JPS5850970B2 - Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond - Google Patents
Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bondInfo
- Publication number
- JPS5850970B2 JPS5850970B2 JP52071378A JP7137877A JPS5850970B2 JP S5850970 B2 JPS5850970 B2 JP S5850970B2 JP 52071378 A JP52071378 A JP 52071378A JP 7137877 A JP7137877 A JP 7137877A JP S5850970 B2 JPS5850970 B2 JP S5850970B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- amount
- oxidant
- mole
- selectivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の詳細な説明】
本発明は、クレゾールのアルキルおたはアリールエーテ
ルを、低級飽和脂肪酸および/またはその無水物を溶媒
とし、被酸化物の0.01モル倍以上の可溶性コバルト
塩、とともに、可溶性臭素化合物、および共酸化剤の共
存下に、0.1〜2kg/ff1(絶対圧)の酸素分圧
下で、反応率60多以下の点まで分子状酸素によって液
相酸化することを特徴とする、エーテル結合を持ったベ
ンジルアルコールおよび/またはベンズアルデヒド誘導
体の製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides an alkyl or aryl ether of cresol, using a lower saturated fatty acid and/or its anhydride as a solvent, together with a soluble cobalt salt in an amount of 0.01 times or more mole of the amount to be oxidized. , a soluble bromine compound, and a co-oxidizer, under an oxygen partial pressure of 0.1 to 2 kg/ff1 (absolute pressure), and is characterized by liquid phase oxidation with molecular oxygen to a point where the reaction rate is 60% or less. The present invention relates to a method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond.
エーテル結合ヲ持ったベンジルアルコールやベンズアル
デヒド誘導体は、有機精密化学工業原料として重要な化
合物であるが、その製法が困難なこともあって、これま
ではあまり工業的な関心が大きい化合物とは言えなかっ
た。Benzyl alcohol and benzaldehyde derivatives, which have an ether bond, are important compounds as raw materials for the organic fine chemical industry, but they have not been of great industrial interest until now, partly because their production methods are difficult. Ta.
しかしながら、最近になって前記化合物群より誘導され
る重要な有機精密化学製品が続出しており、その合成技
術の開発が要望されている。However, recently, important organic fine chemical products derived from the above-mentioned compound groups have been appearing one after another, and there is a demand for the development of synthetic techniques for them.
特にm−フェノキシベンジルアルコールやm−フェノキ
シベンズアルデヒドは農薬中間体としてきわめて重要な
化合物であるが、この方面の化合物の重要性が高まった
のは最近のことなので、現在のところ工業的に有利な合
成法は発表されていない。In particular, m-phenoxybenzyl alcohol and m-phenoxybenzaldehyde are extremely important compounds as agricultural chemical intermediates, but the importance of compounds in this field has only recently increased, so there are currently no industrially advantageous synthetic methods. The law has not been announced.
本発明者らは、エーテル結合を持ったベンジルアルコー
ルやベンズアルデヒド誘導体の合成法としてもつとも合
理的と考えられる、クレゾールのアルキルまたはアリー
ルエーテルの液相自動酸化法について検討し、低級飽和
脂肪酸および/またはその無水物存在下に、比較的多量
の重金属塩−特にコバルト塩−を触媒として酸化反応を
行なうと、酸素過剰の反応条件下では主としてアルデヒ
ドが、酸素不足の反応条件下では主としてアルコールが
生成することを見出し先に特許を出願した←特許昭51
−42419、昭5l−127047)。The present inventors investigated a liquid phase autoxidation method for alkyl or aryl ethers of cresol, which is considered to be a rational method for synthesizing benzyl alcohol and benzaldehyde derivatives having ether bonds, and investigated lower saturated fatty acids and/or their When an oxidation reaction is carried out in the presence of anhydride using a relatively large amount of heavy metal salts, especially cobalt salts, as a catalyst, aldehydes are mainly produced under oxygen-excess reaction conditions, and alcohols are mainly produced under oxygen-deficient reaction conditions. A patent application was filed under the heading ← Patent 1973
-42419, Showa 5l-127047).
この方法は、p−位にエーテル結合を持ったトルエン誘
導体のメチル基酸化にはきわめて効果的であるが、エー
テル結合がm−位や〇一位にある場合はp−置換体酸化
時より大巾に反応速度が低下し、低酸素圧下の反応は生
起せず、高酸素圧下の反応も過酷な条件でないと円滑に
進行しなかった3しかし、過酷な反応条件では必然的に
副反応が増加し、エーテル結合の分解も起こりやすいか
ら途中で反応が進行しなくなったりして、m−および〇
−化合物の酸化では、わずかな反応条件の差で実験結果
が大巾に変動するし、p−一体酸化時り大巾に選択率が
低下するような欠点もあった。This method is extremely effective for oxidizing the methyl group of toluene derivatives that have an ether bond at the p-position, but when the ether bond is at the m-position or the The reaction rate decreased dramatically, the reaction under low oxygen pressure did not occur, and the reaction under high oxygen pressure did not proceed smoothly unless under harsh conditions.3However, under harsh reaction conditions, side reactions inevitably increase. However, since ether bonds are likely to break down, the reaction may stop progressing midway through, and in the oxidation of m- and 〇-compounds, the experimental results can vary widely due to slight differences in reaction conditions, and p- There was also the drawback that the selectivity decreased significantly during integral oxidation.
また、m一体や〇一体酸化時にはきわめてわづかな不純
物による実験結果の変動内も大きく、これらは見掛は下
回現性の悪さとなってあられれる。In addition, during m-integral and ○-integral oxidation, there are large fluctuations in experimental results due to extremely small impurities, and these appear to impair reproducibility.
この現象は、もつとも酸化されにくいm一体でもつとも
顕著であり、例えばm−フェノキシトルエンを酸素加圧
下に液相酸化する場合は、最高値として反応率68%、
m−フェノキシベンズアルデヒド選択率35mol咎を
得たが、同一条件で反応を行なっても反応しない場合や
、反応率10φ程度で反応が停止してしまう場合が多く
、選択率も10molφ以下の場合が大部分であった。This phenomenon is remarkable even when m-phenoxytoluene is difficult to oxidize. For example, when m-phenoxytoluene is oxidized in liquid phase under pressurized oxygen, the reaction rate reaches a maximum of 68%.
