rotors 41 and 42 are rotatably supported by bearing / shaft seals 45L, 45R and 46L, 46R. The output shaft 47 of the motor 37, the rotor shafts 38L, 38R of the first-stage screw rotor 38, and the rotor shafts 41L, 41R of the second-stage screw rotor 41 are coaxially arranged and integrally rotatably connected. I have.
[0006]
On the other hand, the lower part of the oil separation / recovery unit 35 is an oil reservoir 51 from which the rotor chambers in the first and second stage rotor casings 32 and 33 via an oil cooler 52 and an oil filter 53 are connected. An oil flow passage 54 extending to the bearing / shaft sealing portion extends. More specifically, the first-stage rotor casing 32 and the second-stage rotor casing 33 have liquid injection holes 55 and 56 communicating with the bearing / shaft sealing portions 43L, 43R and 44L and 44R, and the bearing / shaft sealing portions 45L and 46L. , 57 are bored, and the oil flow path 54 is connected to liquid injection holes 55, 56, 57.
[0007]
Then, the screw rotors 38 and 41 are driven by the motor 37, and the screw rotors 39 and 42 rotate together with the screw rotors 38 and 41, and the gas sucked from the suction port 34 is compressed by the screw rotors 38 and 39 while receiving oil injection. The oil is further compressed by the screw rotors 41 and 42 while being injected with oil, and is discharged to the discharge passage 36 with the accompanying oil. The gas discharged into the discharge passage 36 together with the oil is separated by the oil separator / collector 35 into oil, and sent out from above the oil separator / collector 35 to the extended portion of the discharge passage 36. The oil is temporarily stored in the oil sump 51. The oil in the oil reservoir 51 is injected into the rotor chamber through an oil cooler 52 and an oil filter 53, and is also injected into the bearing / shaft seal through liquid injection holes 55, 56 and 57 for lubrication and sealing. Led to the department. Then, these oils are eventually led to the discharge passage 36 together with the gas, and are repeatedly circulated.
When the two-stage screw compressor 30 is used for a refrigerating device, the gas is a refrigerant, and circulates through a flow path including a condenser, an expansion valve, and an evaporator, and repeats compression, condensation, expansion, and evaporation. .
[0008]
Patent Literature 2 discloses an oil-cooled screw compressor including an oil flow path from an oil separator / recovery device through an oil cooler, an oil filter, and an oil pump to a bearing / shaft sealing portion from an injection hole. I have.
Patent Document 3 discloses an oil-cooled screw compressor having an oil separation and recovery device including a demister and an oil sump.
And, needless to say, these oil-cooled screw compressors are also applicable for refrigeration equipment.
[0009]
[Problems to be solved by the invention]
When a two-stage screw compressor 30 disclosed in Patent Document 1 and an oil-cooled screw compressor disclosed in Patent Documents 2 and 3 described above are used for a refrigerating device, at least an oil separation and recovery device is required and an oil flow is required. Oil pipes for roads are required, and these occupy a large proportion of the total volume of the equipment, making the equipment bulky, increasing its installation space, and increasing the complexity of the equipment, resulting in higher cost. In addition to this, there is a problem that a great burden is imposed on maintenance.
An object of the present invention is to eliminate such a conventional problem, and an object of the present invention is to provide a screw compressor capable of simplifying the structure, reducing the size, and reducing the burden of maintenance.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first invention provides a rotor casing containing a pair of male and female screw rotors meshing with each other, and a bearing / shaft sealing portion rotatably supporting a rotor shaft extending on both sides of the screw rotor. In the screw compressor, which is provided with a liquid injection hole for guiding a liquid for lubrication and sealing to the bearing / shaft seal portion, one end of the screw compressor does not contact the inner wall surface of the liquid injection hole. And a liquid injection tube fitted into the container.
[0011]
According to a second aspect of the invention, in addition to the configuration of the first aspect, a heat insulating material is interposed between the inner wall surface of the liquid injection hole and the liquid injection pipe.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
FIGS. 1 and 2 show a screw compressor 1 for a refrigeration system according to a first invention. The screw compressor 1 includes a pair of male and female screw rotors 11 and 12 that mesh with each other, and extends on both sides of the screw rotors 11 and 12. The rotor casing 15 houses bearings / shaft seals 13L, 13R, 14L, 14R that rotatably support the rotor shafts 11L, 11R and 12L, 12R. The rotor casing 15 is provided with liquid injection holes 16, 17, and 18 that communicate with the bearing / shaft seal portions 13L, 13R, 14L, and 14R.
[0013]
When the screw compressor 1 is used in a refrigeration system, the liquid injection holes 16, 17, and 18 are formed after the refrigerant is condensed and expanded in a refrigerant circulation flow path in which compression, condensation, expansion, and evaporation of the refrigerant are repeated. One end of a liquid injection pipe 19 that guides the previous refrigerant to the bearing / shaft seal portions 13L, 13R, 14L, 14R for lubrication and sealing is fitted without contacting the inner wall surfaces of the liquid injection holes 16, 17, and 18. ing. This one end is desirably as close as possible to the bearing / shaft seals 13L, 13R, 14L, 14R. Although only the location of the injection hole 16 is shown in an enlarged manner in FIG. 2, the locations of the injection holes 17 and 18 are similarly formed.
