JPS5850204B2 - Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond - Google Patents

Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond

Info

Publication number
JPS5850204B2
JPS5850204B2 JP52071379A JP7137977A JPS5850204B2 JP S5850204 B2 JPS5850204 B2 JP S5850204B2 JP 52071379 A JP52071379 A JP 52071379A JP 7137977 A JP7137977 A JP 7137977A JP S5850204 B2 JPS5850204 B2 JP S5850204B2
Authority
JP
Japan
Prior art keywords
reaction
amount
mole
cresol
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52071379A
Other languages
Japanese (ja)
Other versions
JPS5382739A (en
Inventor
弘明 皆川
康雄 岩根
寿一 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sanko Kagaku Kogyo KK
Original Assignee
Agency of Industrial Science and Technology
Sanko Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sanko Kagaku Kogyo KK filed Critical Agency of Industrial Science and Technology
Priority to JP52071379A priority Critical patent/JPS5850204B2/en
Publication of JPS5382739A publication Critical patent/JPS5382739A/en
Publication of JPS5850204B2 publication Critical patent/JPS5850204B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、0−クレゾールまたはp−クレゾールのアル
キルまたはアリールエーテルを、低級飽和脂肪酸および
/またはその無水物を溶媒とし、被酸化物の0.01モ
ル倍以上の可溶性コバルト塩と可溶性臭素化合物の共存
下に、あるいはこれに共酸化剤を加えた三者共存下に、
0.1〜2kg/car(絶対圧)の酸素分圧下で分子
状酸素によって液相酸化することを特徴とするエーテル
結合を持ったベンジルア)Vコールおよび/またはベン
ズアルデヒド誘導体の製造法に関するものである。
Detailed Description of the Invention The present invention provides an alkyl or aryl ether of 0-cresol or p-cresol with a lower saturated fatty acid and/or anhydride thereof as a solvent, and a solubility of at least 0.01 times the mole of the oxidized product. In the coexistence of a cobalt salt and a soluble bromine compound, or in the coexistence of a co-oxidant,
This invention relates to a method for producing benzyl-V-col and/or benzaldehyde derivatives having an ether bond, which is characterized by liquid phase oxidation with molecular oxygen under an oxygen partial pressure of 0.1 to 2 kg/car (absolute pressure). .

エーテル結合ヲ持ったベンジルアルコールやベンズアル
デヒド誘導体は、有機精密化学工業原料として重要な化
合物であるが、その製法が困難なこともあって、これま
ではあまり工業的な関心が大きい化合物とは言えなかっ
た。
Benzyl alcohol and benzaldehyde derivatives, which have an ether bond, are important compounds as raw materials for the organic fine chemical industry, but they have not been of great industrial interest until now, partly because their production methods are difficult. Ta.

しかしながら、最近になって前記化合物群より誘導され
る重要な有機精密化学製品が続出しており、その合成技
術の開発が要望されている。
However, recently, important organic fine chemical products derived from the above-mentioned compound groups have been appearing one after another, and there is a demand for the development of synthetic techniques for them.

特にp−メトキシベンズアルデヒドは、香料、医薬中間
体などとしてきわめて重要な化合物であるが、現在のと
ころ工業的に有利な合成法は発表されていない。
In particular, p-methoxybenzaldehyde is an extremely important compound as a perfume, a pharmaceutical intermediate, etc., but no industrially advantageous synthesis method has been published at present.

