JPS585099A - Resonance variable type underwater transceiver - Google Patents

Resonance variable type underwater transceiver

Info

Publication number
JPS585099A
JPS585099A JP10127381A JP10127381A JPS585099A JP S585099 A JPS585099 A JP S585099A JP 10127381 A JP10127381 A JP 10127381A JP 10127381 A JP10127381 A JP 10127381A JP S585099 A JPS585099 A JP S585099A
Authority
JP
Japan
Prior art keywords
frequency
current
magnetic field
winding
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10127381A
Other languages
Japanese (ja)
Inventor
Hiroshi Kamata
鎌田 弘志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP10127381A priority Critical patent/JPS585099A/en
Publication of JPS585099A publication Critical patent/JPS585099A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R15/00Magnetostrictive transducers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PURPOSE:To efficiently transmit a frequency modulation wave, by applying a low frequency current to an oscillator made of amorphous alloy to vary the resonance. CONSTITUTION:A DC is applied to a winding 22 to give a bias magnetic field to an oscillator 21 of amorphous alloy. The resonance frequency of the oscillator 21 depends on the sound velocity in the alloy and the shape of oscillator. Since the sound velocity is changed with the intensity of a DC magnetic field, the resonance frequency is changed with the intensity of the bias magnetic field. Thus, when an AC current with lower frequency is superimposed on the DC current, the resonance frequency is varied correspondingly. A signal with the same frequency as the resonance frequency is transmitted and received via a winding 23. The oscillator 21 is bonded on a sound window 24 and the oscillation is radiated through the window 24.

Description

【発明の詳細な説明】 本発明は共振周波数を変化できる共振可変型水中送受波
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable resonance underwater transducer that can change the resonance frequency.

従来のこの種水中送受波器のうち、磁気歪効果を利用す
る一例を第1図に示す。図において1は振動子で、酸化
ニッケル、酸化銅、酸化鉄などを主原料とし、圧縮成形
後焼成されたフェライト材料からなる。2は巻線で、信
号電流を加えることによって磁界が発生し、振動子1に
磁気歪現象を発生させる。しかし振動子1は信号電流を
加えるだけであれば、その極性にかかわらず単に伸びる
だけであるが、バイアス磁石3を設けることによって一
定の静的な伸び金子め加えて用いることになっている。
An example of a conventional underwater transducer of this type that utilizes the magnetostrictive effect is shown in FIG. In the figure, reference numeral 1 denotes a vibrator, which is made of a ferrite material whose main raw materials are nickel oxide, copper oxide, iron oxide, etc., and which is compression-molded and then fired. A winding 2 generates a magnetic field by applying a signal current, causing a magnetostrictive phenomenon in the vibrator 1. However, if only a signal current is applied to the vibrator 1, the vibrator 1 simply stretches regardless of its polarity, but by providing a bias magnet 3, it is used in addition to a constant static expansion bar.

従ってそのバイアス磁石3によって与えられる磁界よシ
も十分小さい交番磁界を与える信号電流を巻線2から印
加することによって振動子1は微少な振動を発生する。
Therefore, by applying from the winding 2 a signal current that provides an alternating magnetic field that is sufficiently smaller than the magnetic field provided by the bias magnet 3, the vibrator 1 generates minute vibrations.

なお、振動子1は音響透過性のよい材料から成る所謂、
音響窓4に接着されておシ、発生し九振動は音響窓4を
通過して音場媒質である水に音波として放射される。
Note that the vibrator 1 is made of a material with good acoustic transparency.
The vibrations generated by the adhesive on the acoustic window 4 pass through the acoustic window 4 and are radiated as sound waves into water, which is a sound field medium.

なお、5は円筒状の水密筐体である。Note that 5 is a cylindrical watertight housing.

この水中送受波器の共振周波数、つまシ最も音響放射効
率のよい周波数は、振動子1の形状、主として長さによ
って一義的に決まっており、その周波数を電気的に変化
させることは不可能であった。
The resonant frequency of this underwater transducer, the frequency at which the acoustic radiation is most efficient, is uniquely determined by the shape and mainly the length of the vibrator 1, and it is impossible to change that frequency electrically. there were.