Although a m-phenoxybenzaldehyde selectivity of 35 mol was obtained, there were many cases in which the reaction did not occur even if the reaction was carried out under the same conditions, or the reaction stopped at a reaction rate of about 10 φ, and the selectivity was often less than 10 mol φ. It was a part.
本発明者らは、前記再現性の悪さについて種々探索した
が明確な結論を得ることができなかった。The present inventors conducted various searches regarding the poor reproducibility, but were unable to reach a clear conclusion.
そこで、より安定な酸化法について検討し、酸素加圧に
コバルトイオンとニッケルイオンを触媒とする方法や、
これにさらにセリウムイオンを共存させぬ方法が効果的
なことを見出したが、その反応成績はあまりすぐれたも
のでなく、反応率20φ程度でm−フェノキシベンズア
ルデヒド選択率13〜17mol優が再現性良く得られ
るにすぎなかった。Therefore, we investigated more stable oxidation methods, including one that uses cobalt ions and nickel ions as catalysts for oxygen pressurization,
In addition, we found that a method in which cerium ions are not allowed to coexist is effective, but the reaction results are not very good.The reaction rate is about 20φ, and the m-phenoxybenzaldehyde selectivity is 13 to 17 mol with good reproducibility. It was just something to be gained.
そこで、さらに第3戊分を添加する方法を中心に種々検
討を重ね本発明法に到達した。Therefore, various studies were conducted, mainly focusing on the method of adding the tertiary component, and the method of the present invention was arrived at.
酢酸中、コバルトを触媒とするメチルベンゼン類の液相
自動酸化系に、臭素化合物や共酸化剤を添加して難酸化
性化合物を酸化する方法は、テレフタル酸製造法として
良く知られており大工業化しているが、微量の臭素化合
物と共酸化剤をこの系に添加して、酸化中間物の生成選
択率を大巾に向上させた例はまったく発表されていない
。The method of oxidizing refractory compounds by adding bromine compounds and co-oxidants to a liquid-phase auto-oxidation system of methylbenzenes in acetic acid using cobalt as a catalyst is well known as the terephthalic acid production method and is widely used. Although it has been industrialized, there have been no published examples of adding a small amount of a bromine compound and a co-oxidizing agent to this system to significantly improve the production selectivity of oxidized intermediates.
しかるに、本発明者らの研究によると、コバルトを触媒
とし酢酸を溶媒とするm−クレゾールのアルキルまたは
アリールエーテルの常圧液相自動酸化反応時に、微量の
臭素化合物および共酸化剤を添り口するとともに、反応
率を60φ以下に抑えることによって、高選択率で酸化
中間体が生成することが認められた。However, according to the research conducted by the present inventors, during the atmospheric liquid phase autooxidation reaction of alkyl or aryl ethers of m-cresol using cobalt as a catalyst and acetic acid as a solvent, a trace amount of a bromine compound and a co-oxidant were added as a sprig. At the same time, it was found that by suppressing the reaction rate to 60φ or less, oxidized intermediates were produced with high selectivity.
臭素化合物や共酸化剤が存在しない場合は、同一条件で
は反応が生起せず、反応開始剤を添加したりして反応を
開始させたとしても、反応率20〜30係において酸化
中間体選択率は10mo1%以下にすぎなかった実験結
果を併せ考えると、この結果は驚くべきことであり、従
来の常識からは信じられないことである。If a bromine compound or co-oxidant is not present, no reaction will occur under the same conditions, and even if the reaction is started by adding a reaction initiator, the oxidized intermediate selectivity will be low at a reaction rate of 20 to 30. This result is surprising when considered together with the experimental results showing that the amount was only 10 mo1% or less, and is unbelievable from conventional common sense.
臭素化合物は、反応液に溶解して反応系に臭素イオンを
提供するようなものであれば良く、臭化ベンゼンや臭化
アルキルのような有機臭素化合物もすぐれた成績を示す
ことは実施例からも明らかであるが、特にすぐれた効果
を示すのはアルカリ金属やアルカリ土類金属の塩または
臭化水素であり、溶解性、価格、および取扱いやすさな
どを勘案すると、臭化カリや臭化ソーダを使用するのが
もつとも有利である。Any bromine compound can be used as long as it dissolves in the reaction solution and provides bromine ions to the reaction system, and examples show that organic bromine compounds such as benzene bromide and alkyl bromide also show excellent results. However, the salts of alkali metals and alkaline earth metals or hydrogen bromide are particularly effective, and considering solubility, price, and ease of handling, potassium bromide and bromide are the most effective. It is also advantageous to use soda.
また、この場合の臭素化合物は反応系で形成することも
できる。Moreover, the bromine compound in this case can also be formed in a reaction system.
臭素化合物の添加量は、原料化合物の0.0001〜0
.5モル倍−特に0.001〜0.3モル倍−であり、
少なすぎればその効果カ月忍められず、多すぎた場合は
カルボン酸などの生成量が増力口して酸化中間体選択率
が低下するとともに、有機臭素化合物が多量副生ずるた
め生成物の分離精製費が増加するような欠点が認められ
る。The amount of bromine compound added is 0.0001 to 0 of the raw material compound.
.. 5 mol times - especially 0.001 to 0.3 mol times -
If the amount is too low, the effect cannot be tolerated for a period of time, and if it is too high, the amount of carboxylic acid etc. produced increases, reducing the selectivity of oxidized intermediates, and a large amount of organic bromine compounds are produced as by-products, making it difficult to separate and purify the product. There are some drawbacks that increase costs.
臭素化合物添カロ量は、コバルト塩添加量によって規制
することも重要であり、可溶性コバルト塩のo、ooi
〜10モル倍−特に0.005〜5モル倍−の範囲が良
く、この範囲より添加量が過少では臭素化合物の添カロ
効来が認められず、過大では誘導期が大巾;こ増加する
とともに選択率が大巾に低下した。It is also important to regulate the amount of calories added to the bromine compound by the amount of cobalt salt added, and the o, ooi of soluble cobalt salt
A range of ~10 moles - especially 0.005 to 5 moles - is good; if the amount added is less than this range, the effect of the addition of the bromine compound will not be recognized, and if it is too much, the induction period will increase by a wide range. As a result, the selection rate decreased significantly.