本発明者らは、エーテル結合を持ったベンジルアルコー
ルやベンズアルデヒド誘導体の合成法としてもつとも合
理的と考えられるクレゾールのアルキルまたはアリール
エーテルの液相自動酸化法について検討し、低級飽和脂
肪酸および/またはその無水物存在下に、比較的多量の
重金属塩−特にコバルト塩−を触媒として酸化反応を行
なうと、酸素過剰の反応条件下では主としてアルデヒド
が、酸素不足の反応条件下では主としてアルコールが生
成することを見出し先に特許を出願した(特願昭51−
42419、昭5l−127047)。
The present inventors investigated a liquid phase autoxidation method of alkyl or aryl ethers of cresol, which is considered to be a rational method for synthesizing benzyl alcohol and benzaldehyde derivatives having ether bonds, and investigated lower saturated fatty acids and/or their anhydrous When an oxidation reaction is carried out using a relatively large amount of heavy metal salts, especially cobalt salts, as a catalyst in the presence of oxygen, aldehydes are mainly produced under oxygen-excess reaction conditions, and alcohols are mainly produced under oxygen-deficient reaction conditions. I applied for a patent under the heading (Patent application 1972-
42419, Showa 5l-127047).

この方法は、p−位にエーテル結合を持ったトルエン誘
導体のメチル基酸化にはきわめて効果的であるが、エー
テル結合がm−飲や〇−飲にある場合はp−置換体酸化
時より大巾に反応速度が低下し、低酸素圧下の反応は生
起せず、高酸素圧下の反応も過酷な条件でないと円滑に
進行しなかった。
This method is extremely effective for oxidizing the methyl group of toluene derivatives that have an ether bond at the p-position, but when the ether bond is at the m- or 〇-position, it is more effective than when oxidizing the p-substituted product. The reaction rate was drastically reduced, the reaction under low oxygen pressure did not occur, and the reaction under high oxygen pressure did not proceed smoothly unless under harsh conditions.

しかし、過酷な反応条件では必然的に副反応が増加し、
エーテル結合の分解も起こりやすいから途中で反応が進
行しな(なったりして、m−および〇−化合物の酸化で
は、わづかな反応条件の差で実験結果が大巾に変動する
し、p−一体酸化時り大巾に選択率が低下するような欠
点もあった。
However, under harsh reaction conditions, side reactions inevitably increase,
Since decomposition of ether bonds is also likely to occur, the reaction may not proceed midway through the process, and in the oxidation of m- and 〇-compounds, experimental results can vary widely due to slight differences in reaction conditions. - There was also a drawback that the selectivity decreased significantly during monolithic oxidation.

また、m一体や〇一体酸化時にはきわめてわづかな不純
物による実験結果の変動中も大きく、これらは見掛は土
丹現性の悪さとなってあられれる。
In addition, during oxidation of m-units and ○-units, the experimental results vary greatly due to very small impurities, and these appear to be poor compatibility.

この現象は、もつとも酸化されにくいm一体でもつとも
顕著であり、例えばm−フェノキシトルエンを酸素加圧
下に液相酸化する場合は、最高値として反応率68%、
m−フェノキシベンズアルデヒド選択率35mo1%を
得たが、同一条件で反応を行なっても反応しない場合や
、反応率10%程度で反応が停止してしまう場合が多く
、選択率も10mo1%以下の場合が大部分であった。
This phenomenon is remarkable even when m-phenoxytoluene is difficult to oxidize. For example, when m-phenoxytoluene is oxidized in liquid phase under pressurized oxygen, the reaction rate reaches a maximum of 68%.
Although a m-phenoxybenzaldehyde selectivity of 35 mo1% was obtained, there are many cases where the reaction does not occur even if the reaction is performed under the same conditions, or the reaction stops at a reaction rate of about 10%, and when the selectivity is less than 10 mo1%. were the majority.

本発明者らは、前記再現性の悪さについて種々探索した
が明確な結論を得ることができなかった。
The present inventors conducted various searches regarding the poor reproducibility, but were unable to reach a clear conclusion.

そこで、より安定な酸化法について検討し、酸素加圧下
にコバルトイオンとニッケルイオンを触媒とする方法や
、これにさらにセリウムイオンを共存させる方法が効果
的なことを見出したが、その反応成績はあまりすぐれた
ものでなく、反応率20%程度でm−フェノキシベンズ
アルデヒド選択率13〜17mo1%が再現性良く得ら
れるにすぎなかった。
Therefore, we investigated more stable oxidation methods and found that a method using cobalt ions and nickel ions as catalysts under oxygen pressure, and a method in which cerium ions coexisted were effective, but the reaction results were It was not very good, and only a m-phenoxybenzaldehyde selectivity of 13 to 17 mo1% was obtained with good reproducibility at a reaction rate of about 20%.