次に、共振周波数f。を中心として放射効率のよい範囲
、つまシ帯域幅は一般には1九程度である。水中音響の
分野では音波周波数として数10kHz程度を利用する
のが最も一般的であるが、水中送受波器の共振周波数で
音波を送信し九場合に、帯域幅は共振周波数20kH2
のときで、2k)iz程度でアシ、それ以上の帯域幅を
有する信号を送波すると、音波の波形は電気信号とは異
なる形に歪むことになる。従って、例えば音声信号をA
M変調して送波する水中電話などでは忠実伝送という点
からみて十分なものとは云えないという問題があった。
Next, the resonance frequency f. The range with good radiation efficiency, centered around , is generally about 19 times the bandwidth. In the field of underwater acoustics, it is most common to use a sound wave frequency of several tens of kHz, but when transmitting sound waves at the resonant frequency of an underwater transducer, the bandwidth is 20 kHz at the resonant frequency.
If a signal having a bandwidth of about 2k) iz or more is transmitted, the waveform of the sound wave will be distorted into a shape different from that of the electrical signal. Therefore, for example, when an audio signal is
Underwater telephones and the like that transmit M-modulated waves have a problem in that they are not sufficient in terms of faithful transmission.

ましてや、FM変調のように広い帯域幅を要する信号を
送波する用途としては、従来の水中送受波器は不適当で
あシ1.それらの問題を解決する方法はなかった。
Furthermore, conventional underwater transducers are inappropriate for transmitting signals that require a wide bandwidth such as FM modulation.1. There was no way to solve those problems.

本発明は、このような従来の欠点を除去するもので、ア
モルファス合金のなかには、磁気歪効果を示すものがあ
シ、そのなかの音速空直流磁界の大きさによって変化す
るという性質に着目し、アモルファス合金でできた磁性
体を用いた振動子に巻線を施こし、直流および低周波電
流奪印加するようにしたものである。以下本発明の一実
施例を図面によシ詳細に説明する。
The present invention aims to eliminate such conventional drawbacks, and focuses on the property that some amorphous alloys exhibit a magnetostrictive effect, which changes depending on the magnitude of the sonic air direct current magnetic field, A vibrator made of a magnetic material made of an amorphous alloy is wound with a wire, and direct current and low frequency current are applied. An embodiment of the present invention will be described in detail below with reference to the drawings.

第2図は本発明共振可変型水中送受波器の一実施例を示
す一部切断平面図である。図において、21はアモルフ
ァス合金からなる振動子で、鉄、コノjル+を主成分と
する非晶質のアモルファス合金の薄板を積層し、磁場中
で熱処理を行ったものである@22は直流および低周波
電流を印加する巻線、23は信号を送受する巻線、24
は音響窓、25は円筒状の水密筐体である◎ このアモルファス合金でできた振動子21はフェライト
材料からなる振動子と同様にバイアス磁界を加えなけれ
ば信号電流に比例した振動は発生しない。そこで、バイ
アス磁界を与えるために巻線22によシ直流を印加する
。振動子21の共振周波数はアモルファス合金内の音速
と振動子形状で決まるが、音速は直流磁界の強さによっ
て変化するので、共振周波数もバイアス磁界の強さによ
って変化する。従って、直流バイアス磁界を与えるため
巻線22に加える直流電流を微小に変化させれば共振周
波数が変化するので、直流電流に、それよシも小さな低
周波の交番電流を重畳させて加えると、その低周波電流
に応じて振動子21の共振周波数が変化する。
FIG. 2 is a partially cutaway plan view showing an embodiment of the variable resonance underwater transducer of the present invention. In the figure, 21 is a vibrator made of an amorphous alloy, which is made by laminating thin plates of amorphous amorphous alloy whose main components are iron and Conol+, and heat-treated in a magnetic field. @22 is a vibrator made of a direct current and a winding for applying a low frequency current, 23 a winding for transmitting and receiving signals, 24
25 is an acoustic window, and 25 is a cylindrical watertight housing. ◎ The vibrator 21 made of this amorphous alloy does not generate vibrations proportional to the signal current unless a bias magnetic field is applied, similar to the vibrator made of ferrite material. Therefore, a direct current is applied to the winding 22 to provide a bias magnetic field. The resonant frequency of the vibrator 21 is determined by the speed of sound in the amorphous alloy and the shape of the vibrator, but since the speed of sound changes depending on the strength of the DC magnetic field, the resonant frequency also changes depending on the strength of the bias magnetic field. Therefore, if the DC current applied to the winding 22 to provide a DC bias magnetic field is slightly changed, the resonant frequency will change, so if an even smaller low-frequency alternating current is superimposed on the DC current and added, The resonant frequency of the vibrator 21 changes depending on the low frequency current.