本発明法では触媒は、低級飽和脂肪酸を配位子として反
応液に溶解した形で作用しているようであり、溶解量以
上の触媒を添加してもプラス効果は認められない。In the method of the present invention, the catalyst seems to act in the form of a lower saturated fatty acid dissolved in the reaction solution as a ligand, and no positive effect is observed even if the catalyst is added in an amount greater than the dissolved amount.
また、前記の理由からコバルトは低級飽和脂肪酸塩−特
に酢酸塩−として添加するのが望ましいが、反応系で容
易に低級飽和脂肪酸を配位したコバルトイオンの形にな
るような可溶性コバルト塩は触媒として使用可能であり
、アセチルアセトネート、ナフテン塩酸、安息香酸塩、
ステアリン酸塩、硝酸塩なども用いることができる。Furthermore, for the reasons mentioned above, it is desirable to add cobalt as a lower saturated fatty acid salt, especially acetate, but soluble cobalt salts that easily form cobalt ions coordinated with lower saturated fatty acids in the reaction system are not suitable for use as catalysts. Can be used as acetylacetonate, naphthene hydrochloride, benzoate,
Stearates, nitrates, etc. can also be used.
しかし、ハロゲン化コバルトでは反応が生起しない場合
が多く、好ましい触媒とは言えなかった。However, cobalt halides often do not cause the reaction, and are not considered to be preferred catalysts.
触媒の最適添加量は、共酸化剤が存在しないと、原料、
溶媒、および臭素化合物の種類や、反応温度、溶媒量な
どの反応条件によってかなり変動するが、共酸化剤の添
カロによって変動中が小さくなり、また共酸化剤無添加
時には、低級脂肪酸とその無水物の混合溶媒を使用しな
いと円滑に反応が進行しない場合も多かったが、共酸化
剤の併用によってこのような欠点も解消した。The optimum amount of catalyst added is that in the absence of co-oxidizer,
Although it fluctuates considerably depending on the reaction conditions such as the type of solvent and bromine compound, reaction temperature, and amount of solvent, the fluctuation is reduced by adding a co-oxidant, and when no co-oxidant is added, lower fatty acids and their anhydrides In many cases, the reaction did not proceed smoothly unless a mixed solvent was used, but this drawback was overcome by the combined use of a co-oxidizing agent.
可溶性コバルト塩の最少添加量は原料化合物の0.01
モル倍、最犬添力ロ量は反応条件におけるその飽和溶解
量であり、特に好ましいのは原料化合物の0,05〜0
.3モル倍であった。The minimum amount of soluble cobalt salt added is 0.01 of the raw material compound.
The mole times and maximum addition amount are the saturated dissolution amount under the reaction conditions, and it is particularly preferable that the raw material compound be 0.05 to 0.
.. It was 3 times the mole amount.
触媒の添か目量が少なすぎると。反応速度、選択率とも
低下し、原料化合物の0.001モル倍程度では反応が
開始しなくなる。If the amount of catalyst is too small. Both the reaction rate and selectivity decrease, and the reaction does not start at about 0.001 times the mole of the starting compound.
触媒温の目量が多すぎた場合は、反応工学的な面取外の
反応に対するマイナス効果はあまり見当らないが、生成
物の分離回収時に触媒が多量析出したりして、目的物の
得量を減らすなどのマイナス点があり好ましいことでは
ない。If the scale of the catalyst temperature is too large, there is not much negative effect on the reaction outside the chamfer from a reaction engineering perspective, but a large amount of catalyst may precipitate during product separation and recovery, resulting in a decrease in the yield of the target product. This is not a desirable thing because it has negative points such as reducing the number of people.
本発明法によって収率良く置換ベンズアルデヒドや置換
ベンジルアルコールを得るためには、炭素数2〜4の低
級飽和脂肪酸および/またはその無水物を溶媒として使
用することが必須条件であり、低級飽和脂肪酸としては
特に酢酸が、低級飽和脂肪酸無水物としては特に無水酢
酸がすぐれている。In order to obtain substituted benzaldehyde or substituted benzyl alcohol with good yield by the method of the present invention, it is essential to use a lower saturated fatty acid having 2 to 4 carbon atoms and/or its anhydride as a solvent. Acetic acid is particularly excellent, and acetic anhydride is particularly excellent as a lower saturated fatty acid anhydride.
また、低級飽和脂肪酸単独使用時よりも、無水物を併用
した場合の方が置換ベンジルアルコールの低級飽和脂肪
酸エステルが生成しやすい傾向も認められている。It has also been observed that lower saturated fatty acid esters of substituted benzyl alcohol tend to be more likely to be produced when an anhydride is used in combination than when lower saturated fatty acids are used alone.
溶媒の添加量は、溶媒の種類や反応条件および被酸化物
の種類によっても変動するが、一般的には原料化合物の
0,2〜20モル倍程度であり、特にすぐれた範囲は1
〜15モル倍程度である。The amount of solvent added varies depending on the type of solvent, reaction conditions, and type of oxidized product, but it is generally about 0.2 to 20 times the mole of the raw material compound, and a particularly good range is 1.
It is about 15 mole times.
溶媒使用量が少なすぎると、本発明法の特色が失なわれ
、大きな反応速度低下や選択率低下が認められ、反応が
生起しないことも多い。If the amount of solvent used is too small, the characteristics of the method of the present invention will be lost, a significant decrease in reaction rate and selectivity will be observed, and the reaction will often not occur.