そこで、さらに第3成分を添加する方法を中心に研究を
重ねた結果、反応促進剤として、可溶性コバルト塩とと
もに、さらに可溶性臭素化合物および(または)共酸化
剤を併用することにより、極めて有効な改良が行なわれ
ることを見出した。
Therefore, as a result of repeated research focusing on the method of adding a third component, we found that an extremely effective improvement was achieved by using a soluble cobalt salt as well as a soluble bromine compound and/or co-oxidant as a reaction accelerator. I found out that this is done.

また、この改良法は、m一体や〇一体に限らすp一体に
も有利に適用することができ、p一体に適用する時には
、前記した本発明者らが先に提案した方法に比し、反応
はより円滑に進行し、低められた反応温度及び短縮され
た反応時間において、良好な反応成績を得ることができ
ることを見出した。
In addition, this improved method can be advantageously applied to p-integrations, not limited to m-integrations and 〇-integrations, and when applied to p-integrations, it is better than the method previously proposed by the present inventors. It has been found that the reaction proceeds more smoothly and that good reaction results can be obtained at lower reaction temperatures and shorter reaction times.

本発明はこのような知見に基づいてなされたものである
The present invention has been made based on such knowledge.

酢酸中、コバルトを触媒とするメチルベンゼン類の液相
自動酸化系に、臭素化合物を添加して難酸化性化合物を
酸化する方法は、テレフタル酸製造法として良く知られ
ており大工業化しているが、微量の臭素化合物をこの系
に添加して、酸化中間物の生成選択率を大巾に向上させ
た例はまった(発表されていない。
The method of oxidizing refractory compounds by adding a bromine compound to a liquid phase auto-oxidation system of methylbenzenes in acetic acid using cobalt as a catalyst is well known as the terephthalic acid production method and has been turned into a large-scale industrial process. However, there have been no published examples of adding a small amount of bromine compounds to this system to greatly improve the selectivity for the production of oxidized intermediates.

しかるに、本発明者らの研究によると、コバルトを触媒
とし酢酸を溶媒とする0−クレゾールのアルキルまたは
アリールエーテルの常圧液相自動酸化反応では、臭素化
合物が存在しないと反応が生起せず、反応開始剤を添加
して反応を開始させたとしても、酸化中間体選択率は1
0mo1%以下にすぎなかったにもか工わらず、微量の
臭素化合物を添加すると高選択率で酸化中間体が生成す
ることは驚くほどであり、従来の常識からは信じられな
いことである。
However, according to the research of the present inventors, in the atmospheric liquid phase autooxidation reaction of alkyl or aryl ether of 0-cresol using cobalt as a catalyst and acetic acid as a solvent, the reaction does not occur in the absence of a bromine compound. Even if a reaction initiator is added to start the reaction, the oxidation intermediate selectivity is 1.
It is surprising that oxidized intermediates are produced with high selectivity when a trace amount of bromine compound is added, even though the amount was only 0 mo1% or less, which is unbelievable from conventional common sense.

p−クレゾールのエーテルを常圧付近で液相自動酸化す
る場合は、〇一体の場合はど顕著な効果は認められない
が、反応温度の低下や反応時間の短縮効果は明らかであ
り、その結果として、炭素数の多い化合物(炭素数の多
い化合物は一般に炭素数の少ない化合物より酸化されに
くい)の常圧酸化は、実際上臭素化合物が存在しないと
生起しなかった。
When p-cresol ether is subjected to liquid-phase autooxidation near normal pressure, no significant effect is observed in the case of 〇 integrated, but the effects of lowering the reaction temperature and shortening the reaction time are clear. As a result, atmospheric pressure oxidation of compounds with a large number of carbon atoms (compounds with a large number of carbon atoms are generally more difficult to oxidize than compounds with a smaller number of carbon atoms) did not actually occur in the absence of bromine compounds.