その共振周波数で信号を送受すれば最も効率がよいので
巻線、23を介してその共振周波数と同一周波数の信号
を送受する。また、振動子21は音響窓24に接着され
ておシ、発生し九振動は音響窓24を通過して音場媒質
である水に音波として放射される。なおZ水密筐体25
によシ内部は防水性が保されている。
Since it is most efficient to transmit and receive signals at that resonant frequency, signals at the same frequency as that resonant frequency are transmitted and received via the winding 23. Further, the vibrator 21 is bonded to an acoustic window 24, and the generated vibrations pass through the acoustic window 24 and are radiated as sound waves into water, which is a sound field medium. In addition, Z watertight housing 25
The inside of the case is kept waterproof.

第3図は本発明送受波器の作動を説明する図で、縦軸が
共振周波数、横軸がバイアス電流で、直流電流に周波数
fpの低周波電流を重畳させて、共振周波数が変化する
様子を示している。
Figure 3 is a diagram illustrating the operation of the transducer of the present invention, where the vertical axis represents the resonant frequency and the horizontal axis represents the bias current, showing how the resonant frequency changes when a low frequency current of frequency fp is superimposed on the DC current. It shows.

第4図は低周波電流の効果によって共振周波数がA点か
らB点の間を往復する様子を説明する図である。なお縦
軸は送波感度、横軸は周波数を示す。
FIG. 4 is a diagram illustrating how the resonant frequency moves back and forth between point A and point B due to the effect of low frequency current. Note that the vertical axis shows the transmission sensitivity and the horizontal axis shows the frequency.

したがって共振周波数がA点にあるとき、A点における
周波数の交番電流を信号として加えると最も効率のよい
送波が実行できる。またB点につ(5) いても同様であシ、共振周波数の変化に対応してその周
波数で音波を送波すると最も効率がよい。
Therefore, when the resonant frequency is at point A, the most efficient wave transmission can be performed by adding an alternating current of the frequency at point A as a signal. The same applies to point B (5), and it is most efficient to transmit sound waves at that frequency in response to changes in the resonance frequency.

このように共振周波数を電気的に巻線22を介を加えな
いで、あるレベルの・直流電流のみを加えたときの共振
周波数をfoとすると、低周波電流の周波数cos2π
f、tを直流電流に重畳させて加え九とき、共振周波数
は10+kcoszπ/ tの形となる。なおkは比例
定数 し九がって信号周波数も瞬時周波数f +kcos2π
/p1とすれば最も効率がよい。この10+5ccos
2π/、1は10を搬送周波数、jpを変調波とする周
波数変調信号の瞬時周波数と同じ形であ)、この周波数
で送受するということは周波数変調信号で送受すること
を意味するから、例えば音声信号に比例した低周波電流
を印加し、同じ音声信号を周波数変調した信号で送波す
れば効率よく、かつ歪なく対雑音性が優れているなどの
周波数変調の特長をもつた水中電話の送波ができる。
If the resonant frequency is fo when only a certain level of direct current is applied without electrically applying the resonant frequency through the winding 22, then the frequency of the low frequency current cos2π
When f and t are superimposed and added to the DC current, the resonant frequency becomes 10+kcoszπ/t. Note that k is a proportionality constant, and the signal frequency is also the instantaneous frequency f + kcos2π
/p1 is most efficient. This 10+5ccos
2π/, 1 is the same form as the instantaneous frequency of a frequency modulated signal with 10 as the carrier frequency and jp as the modulating wave), and transmitting and receiving at this frequency means transmitting and receiving as a frequency modulated signal, so for example, Underwater telephones have the characteristics of frequency modulation, such as applying a low-frequency current proportional to the voice signal and transmitting the same voice signal as a frequency-modulated signal, which is efficient, has no distortion, and has excellent noise resistance. Can transmit waves.