In the same manner as described above, the refrigerant after condensation and before expansion may be supplied to the rotor chamber of the screw compressor 1.
[0014]
The motor casing 21 is integrally connected to the rotor casing 15, and the output shaft 23 of the motor 22 and the rotor shaft 11R housed therein are coaxially arranged and integrally rotatably connected. The motor casing 21 has a refrigerant inlet 25 provided with a filter 24. After passing through the motor 22, the refrigerant gas flowing from the refrigerant inflow port 25 is sucked from the suction port 26 by the screw rotors 11 and 12, compressed, and discharged from a discharge port (not shown).
By the way, during operation of the screw compressor 1, the temperature of the rotor casing 15 is rising, and when the condensed refrigerant comes into contact with the inner wall surfaces of the injection holes 16, 17, and 18, the refrigerant is overheated, and the bearing / shaft is heated. The liquid refrigerant may not be supplied to the sealing portions 13L, 13R, 14L, 14R. If the coolant in the liquid state is not supplied to the bearing, poor lubrication occurs and causes seizure of the bearing.
[0015]
However, in the case of the screw compressor 1, as described above, one end of the liquid injection pipe 19 is fitted without contacting the inner wall surfaces of the liquid injection holes 16, 17, and 18, so that the condensed refrigerant is Without being affected by the temperature rise of the rotor casing 15, it is guided to the bearing / shaft seals 13L, 13R, 14L, 14R in a liquid state, and can play a role of lubrication and sealing at this location. I have.
[0016]
As a result, the screw compressor 1 has a simple structure of an oil-cooled screw compressor, not a complicated structure like the above-mentioned oilless screw compressor, and can be used for a bearing / shaft even when used in a refrigeration system. Lubricating oil is not required for lubrication and sealing of the sealing portions 13L, 13R, 14L, 14R. For this reason, when the lubricating oil is conventionally used, the screw compressor 1 occupies a considerably large specific gravity in terms of a complicated structure, an increase in the volume of the entire apparatus, an increase in installation area, and an increase in cost. The oil separation and recovery unit, the oil cooler, the oil filter, and the oil piping for lubricating oil circulation including these lubricating oil devices were no longer necessary, and the lubricating oil that became a burden when lubricating oil was used No related maintenance is required.
[0017]
FIG. 3 is an enlarged view showing only the location of the injection hole 16 in the screw compressor for a refrigeration apparatus according to the second invention. Is the same as the screw compressor 1, and in FIG. 3, the same parts as those in FIG. 2 are denoted by the same reference numerals.
In the screw compressor for a refrigerating apparatus according to the second invention, a heat insulating material 27 is interposed between the inner wall surface of the liquid injection hole 16 and the liquid injection pipe 19, and the liquid injection holes 17 and 18 are similarly insulated. Material 27 is interposed.
[0018]
【The invention's effect】
As is apparent from the above description, according to the first invention, in a screw compressor having a liquid injection hole for guiding a liquid for lubrication and sealing in a bearing / shaft sealing portion, one end has an inner wall surface of the liquid injection hole. A liquid injection tube fitted into the liquid injection hole without contacting the liquid injection hole.
According to the second invention, in addition to the configuration of the first invention, a heat insulating material is interposed between the inner wall surface of the liquid injection hole and the liquid injection pipe.
[0019]
For this reason, in this screw compressor, the condensed refrigerant can be supplied to the bearing / shaft seal portion in a liquid state, can be used for lubrication and sealing, and lubricating oil is not required. As a result, the structure becomes complicated, and Oil separation and recovery unit for lubricating oil, oil cooler, oil filter, and oil piping for lubricating oil circulation, including these, which had occupied a considerable weight in terms of the volume of the entire device, the increase in installation area, and the increase in cost Are not required at all, and the overall structure of the apparatus is simplified and compact, and various effects such as the maintenance of the lubricating oil, which has become a burden when lubricating oil is used, are not required.
[0020]
In particular, for a refrigeration system configured to guide the refrigerant after condensation in the refrigerant circulation flow path in which compression, condensation, expansion, and evaporation of the refrigerant are repeated and before expansion to the bearing / shaft seal through the liquid injection hole. If the present invention is applied as a screw compressor of the above, preferable effects can be obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view of a screw compressor for a refrigerating apparatus according to a first invention.
FIG. 2 is a partially enlarged cross-sectional view of one injection hole in the screw compressor for a refrigerating apparatus shown in FIG.
FIG. 3 is a partially enlarged cross-sectional view of one injection hole in a screw compressor for a refrigerating apparatus according to a second invention.
FIG. 4 is a sectional view of a conventional oil-cooled two-stage screw compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Screw compressor for refrigeration equipment 11 Screw rotor 11L, 11R Rotor shaft 12 Screw rotor 12L, 12R Rotor shaft 13L, 13R Bearing / shaft sealing part 14L, 14R Bearing / shaft sealing part 15 Rotor casing 16, 17, 18 Injection hole 19 Injection pipe 21 Motor casing 22 Motor 23 Output shaft 24 Filter 25 Refrigerant inlet 26 Suction port 27 Insulation material