しかし、溶媒使用量が過大であっても大巾な変化はなく
、原料化合物の15モル倍以上の溶媒添加時に最高選択
率が得られる場合もあるが、過大な使用では酸化速度が
低下したりして生産性が下がるし、最適触媒量が増加し
たり生成液の後処理費用が増加するなどの欠点もあり、
好ましいことではない。However, even if the amount of solvent used is excessive, there is no major change, and the highest selectivity may be obtained when the solvent is added in an amount of 15 moles or more of the raw material compound, but if it is used in an excessive amount, the oxidation rate may decrease. There are drawbacks such as lower productivity, an increase in the optimum amount of catalyst, and an increase in post-treatment costs for the produced liquid.
That's not a good thing.
共酸化剤は、反応条件で容易に酸化されてペルオキシラ
ジカルを生成するようなものであれば倒れも使用可能で
あり、n−ブテンやシクロヘキサノンなども使用し得る
が、添加効果、使い易さ、価格、および共酸化剤が酸化
して生成する化合物などを勘案すると、特にアセトアル
デヒド、パラアルデヒド、およびメチルエチルケトンが
すぐれており、そのなかでも特に前2者が良い。Any co-oxidant can be used as long as it is easily oxidized under the reaction conditions to generate peroxy radicals, and n-butene, cyclohexanone, etc. can also be used, but the effect of addition, ease of use, etc. Considering the price and the compounds produced by oxidation of the co-oxidizing agent, acetaldehyde, paraldehyde, and methyl ethyl ketone are particularly good, and among these, the first two are particularly good.
共酸化剤の添加量は一般に原料化合物の0.0001〜
0.5好ましくは0.001〜0.2モル倍程度であり
、少なすぎればその効果が認められず、多すぎても特に
悪影響はないが、必要以上Iこ多量添力目することはコ
スト的に不利であるし、多量添力目で11発熱量が増加
して反応制御が困難となることも認められるので、必要
以上の多量添加は好ましいことではない。The amount of co-oxidant added is generally 0.0001 to 0.0001 of the raw material compound.
0.5 is preferably about 0.001 to 0.2 mole times; if it is too small, the effect will not be recognized, and if it is too large, there will be no particular negative effect, but adding more than necessary is costly. Addition of a larger amount than necessary is not preferable because it is disadvantageous in terms of the amount of addition, and it is recognized that the calorific value increases when a large amount is added, making it difficult to control the reaction.
共酸化剤の添加効果は、臭素化合物の添加効果と類似し
ており、反応温度の低下や反応時間の短縮、および酸化
中間体選択率の向上などが認められ、臭素化合物の添加
効果と同様にこの効果も、難酸化性化合物の酸化時に顕
著である。The effect of adding a co-oxidant is similar to the effect of adding a bromine compound, and it is observed that the reaction temperature is lowered, the reaction time is shortened, and the selectivity of oxidized intermediates is improved. This effect is also noticeable when oxidizing a difficult-to-oxidize compound.
それゆえ、p置換体にくらべ酸化されにくいm位にエー
テル結合を持つ置換トルエンの酸化時には、共酸化剤の
併用効果が大きくあられれ、共酸化剤を併用しない場合
は反応の生起しない条件(反応温度50°C以下の場合
、低級飽和脂肪酸単独溶媒使用時にコバルト塩添加量が
過少な場合など)下でも、共酸化剤の併用によって円滑
に反応が進行し、高選択率で酸化中間体が得られる場合
がしばしば認められた。Therefore, when oxidizing substituted toluene that has an ether bond at the m-position, which is less likely to be oxidized than p-substituted toluene, the effect of using a co-oxidant in combination can be large. Even in cases where the temperature is below 50°C or when the amount of cobalt salt added is too small when lower saturated fatty acids are used as a sole solvent, the reaction proceeds smoothly by using a co-oxidant, and oxidized intermediates can be obtained with high selectivity. cases were often observed.
コバルトを触媒とし、低級飽和脂肪酸および/またはそ
の無水物を溶媒とするクレゾールのアルキルまたはアリ
ールエーテルの酸化反応性は、アルキル基やアリール基
が複雑なほど低下するうえ、原料化合物の分解(クレゾ
ールの生成反応)は相対的1こ生起しやすい傾向を持つ
ので、それだけ低温で反応が円滑に進行し得るような反
応条件を選択しなければ反応が生起しなくなり、複雑な
化合物はど臭素化合物と共酸化剤の併用効果は顕著と言
える。The oxidation reactivity of the alkyl or aryl ether of cresol using cobalt as a catalyst and a lower saturated fatty acid and/or its anhydride as a solvent decreases as the alkyl or aryl group becomes more complex. (formation reaction) has a tendency to occur relatively easily, so unless reaction conditions are selected that allow the reaction to proceed smoothly at a low temperature, the reaction will not occur, and complex compounds will not coexist with bromine compounds. The effect of the combined use of oxidizing agents can be said to be remarkable.
しかしながら、あまり複雑な化合物は原料合成が困難で
あるし、臭素化合物と共酸化剤を併用しても酸化反応よ
り分解反応が容易となるためか反応性や選択性も減少し
て行くので、実際上はアルキル基やアリール基の炭素数
は12以下に限定するのが良く、特に臭素化合物と共酸
化剤の併用効果が顕著なのは、フェニル、シクロヘキシ
ル、m−トリル、あるいはC0〜C3の直鎖アルキルエ
ーテルを原料とする場合であった。However, it is difficult to synthesize raw materials for compounds that are too complex, and even if a bromine compound and a co-oxidizing agent are used together, the reactivity and selectivity will decrease, probably because the decomposition reaction is easier than the oxidation reaction. It is best to limit the number of carbon atoms in the alkyl group or aryl group to 12 or less, and the combined effect of a bromine compound and a co-oxidizing agent is particularly remarkable for phenyl, cyclohexyl, m-tolyl, or C0 to C3 straight chain alkyl groups. This was the case when ether was used as the raw material.
本発明によりm−クレゾールのアルキルまたはアリール
エーテルを酸化する場合は、後記実強例に示した実験結
果から理解されるように、所望する酸化中間体を高選択
率で得るには、反応率を60fb以下、好ましくは15
〜50%程度にするのがよい。When the alkyl or aryl ether of m-cresol is oxidized according to the present invention, the reaction rate must be increased to obtain the desired oxidized intermediate with high selectivity, as understood from the experimental results shown in the practical example below. 60fb or less, preferably 15
It is best to set it to about 50%.