この場合、送波信号の周波数7O−1−kcos2πf
ptと(6) 共振周波数が常に一致しているので、従来例のような帯
域幅の狭さによる制約はないことになる。
In this case, the frequency of the transmitted signal is 7O-1-kcos2πf
Since the resonance frequency pt and (6) always match, there is no restriction due to the narrow bandwidth as in the conventional example.

第5図は、本発明水中送受i器を水中電話に応用した例
のブロック図である。即ち、マイクロホン51で検知し
た音声信号は、前置増幅器52で増幅され、直流加算器
53で直流電流I0と加算され、ノクワーアング54で
増幅され、送波器55のバイアス磁界を与える電流とな
る。一方、周波!Lf0で発振している発振器56から
の搬送波は周波数変調器57において前置増幅器52か
らの変調波で変調され、パワーアンプ58で増幅され送
波器55に送波信号として印加される、送波器55はす
でに述べ九ように歪なく水中に信号を送波する。59は
通常の−・イドロホンである。通常−・イドロホンは広
帯域であるから受波した音波波形を歪なく電気信号に変
える。前置増幅器60で適当に増幅したのち局部発振器
61からの搬送周波数信号によって周波数復調器62で
復調、増幅器63で・増幅され、スぎ一力64を通じて
人間の耳に到る。この実施例では一方通行のブロック図
を示したが、逆方向についても同じようなブロック図で
通信すれば相互通信ができることはいうまでもない。な
お、第2図では直流および低周波電流を1本の巻線で印
加しているが、゛こtrM別々に巻線を設けてもよいし
、信号を送受する巻線に重畳して印加しても同様の効果
を生じる。また直流はバイアス磁界を与えるものである
から、従来のようにバイアス磁石を用いることで置き換
えることもできる。ま九振動子形状は所謂NA型につい
て図示しているが、π型、円筒型、棒状などでも同様の
効果が生じる。
FIG. 5 is a block diagram of an example in which the underwater transmitter/receiver of the present invention is applied to an underwater telephone. That is, the audio signal detected by the microphone 51 is amplified by a preamplifier 52, added to a DC current I0 by a DC adder 53, and amplified by a nokwarang 54 to become a current that provides a bias magnetic field for a transmitter 55. On the other hand, frequency! The carrier wave from the oscillator 56 oscillating at Lf0 is modulated by the modulated wave from the preamplifier 52 in the frequency modulator 57, amplified by the power amplifier 58, and applied to the transmitter 55 as a transmission signal. As already mentioned, the device 55 transmits signals underwater without distortion. 59 is a normal idrophone. Normally, since the idrophone has a wide band, it converts the received sound wave waveform into an electrical signal without distortion. After being suitably amplified by a preamplifier 60, it is demodulated by a frequency demodulator 62 using a carrier frequency signal from a local oscillator 61, amplified by an amplifier 63, and reaches the human ear through a signal generator 64. Although this embodiment shows a one-way block diagram, it goes without saying that mutual communication can be achieved in the opposite direction by using a similar block diagram. In addition, in Figure 2, direct current and low frequency current are applied through a single winding, but it is also possible to provide a separate winding for this trM, or to apply it superimposed on the winding that transmits and receives signals. produces the same effect. Further, since direct current provides a bias magnetic field, it can be replaced by using a bias magnet as in the conventional case. Although the so-called NA type oscillator shape is illustrated, the same effect can be obtained with a π type, cylindrical shape, rod shape, etc.