(実施例参照)。また、この現象とも関連して、酸化中
間体の生成選択率増加効果も認められ、この効果も炭素
数の多い化合物はど顕著に認められた。
(See Examples). In addition, in connection with this phenomenon, an effect of increasing the production selectivity of oxidized intermediates was also observed, and this effect was also observed more markedly for compounds with a large number of carbon atoms.

すなわち、臭素化合物添加効果は酸化されにくい化合物
はど顕著なので、もつとも酸化されやすいp−メトキシ
トルエンの酸化では、その効果はかなり小さいと云うこ
とができる。
That is, since the effect of adding a bromine compound is most pronounced for compounds that are difficult to oxidize, it can be said that the effect is quite small in the case of oxidizing p-methoxytoluene, which is easily oxidized.

臭素化合物は、反応液に溶解して反応系に臭素イオンを
提供するようなものであれば良く、臭化ベンゼンや臭化
アルキルのような有機臭素化合物もすぐれた成績を示す
ことは実施例からも明らかであるが、特にすぐれた効果
を示すのはアルカリ金属やアルカリ土類金属の塩または
臭化水素であり、溶解性、価格、および取扱いやすさな
どを勘案すると、臭化カリや臭化ソーダを使用するのが
もつとも有利である。
Any bromine compound can be used as long as it dissolves in the reaction solution and provides bromine ions to the reaction system, and examples show that organic bromine compounds such as benzene bromide and alkyl bromide also show excellent results. However, salts of alkali metals and alkaline earth metals or hydrogen bromide are particularly effective, and when considering solubility, price, and ease of handling, potassium bromide and bromide It is also advantageous to use soda.

臭素化合物の添加量は、原料化合物のo、oooi〜0
.5モル倍−特に0.001〜0.3モル倍−であり、
少なすぎればその効果が認められず、多すぎた場合はカ
ルボン酸などの生成量が増加しそ酸化中間体選択率が低
下するとともに、有機臭素化合物が多量副生するため生
成物の分離精製費が増加するような欠点が認められる。
The amount of the bromine compound added is from o, oooi to 0 of the raw material compound.
.. 5 mol times - especially 0.001 to 0.3 mol times -
If the amount is too low, the effect will not be recognized, and if it is too high, the amount of carboxylic acid etc. produced increases and the selectivity of oxidation intermediates decreases, and a large amount of organic bromine compounds are produced as by-products, which increases the cost of separation and purification of the product. Increasing drawbacks are recognized.

臭素化合物添加量は、コバルI・塩添加量によって規制
することも重要であり、可溶性コバルト塩の0.001
〜10モル倍−特に0.005〜5モル倍の範囲が良く
、この範囲より添加量が過少では臭素化合物の添加効果
が認められず、過大では誘導期が大巾に増加するととも
に選択率が大巾に低下した。
It is also important to regulate the amount of bromine compound added by the amount of cobal I salt added, and 0.001 of soluble cobalt salt.
~10 times by mole - A range of 0.005 to 5 times by mole is particularly good. If the amount added is too small from this range, no effect of the addition of the bromine compound will be observed, and if it is too much, the induction period will greatly increase and the selectivity will decrease. It dropped dramatically.

共酸化剤は、反応条件で容易に酸化されてペルオキシラ
ジカルを生成するようなものであれば何れも使用可能で
あり、n−ブテンやシクロヘキサノンなども使用し得る
が、添加効果、使い易さ、価格、および共酸化剤が酸化
して生成する化合物などを勘案すると、特にアセトアル
デヒド、パラアルデヒド、およびメチルエチルケトンが
すぐれており、そのなかでも特に前2者が良い。
Any co-oxidant can be used as long as it is easily oxidized under the reaction conditions to generate peroxy radicals, and n-butene, cyclohexanone, etc. can also be used, but the effect of addition, ease of use, Considering the price and the compounds produced by oxidation of the co-oxidizing agent, acetaldehyde, paraldehyde, and methyl ethyl ketone are particularly good, and among these, the first two are particularly good.