反応率の最小値はプロセスの経済性を考えて一般的には
10饅以上にするのがよいが、もちろん、それ以下の反
応率例えば5〜10%であっても、生成物の種類(商品
価値)によっては十分な経済性が得られる場合があるの
で、特にこれに限定されるものでもない。Considering the economic efficiency of the process, it is generally better to set the minimum reaction rate to 10 or more, but of course, even if the reaction rate is lower than that, for example 5 to 10%, it is possible depending on the type of product (commodity). Depending on the value (value), sufficient economic efficiency may be obtained, so it is not particularly limited to this.
このように、m−クレゾールのアルキルまたはアリール
エーテルを酸化する場合は、0−およびp−クレゾール
のエーテル酸化時と異なり、反応率60φ以下で行なわ
なければ高選択率で酸化中間体が得られず、この理由は
明らかでないが、アルキル基やアリール基の如何を問わ
ずにこのような現象が認められ、この点でm−クレゾー
ルのエーテルを酸化する場合と0−またはp−クレゾー
ルのエーテルを酸化する場合は大巾に異なっていた。In this way, when oxidizing the alkyl or aryl ether of m-cresol, unlike the ether oxidation of 0- and p-cresol, the oxidized intermediate cannot be obtained with high selectivity unless the reaction rate is 60φ or less. Although the reason for this is not clear, this phenomenon is observed regardless of the alkyl group or aryl group. The case was vastly different.
反応率と選択率の関係をより具体的に説明すると次のと
おりである。A more specific explanation of the relationship between reaction rate and selectivity is as follows.
すなわち、アルデヒド合成を目的として反応率70,5
0.30および20%までメトキシトルエンを酸化した
場合、〇一体酸化時のアルデヒド選択率はそれぞれ58
.62.73、および75mol咎、p一体酸化時のそ
れは65.63.61、および71mo1%であったが
、m一体酸酸化は16.38.70、および67mo1
%であり、反応率50%以上で選択率が急激に低下する
ことが認められた。That is, for the purpose of aldehyde synthesis, the reaction rate is 70.5
When methoxytoluene is oxidized to 0.30% and 20%, the aldehyde selectivity during monolithic oxidation is 58%, respectively.
.. 62.73, and 75 mol, that during p monolithic oxidation was 65.63.61, and 71 mo1%, but m monolithic acid oxidation was 16.38.70, and 67 mo1
%, and it was observed that the selectivity decreased rapidly at a reaction rate of 50% or more.
フェノキシトルエンヲ酸化して、フェノキシベンズアル
デヒドを得る場合も同様な現象が認められ、〇一体やp
一体の酸化では、適当な反応条件を選定することによっ
て、反応率50〜80%でも50mo1%以上の選択率
でアルデヒドが得られるが、m−フェノキシトルエンの
酸化では、反応条件如何にかかわらず反応率50多以上
で選択率40 mo 1%以上とすることは困難であり
、特に反応率60f0以上では選択率を25 mo 1
%とすることも困難であった。A similar phenomenon is observed when phenoxytoluene is oxidized to obtain phenoxybenzaldehyde.
In monolithic oxidation, by selecting appropriate reaction conditions, aldehydes can be obtained with a selectivity of 50 mo1% or more even at a reaction rate of 50 to 80%, but in the oxidation of m-phenoxytoluene, the reaction does not occur regardless of the reaction conditions. It is difficult to achieve a selectivity of 40 mo 1% or more when the reaction rate is 50 or more, and especially when the reaction rate is 60 f0 or more, the selectivity is 25 mo 1.
It was also difficult to calculate the percentage.
アルコールやアルコールとアルデヒドの混合物を得る目
的で酸化を行なった場合も、反応率と選択率の関係は前
記と同一傾向を示し、m−位にニー−チル結合がある場
合は、反応率を60%以上とすると選択率良く酸化中間
体が得られないことが明らかであった。Even when oxidation is carried out for the purpose of obtaining alcohol or a mixture of alcohol and aldehyde, the relationship between reaction rate and selectivity shows the same tendency as above, and when there is a knee-thyl bond at the m-position, the reaction rate increases by 60 % or more, it was clear that an oxidized intermediate could not be obtained with good selectivity.
本発明によれば、前記した原料化合物はそのベンゼン核
に結合するメチル基はヒドロキシル基やアルデヒド基に
酸化され、対応する酸化誘導体に変換されるが、この場
合、酸素圧が0.1〜2kg/i程度の低い場合の反応
と、それより高い場合の反応とでは、生成物組成や最適
反応液組成などには明確な差異が見られ、目的の製品を
高収率で得るには、反応温度、溶媒組成、触媒量などの
反応条件を適正に選定することが必要である。According to the present invention, the methyl group bonded to the benzene nucleus of the above-mentioned raw material compound is oxidized to a hydroxyl group or an aldehyde group, and is converted into the corresponding oxidized derivative. In this case, the oxygen pressure is 0.1 to 2 kg. There is a clear difference in product composition and optimal reaction solution composition between the reaction when /i is low and the reaction when it is higher. It is necessary to appropriately select reaction conditions such as temperature, solvent composition, and amount of catalyst.
例えば、触媒量に関しては、本発明法により0.1〜2
kg/ffl程度の低い酸素圧を用いる場合には、被酸
化物の0.01モル倍以上用いることが必要であるが、
酸素圧が高い場合は低酸素圧時より反応が容易に進行す
るので、コバルト塩添加量は0.001モル倍以上へ拡
大される。For example, the amount of catalyst is 0.1 to 2 according to the method of the present invention.
When using a low oxygen pressure of around kg/ffl, it is necessary to use at least 0.01 times the mole of the oxidized material.
When the oxygen pressure is high, the reaction proceeds more easily than when the oxygen pressure is low, so the amount of cobalt salt added is increased to 0.001 mole or more.