以上詳細に説明したように本発明、はアモルファス合金
製の振動子に低周波電流を印加して共振を変化させるこ
とができるから周波数変調波を効率よく送波でき、従っ
て水中通信など□に利用して大きな効果がある。
As explained in detail above, the present invention is capable of applying a low frequency current to an amorphous alloy vibrator to change its resonance, so frequency modulated waves can be transmitted efficiently, and therefore it can be used for underwater communications etc. It has a big effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気歪効果利用の水中送受波器を示す一
部切断平面図、第2図は本発明共振可変型水中送受波器
の一実施例を示す一部切断平面図、第3図は本発明の作
動説明図、第4図は同じくその効果説明図、第5図は本
発明の水中送受波器を用いた水中通信方式を示す10ツ
ク図である。 21・・・アモルファス合金振動子、22・・・直流お
よび低周波電流を印加する巻線、23・・・信号を送受
する巻線、24・・・音響窓、25・・・水蜜筐体。 (9) 61
FIG. 1 is a partially cutaway plan view showing a conventional underwater transducer using the magnetostrictive effect; FIG. 2 is a partially cutaway plan view showing an embodiment of the resonant variable underwater transducer of the present invention; FIG. FIG. 4 is a diagram illustrating the operation of the present invention, FIG. 4 is a diagram illustrating its effects, and FIG. 5 is a ten-step diagram showing an underwater communication system using the underwater transducer of the present invention. 21... Amorphous alloy vibrator, 22... Winding for applying direct current and low frequency current, 23... Winding for transmitting and receiving signals, 24... Acoustic window, 25... Water honey housing. (9) 61

Claims (1)

【特許請求の範囲】[Claims] アモルファス合金でできた磁性体を磁場中で熱処理して
形成した振動子に巻線を施こして水密筐体に収納した水
中送受波器において、直流と低周波電流を同一または別
個の巻線に印加すると共に前記低周波電流よシ高い周波
数の信号の送受を前記巻線または別個の巻線を介して行
うことを特徴とする共振可変型水中送受波器。
In an underwater transducer, a transducer made by heat-treating a magnetic material made of an amorphous alloy in a magnetic field is wound and housed in a watertight housing, direct current and low-frequency current are passed through the same or separate windings. A resonant variable underwater transducer characterized in that a signal of a higher frequency than the low frequency current is applied and transmitted and received through the winding or a separate winding.
JP10127381A 1981-07-01 1981-07-01 Resonance variable type underwater transceiver Pending JPS585099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10127381A JPS585099A (en) 1981-07-01 1981-07-01 Resonance variable type underwater transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10127381A JPS585099A (en) 1981-07-01 1981-07-01 Resonance variable type underwater transceiver

Publications (1)

Publication Number Publication Date
JPS585099A true JPS585099A (en) 1983-01-12

Family

ID=14296270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10127381A Pending JPS585099A (en) 1981-07-01 1981-07-01 Resonance variable type underwater transceiver

Country Status (1)

Country Link
JP (1) JPS585099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220593A (en) * 1985-03-27 1986-09-30 Hitachi Ltd Under-water sound wave transmitter
WO2005106530A1 (en) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. Ultrasonic range finder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220593A (en) * 1985-03-27 1986-09-30 Hitachi Ltd Under-water sound wave transmitter
WO2005106530A1 (en) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. Ultrasonic range finder
US7046015B2 (en) 2004-04-28 2006-05-16 Matsushita Electric Industrial Co., Ltd. Ultrasonic distance measure

Similar Documents

Publication Publication Date Title
EP0906790A4 (en) Vibration generator for reporting and portable communication equipment using the same
US2759179A (en) Ringing circuit
US4147973A (en) Frequency dependent amplitude modulated translator apparatus
JPS6372231A (en) Ultrasonic wave type data communication equipment
JPS585099A (en) Resonance variable type underwater transceiver
US2031789A (en) Acoustic electric energy converter
CN105827357B (en) A kind of recording shielding device and screen method of recording
JPH05167540A (en) Ultrasonic communication method
US2963681A (en) Dual magnetostrictive microphone
US2977569A (en) Detector with modulation by magnetostrictive-core acoustic transducer
AU6823881A (en) Improving the coupling and directivity of electroacoustic transducers
US1667418A (en) Subaqueous sound-signaling apparatus
CN106059706A (en) Mixed sound recording blocker
JPH06224824A (en) Radio call receiver
US1212202A (en) Submarine, subterranean, and aerial telephony.
US1557048A (en) Vibration apparatus, particularly for receiving and producing sound waves
US2405185A (en) Sound transmitter and receiver
US5530682A (en) Method and apparatus for transmitting an information signal
US20240098422A1 (en) Bone conduction loudspeaker
SU478457A1 (en) Electroacoustic transducer
NO764241L (en)
JPS61150500A (en) Composite type piezoelectric speaker
US1207388A (en) Method and apparatus for submarine signaling.
SU1103362A1 (en) Electroacoustical converter
JP2001313615A (en) Electronic device