Claims (2)

互いに噛合う雌雄一対のスクリュロータと、このスクリュロータの両側に延びたロータ軸を回転可能に支持する軸受・軸封部とを収容したローターケーシングに穿設され、上記軸受・軸封部に潤滑及びシール用として液を導く注液孔を備えたスクリュ圧縮機において、一端が上記注液孔の内壁面に接触することなく上記注液孔内に嵌入させられた注液管を設けたことを特徴とするスクリュ圧縮機。A pair of male and female screw rotors meshing with each other and a bearing / shaft sealing portion rotatably supporting a rotor shaft extending on both sides of the screw rotor are bored in a rotor casing, and the bearing / shaft sealing portion is lubricated. And a screw compressor having a liquid injection hole for guiding a liquid for sealing, wherein a liquid injection pipe fitted into the liquid injection hole without one end contacting an inner wall surface of the liquid injection hole is provided. Characteristic screw compressor. 上記注液孔の内壁面と上記注液管との間に断熱材を介在させたことを特徴とする請求項1に記載のスクリュ圧縮機。The screw compressor according to claim 1, wherein a heat insulating material is interposed between an inner wall surface of the liquid injection hole and the liquid injection pipe.
JP2002326753A 2002-11-11 2002-11-11 Screw compressor Pending JP2004162540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326753A JP2004162540A (en) 2002-11-11 2002-11-11 Screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326753A JP2004162540A (en) 2002-11-11 2002-11-11 Screw compressor