反応温度は、被酸化物の種類や反応条件によっても変動
するが、一般的には30〜160℃であり、比較的酸化
しゃすいm−フェノキシトルエンやm−メトキシトルエ
ンでは30〜80°C程度の比較的低温が、原料化合物
のアルキル基やアリール基がより複雑な化合物ではより
高温が望ましい。The reaction temperature varies depending on the type of material to be oxidized and the reaction conditions, but is generally 30 to 160°C, and for m-phenoxytoluene and m-methoxytoluene, which are relatively easy to oxidize, it is about 30 to 80°C. A relatively low temperature is desirable, but a higher temperature is desirable for compounds in which the alkyl or aryl groups of the raw material compound are more complex.
特にアルキル基やアリール基の炭素数が8以上の複雑な
化合物では、反応温度を100℃以上にしなければ反応
が生起しない場合もあるから注意が必要である。Particular attention must be paid to complex compounds in which the number of carbon atoms in the alkyl group or aryl group is 8 or more, since the reaction may not occur unless the reaction temperature is set to 100° C. or higher.
酸化剤としては、酸素のほか空気または空気と酸素の混
合ガスなど種々の酸素含有ガスが使用できる。As the oxidizing agent, in addition to oxygen, various oxygen-containing gases such as air or a mixed gas of air and oxygen can be used.
また、反応形式はバッチ式、連続式の伺れでもよく、生
産性や装置費などを勘案して適宜定めれば良い。Further, the reaction type may be a batch type or a continuous type, and may be appropriately determined in consideration of productivity, equipment cost, etc.
本発明の方法を実焔する場合、溶媒として使用する脂肪
酸やその無水物は、反応系内において生成させることが
できる。When carrying out the method of the present invention, the fatty acid and its anhydride used as a solvent can be produced within the reaction system.
本発明法では、共酸化剤としてアセトアルデヒド、パラ
アルデヒド、またはメチルエチルケトンを使用すれば、
その酸化によって酢酸が生成する。In the method of the present invention, if acetaldehyde, paraldehyde, or methyl ethyl ketone is used as a co-oxidizing agent,
Its oxidation produces acetic acid.
それゆえ、このような共酸化剤を比較的大量に使用させ
ることにより、反応開始時(とまったく低級飽和脂肪酸
やその無水物が存在しなくても、反応開始後の比較的早
い時期に系内で必要量の酢酸が生成するから、かなり収
率良く酸化中間体が得られる。Therefore, by using a relatively large amount of such a co-oxidant, it can be added to the system at a relatively early stage after the start of the reaction (even if no lower saturated fatty acids or their anhydrides are present at all). Since the required amount of acetic acid is produced, the oxidized intermediate can be obtained in a fairly good yield.
すなわち、共酸化剤をあらかじめ多量使用することによ
り、低級飽和脂肪酸をin 5itu#こ生成させる方
法も可能である。That is, it is also possible to generate lower saturated fatty acids in situ by using a large amount of co-oxidizing agent in advance.
しかしながら、この方法は反応開始時に低級飽和脂肪酸
および/またはその無水物を添加した場合より劣るし、
cost的にも有利とは言えない。However, this method is inferior to the case where lower saturated fatty acids and/or their anhydrides are added at the beginning of the reaction;
It cannot be said that it is advantageous in terms of cost.
なお、この方法では0.5〜5モル倍程度の共酸化剤の
添カロが望ましいが、このような大量添加では、稀釈剤
として不活性溶媒を添加しないと反応制御が困難な点や
、最適反応条件域がかなりせまいことも認められ、これ
らの点からも好ましい方法とは言えない。In this method, it is desirable to add about 0.5 to 5 moles of the co-oxidant, but when adding such a large amount, it is difficult to control the reaction unless an inert solvent is added as a diluent, and the optimum It is also recognized that the reaction condition range is quite narrow, and from these points of view it cannot be said to be a preferable method.
反応生成物より触媒、溶媒、原料、生成物などの分離回
収は、この方面の技術者に公知の方法、例えば反応液中
の低級飽和脂肪酸の過半を減圧下に留去し、残液にトル
エンと水をカロえ、触媒および低級飽和脂肪酸を溶解し
た水層と、原料や生成物を含むトルエン層に分離し、ト
ルエン層を減圧下に精留することによって容易にかつ高
収率に行なうことができる。The catalyst, solvent, raw materials, products, etc. can be separated and recovered from the reaction products using methods known to those skilled in the art, such as distilling off the majority of the lower saturated fatty acids in the reaction solution under reduced pressure, and adding toluene to the remaining solution. This process can be carried out easily and in high yield by calorizing and water, separating it into an aqueous layer containing dissolved catalyst and lower saturated fatty acids, and a toluene layer containing raw materials and products, and rectifying the toluene layer under reduced pressure. I can do it.
また、このようにして回収した溶媒や触媒は再度反応に
使用し得ることは言うまでもない。Moreover, it goes without saying that the solvent and catalyst thus recovered can be used again in the reaction.
次に本発明法を実焔例によりさらに詳細に説明する。Next, the method of the present invention will be explained in more detail using actual flame examples.
なお、後記表中に示した「アルデヒド」「酢酸エステル
」「アルコール」及び「酸」はいずれも使用した原料に
対応するものを意味する。Note that "aldehyde,""acetic acid ester,""alcohol," and "acid" shown in the table below all mean those corresponding to the raw materials used.
実施例 1
撹拌器、温度計、ガス吹込口、および還流冷却器を備え
たガス出口を持つ500mA!容パイレックスガラス製
四つロフラスコに、m−フェノキシトルエン:酢酸:パ
ラアルデヒド: Co (OAC)24H20:臭素化
合物−1: 12.5 : 0.03 :0.3 :0
.04(モル比)の組成を持つ原料液200TfLlを
加え、湯浴で反応温度を50〜55℃に保つとともにr
−p−m1000〜1200で液を激しく撹拌しながら
300TLl/minの速度で空気を送入し所定時間反
応を行なった。Example 1 500 mA with stirrer, thermometer, gas inlet and gas outlet with reflux condenser! In a four-bottle Pyrex glass flask, m-phenoxytoluene:acetic acid:paraldehyde:Co(OAC)24H20:bromine compound-1:12.5:0.03:0.3:0
.. Add 200 TfLl of raw material solution having a composition of 0.04 (molar ratio), keep the reaction temperature at 50 to 55 °C in a hot water bath, and heat at r.