共酸化剤の添加量は、ブ般に原料化合物の0.0001
〜0.5モル倍、好ましくは0.001〜0.2モル倍
程度であり、少なすぎればその効果が認められず、多す
ぎても特に悪影響はないが、必要以上に多量添加するこ
とはコスト的に不利であるし、多量添加では発熱量が増
加して反応制御が困難となることも認められるので、必
要以上の多量添加は好ましいことではない。
The amount of co-oxidant added is generally 0.0001 of the raw material compound.
~0.5 times by mole, preferably about 0.001 to 0.2 times by mole; if it is too little, the effect will not be observed, and if it is too much, there will be no particular adverse effect, but do not add more than necessary. It is disadvantageous in terms of cost, and addition of a large amount increases the calorific value, making it difficult to control the reaction, so it is not preferable to add a larger amount than necessary.

共酸化剤の添加効果は、臭素化合物の添加効果と類似し
ており、反応温度の低下や反応時間の短縮、および酸化
中間体選択率の向上などが認められ、臭素化合物の添加
効果と同様にこの効果も、難酸化性化合物の酸化時に顕
著である。
The effect of adding a co-oxidant is similar to the effect of adding a bromine compound, and it is observed that the reaction temperature is lowered, the reaction time is shortened, and the selectivity of oxidized intermediates is improved. This effect is also noticeable when oxidizing a difficult-to-oxidize compound.

それゆえ、p−メトキシトルエンのような易酸化性化合
物を100°C付近で酸化する場合は、はとんどその効
果が認められないが、易酸化性化合物酸化時でも、室温
付近の低温で反応させる場合は添加効果がはっきり認め
られるので、被酸化物の反応性や反応条件を勘案して、
共酸化剤を併用するか否かを定めれば良い。
Therefore, when an easily oxidizable compound such as p-methoxytoluene is oxidized at around 100°C, no effect is observed; When reacting, the effect of addition is clearly recognized, so take into account the reactivity of the oxidized material and reaction conditions.
It is only necessary to decide whether or not to use a co-oxidizing agent.

なお、難酸化性化合物の酸化では、反応条件によっては
、共酸化剤を併用しなげれば、低級飽和脂肪酸とその無
水物の混合溶媒を使用しないと、反応が円滑に進行しな
いことも認められており(後述)、コスト的にも共酸化
剤併用法の方が有利な場合が多いので、難酸化性化合物
の酸化は一般に共酸化剤を併用した方が有利と云える。
In addition, in the oxidation of refractory compounds, it has been observed that depending on the reaction conditions, the reaction may not proceed smoothly unless a co-oxidizing agent is used or a mixed solvent of a lower saturated fatty acid and its anhydride is used. (described later), and the method of using a co-oxidant in combination is often more advantageous in terms of cost. Therefore, it can be said that it is generally more advantageous to use a co-oxidant in combination when oxidizing a refractory compound.

本発明法で触媒は、低級飽和脂肪酸を配位子として反応
液に溶解した形で作用しているようであり、溶解量以上
の触媒を添加してもプラス効果は認められない。
In the method of the present invention, the catalyst seems to act in the form of a lower saturated fatty acid as a ligand dissolved in the reaction solution, and no positive effect is observed even if the catalyst is added in an amount greater than the dissolved amount.

また、前記の理由からコバルトは低級飽和脂肪酸塩−特
に酢酸塩−として添加するのが望ましいが、反応系で容
易に低級飽和脂肪酸ヲ配位したコバルトイオンの形にな
るような可溶性コバルト塩は触媒として使用可能であり
、アセチルアセトネート、ナフテン酸塩、安息香酸塩、
ステアリン酸塩、硝酸塩なども用いることができる。
Furthermore, for the reasons mentioned above, it is desirable to add cobalt as a salt of lower saturated fatty acids, especially acetate, but soluble cobalt salts that easily form cobalt ions coordinated with lower saturated fatty acids in the reaction system should be used as catalysts. Can be used as acetylacetonate, naphthenate, benzoate,
Stearates, nitrates, etc. can also be used.