Publications (1)

Publication Number Publication Date
JP2004162540A true JP2004162540A (en) 2004-06-10

Family

ID=32805599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326753A Pending JP2004162540A (en) 2002-11-11 2002-11-11 Screw compressor

Country Status (1)

Country Link
JP (1) JP2004162540A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297996A (en) * 2007-05-31 2008-12-11 Mayekawa Mfg Co Ltd Single screw type multiple stage compressor and freezing-refrigerating system using same
US20100329918A1 (en) * 2008-01-23 2010-12-30 Daikin Industries, Ltd. Screw compressor
CN101975160A (en) * 2010-11-16 2011-02-16 上海维尔泰克螺杆机械有限公司 Double-screw liquid pump
WO2013078132A1 (en) * 2011-11-22 2013-05-30 Vilter Manufacturing Llc Single screw expander/compressor apparatus
KR20190108567A (en) * 2017-01-10 2019-09-24 생-고뱅 퍼포먼스 플라스틱스 엘+에스 게엠베하 Sealing ring and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297996A (en) * 2007-05-31 2008-12-11 Mayekawa Mfg Co Ltd Single screw type multiple stage compressor and freezing-refrigerating system using same
US20100329918A1 (en) * 2008-01-23 2010-12-30 Daikin Industries, Ltd. Screw compressor
US8708677B2 (en) * 2008-01-23 2014-04-29 Daikin Industries, Ltd. Screw compressor having injection having injection mechanism that injects oil or refrigerant toward a starting end of an extending direction of a helical groove of the female rotor or the male rotor
CN101975160A (en) * 2010-11-16 2011-02-16 上海维尔泰克螺杆机械有限公司 Double-screw liquid pump
WO2013078132A1 (en) * 2011-11-22 2013-05-30 Vilter Manufacturing Llc Single screw expander/compressor apparatus
KR20190108567A (en) * 2017-01-10 2019-09-24 생-고뱅 퍼포먼스 플라스틱스 엘+에스 게엠베하 Sealing ring and manufacturing method thereof
KR102294233B1 (en) 2017-01-10 2021-08-30 생-고뱅 퍼포먼스 플라스틱스 엘+에스 게엠베하 Sealing ring and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100339797B1 (en) Lubrication system for screw compressors using an oil still
JP4880517B2 (en) Compressor with oil bypass
JP4330369B2 (en) Screw refrigeration equipment
JP6594707B2 (en) Two-stage compression refrigeration system
US4020642A (en) Compression systems and compressors
JPH0650259A (en) Refrigerant compressor system of refrigerator for transportation
JP2004150412A (en) Screw compressor
JP2001091071A (en) Multi-stage compression refrigerating machine
CN1316212C (en) R4efrigerant circulation device
US3945219A (en) Method of and apparatus for preventing overheating of electrical motors for compressors
JPH11351168A (en) Screw type refrigerating device
JP2003139420A (en) Refrigeration unit
JP2004162540A (en) Screw compressor
JP3535938B2 (en) Two-stage screw compressor
WO2013153970A1 (en) Two-stage oil-cooled compressor device
JP2000337282A (en) Two-stage type screw compressor
CN106196674A (en) Oil injection type split-compressor and heat pump
JP5334801B2 (en) Two-stage screw compressor and refrigeration system
JP2014129962A (en) Refrigeration device
JP3291469B2 (en) Rotary compressor
JP3847493B2 (en) Two-stage compression refrigeration system
JPH08543Y2 (en) Oil-cooled screw compressor
JP2003322093A (en) Screw type fluid machine and refrigerating device provided with the same
JP4546136B2 (en) Screw refrigeration equipment
JP2001082368A (en) Two-stage compression type rotary compressor