- While stirring the liquid vigorously at 1000 to 1200 p-m, air was introduced at a rate of 300 TLl/min to carry out the reaction for a predetermined time.
反応生成液は、シラン処理したセライト545に10重
量係のシリコン油0V−17を担持させたものを充填剤
とする昇温ガスクロマトグラフ法により分析した。The reaction product liquid was analyzed by heating gas chromatography using silane-treated Celite 545 supported with 10 parts by weight of silicone oil 0V-17 as a filler.
実験結果は表1のとおりである。The experimental results are shown in Table 1.
なお、共酸化剤を添加しない場合は、臭素化合物を添7
711してもこの条件ではまったく反応しなかった。In addition, if a co-oxidizing agent is not added, a bromine compound may be added.
711 did not react at all under these conditions.
原料のm−フェノキシトルエンは、m−クレゾール1.
25モルにブロムベンゼン1.0モル、KOHl、0モ
ル、および銅粉1gをカロえ、撹拌しながら昇温しで生
成水を系外に追出し、反応温度が200°Cに達してか
らさらに60分反応させて合或し、ベンゼン抽出後、ア
ルカリ洗浄および精留をくり返し、充分精製して使用し
た。The raw material m-phenoxytoluene is m-cresol 1.
Add 1.0 mol of bromobenzene, 0 mol of KOHl, and 1 g of copper powder to 25 mol of bromobenzene, raise the temperature while stirring to expel the produced water from the system, and when the reaction temperature reaches 200°C, add 60 After reacting for several minutes, combining and extracting with benzene, alkaline washing and rectification were repeated to sufficiently purify and use.
実施例 2
臭素化合物としてNaBrを使用し、実症例1とまった
く同様な酸化実験を行ない、反応温度と反応成績の関係
について検討し表2の結果を得た。Example 2 Using NaBr as the bromine compound, an oxidation experiment exactly similar to that in Actual Case 1 was conducted, and the relationship between reaction temperature and reaction results was investigated, and the results shown in Table 2 were obtained.
米1
反応液組成をm−フェノキシトルエ
ン2
ン:酢酸:Co(OAc)2 ・4H20:NaBr:
アセトアルデヒド−1=8
:0.05:0.01 :0.03(モル比)とし、酸
化剤として酸素(送入速度
3.61/hr)を用いた。Rice 1 The reaction solution composition was m-phenoxytoluene 2: Acetic acid: Co(OAc) 2 ・4H20: NaBr:
Acetaldehyde-1=8:0.05:0.01:0.03 (molar ratio), and oxygen (feeding rate 3.61/hr) was used as the oxidizing agent.
反応液組成をm−フェノキシトルエ
ン:酢酸:Co(OAc)2・4H20:NaBr:ア
セトアルデヒド−1:8:
米3
米4
0.01 :0.01 :0.03(モル比)とし、酸
化剤として酸素(送入速度
3.611/hr)を用いた。The reaction solution composition was m-phenoxytoluene:acetic acid:Co(OAc)2.4H20:NaBr:acetaldehyde-1:8:3 rice 4 rice 0.01:0.01:0.03 (molar ratio), and the oxidizing agent Oxygen (feeding rate: 3.611/hr) was used as the gas.
反応液組成をm−フェノキシトルエ
ン:酢酸:無水酢酸: Co(OAc)24H20:L
iBr−H2O:パラアルデヒド−1ニア :0.5
:0.1 :0.07:0.03(モル比)とした。The reaction solution composition was m-phenoxytoluene:acetic acid:acetic anhydride:Co(OAc)24H20:L
iBr-H2O: Paraaldehyde-1nia: 0.5
:0.1 :0.07:0.03 (molar ratio).
反応液組成をm−フェノキシトルエ
ン:酢酸:無水酢酸:Co(OAc)2
4H20:LiBr−H2O:アセトアルデヒド=1ニ
ア:1:0.1:0.07
:0.1(モル比)とした。The reaction solution composition was m-phenoxytoluene:acetic acid:acetic anhydride:Co(OAc)24H20:LiBr-H2O:acetaldehyde=1nia:1:0.1:0.07:0.1 (molar ratio).
実施例 3
Co (OAc ) 2 ” 4 H20を触媒、酢酸
を溶媒とし、臭素化合物としてNaBrを、共酸化剤と
してアセトアルデヒドを添力日し、各種反応条件でm
−メトキシトルエンの常圧酸素酸化(送入速度3〜3.
61/hr)を行ない表3の結果を得た。Example 3 Co(OAc)2''4H20 was used as a catalyst, acetic acid was used as a solvent, NaBr was added as a bromine compound, and acetaldehyde was added as a co-oxidant.
- Atmospheric pressure oxygen oxidation of methoxytoluene (feed rate 3-3.
61/hr) and obtained the results shown in Table 3.
なお、反応装置や分析法は実焔例1とまったく同様であ
る。Incidentally, the reaction apparatus and analysis method were exactly the same as in Actual Flame Example 1.
また、m−メトキシトルエンは、m−クレゾールとジメ
チル硫酸より常法によって合或し、実施例1に記載した
のと同様な方法で充分に精製して反応に使用した。Further, m-methoxytoluene was synthesized from m-cresol and dimethyl sulfuric acid by a conventional method, or sufficiently purified by the same method as described in Example 1, and used in the reaction.
実施例 4
被酸化物をm−フェノキシトルエンとする以外は実施例
3とまったく同様にして実験を行ない、表4の結果を得
た。Example 4 An experiment was conducted in exactly the same manner as in Example 3 except that m-phenoxytoluene was used as the oxidizable substance, and the results shown in Table 4 were obtained.
実施例 5
実施例1とまったく同様にして種々の化合物の酸素酸化
を行ない、反応系に臭素化合物および共酸化剤が存在す
る場合と、存在しない場合の比較を試みたところ、反応
系に臭素化合物および共酸化剤が存在しない場合は、表
5に示した反応条件ではまったく反応が生起せず、反応
湯度を酢酸の沸点付近とし、原料化合物の2〜3モル倍
の無水酢酸と8〜10モル倍の酢酸の混合溶媒を使用し
ても、3時間以内には反応が生起しなかった。Example 5 Various compounds were oxidized with oxygen in exactly the same manner as in Example 1, and a comparison was made between the presence and absence of a bromine compound and co-oxidant in the reaction system. In the case where no co-oxidizing agent is present, no reaction occurs at all under the reaction conditions shown in Table 5, the reaction temperature is set near the boiling point of acetic acid, and 8 to 10% of acetic anhydride is added in an amount of 2 to 3 times the mole of the raw material compound. Even when a mixed solvent of twice the molar amount of acetic acid was used, no reaction occurred within 3 hours.
共酸化剤および臭素化合物が共存時の実験結果は表5の
とおりである。Table 5 shows the experimental results when the co-oxidant and the bromine compound coexisted.
なお、原料化合物はm−クレゾールと臭化炭化水素より
、実施例1と同様にして合成した。Note that the raw material compound was synthesized from m-cresol and brominated hydrocarbon in the same manner as in Example 1.
また、反応生成物の確認はGC−MS法によって行なっ
た。In addition, the reaction product was confirmed by GC-MS method.
対圧) 1.5 Ke/crAで酸素化した。Counterpressure) Oxygenated at 1.5 Ke/crA.
なお、酸素は蓄圧器より圧力調整器を通して供給し、酸
素圧は常に1.5 Ky/fflに保つようにした。Note that oxygen was supplied from a pressure accumulator through a pressure regulator, and the oxygen pressure was always maintained at 1.5 Ky/ffl.
また、攪拌速度は1600rpmとした。Further, the stirring speed was 1600 rpm.
Claims (1)
を、低級脂肪酸および/またはその無水物を溶媒とし、
被酸化物のo、oiモル倍以上の可溶性コバルト塩、被
酸化物の0.001〜0.3モル倍でかつコバルト塩の
0.005〜5モル倍の可溶性臭素化合物、および被酸
化物の0.001〜0.2モル倍の共酸化剤の共存下に
、0.1〜2ny= (絶対圧)の酸素分圧下で、反応
率10〜60饅の点まで、分子状酸素によって液相酸化
することを特徴とする、エーテル結合を持ったベンジル
アルコールおよび/またはベンズアルデヒド誘導体の製
造方法。1 m-cresol alkyl or aryl ether using a lower fatty acid and/or its anhydride as a solvent,
A soluble cobalt salt of o, oi times the mole of the oxidant or more, a soluble bromine compound of 0.001 to 0.3 times the mole of the oxidant and 0.005 to 5 times the mole of the cobalt salt, and a soluble bromine compound of the mole of the cobalt salt. In the coexistence of 0.001 to 0.2 moles of co-oxidant, under an oxygen partial pressure of 0.1 to 2 ny= (absolute pressure), the liquid phase is converted by molecular oxygen to a point where the reaction rate is 10 to 60 yen. A method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond, which comprises oxidation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52071378A JPS5850970B2 (en) | 1977-06-16 | 1977-06-16 | Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52071378A JPS5850970B2 (en) | 1977-06-16 | 1977-06-16 | Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15875776A Division JPS5382736A (en) | 1976-12-27 | 1976-12-27 | Preparation of benzyl alcohol and/or benzaldehyde having ether bond |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5382738A JPS5382738A (en) | 1978-07-21 |
JPS5850970B2 true JPS5850970B2 (en) | 1983-11-14 |
Family
ID=13458769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52071378A Expired JPS5850970B2 (en) | 1977-06-16 | 1977-06-16 | Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5850970B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4962438A (en) * | 1972-10-16 | 1974-06-17 |
-
1977
- 1977-06-16 JP JP52071378A patent/JPS5850970B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4962438A (en) * | 1972-10-16 | 1974-06-17 |
Also Published As
Publication number | Publication date |
---|---|
JPS5382738A (en) | 1978-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4955886B2 (en) | Method for producing aliphatic carboxylic acid from aldehyde | |
CN105873890A (en) | Oxidation process for preparing purified carboxylic acids | |
US2376674A (en) | Method for oxidation of aromatic hydrocarbons | |
CN113286654A (en) | Process for the production of dicarboxylic acids using cerium promoters | |
US4970338A (en) | Preparation process of biphenyl-4,4'-dicarboxylic acid | |
WO2020022365A1 (en) | Method for producing 1-acyloxy-2-methyl-2-propene | |
JPS60149544A (en) | Alkoxycarbonylation or carbonylation by co and organic hydroxyl compound | |
EP0002749A1 (en) | Process for producing aromatic monocarboxylic acid | |
JPH01113342A (en) | Production of carboxylic ester and catalyst system used therein | |
JPS5850970B2 (en) | Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond | |
KR930006077B1 (en) | 1-(3-vinylphenyl)-1-phenylethylene and method for producing the same | |
US4226790A (en) | Process for oxidizing thallium (I) to thallium (III) | |
JPS5850204B2 (en) | Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond | |
CA2603160C (en) | A process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water | |
US3954876A (en) | Production of halo-substituted derivatives of acetophenone | |
WO2021255671A1 (en) | Method for producing aromatic dicarboxylic acid using iron co‑catalyst | |
JP3027162B2 (en) | Method for producing biphenylcarboxylic acid | |
CN112851496A (en) | Preparation method of p-toluic acid | |
JPS5850205B2 (en) | Method for producing benzaldehyde and benzyl alcohol having two aliphatic ether groups | |
JP3756537B2 (en) | Dimethyldecandial and process for producing the same | |
US7598415B2 (en) | Process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water | |
EP0226566B1 (en) | Oxidation of 2-arylpropanals | |
KR960002598B1 (en) | PROCESS FOR PREPARING Ñß-(3-BENZYL PHENYL)PROPIONIC ACID DERIVATIVE | |
KR810001885B1 (en) | Process for the production of intermediate oxidation products of toluene having ether linkages | |
KR830000332B1 (en) | Method for producing aromatic monocarboxylic acid |