しかし、ハロゲン化コバルトでは反応が生起しない場合
が多く、好ましい触媒とは云えなかった。
However, cobalt halides often do not cause the reaction and cannot be said to be a preferable catalyst.

触媒の最適添加量は、原料、溶媒、共酸化剤、および臭
素化合物の種類や添加量、反応温度などの反応条件によ
って変動するが、特に溶媒の種類による変動中が大きく
、0−メトキシトルエンのような難酸化性化合物を、共
酸化剤不存在下に酸化する場合は、酢酸中では原料の0
.05モル倍以上の触媒を添加しないと反応が生起せず
、反応を円滑に行なわせるためにはO,OSモル倍以上
の添加が望ましいが、酢酸と無水酢酸の混合溶媒中では
0.01モル倍の添加で反応が進行した。
The optimum amount of catalyst to be added varies depending on reaction conditions such as raw materials, solvent, co-oxidizing agent, type and amount of bromine compound added, and reaction temperature, but it varies greatly depending on the type of solvent. When oxidizing difficult-to-oxidize compounds such as
.. The reaction will not occur unless the catalyst is added in an amount of 0.05 times the mole or more, and it is desirable to add more than 0.05 times the mole of O,OS in order to make the reaction proceed smoothly, but in a mixed solvent of acetic acid and acetic anhydride, the reaction does not occur. The reaction proceeded with twice the addition.

p−メトキシトルエンのような易酸化性化合物の酸化で
は、触媒添加量は難酸化性化合物の酸化時より少なくて
よく、溶媒量や臭素化合物の添加量如何によっては、原
料化合物のo、ooiモル倍程度の添加でも良いことが
実施例からも明らかであるが、易酸化性化合物を原料と
する場合も可溶性コバルト塩添加量は原料化合物の0.
01モル倍以上とするのが好ましい。
When oxidizing easily oxidizable compounds such as p-methoxytoluene, the amount of catalyst added may be smaller than when oxidizing difficult-to-oxidize compounds. It is clear from the examples that addition of approximately twice as much soluble cobalt salt is sufficient, but even when using an easily oxidizable compound as a raw material, the amount of soluble cobalt salt added is approximately 0.0 times that of the raw material compound.
It is preferable that the amount is 0.01 mole or more.

これらを総合して、可溶性コバルト塩の最少添加量は原
料化合物の0.001モル倍、好ましくは0.01モル
倍、最大添加量は反応条件におけるその飽和溶解量と云
えるが、特に好ましいのは原料化合物の0.05〜0.
3モル倍であった。
Taking these into account, it can be said that the minimum amount of soluble cobalt salt to be added is 0.001 times, preferably 0.01 times by mole, the amount of the raw material compound, and the maximum amount to be added is the saturated dissolved amount under the reaction conditions, but particularly preferred is is 0.05 to 0.0 of the raw material compound.
It was 3 times the mole amount.

触媒の添加量が少なすぎると、反応速度、選択率とも低
下し、原料化合物の0.001モル倍程度では難酸化性
化合物を原料とする場合は反応が開始しなくなる。
If the amount of the catalyst added is too small, the reaction rate and selectivity will both decrease, and if the amount is about 0.001 times the amount of the starting compound by mole, the reaction will not start if the oxidizable compound is used as the starting material.

触媒添加量が多すぎた場合は、反応工学的な面取外の反
応に対するマイナス効果はあまり見当らないが、生成物
の分離回収時に触媒が多量析出したりして、目的物の得
量を減らすなどのマイナス点があり好ましいことではな
い。
If the amount of catalyst added is too large, there will not be much negative effect on reactions outside of chamfering in terms of reaction engineering, but a large amount of catalyst will precipitate during product separation and recovery, reducing the yield of the target product. There are negative points such as this, so it is not a desirable thing.

本発明法によって収率良く置換ベンズアルデヒドや置換
ベンジルアルコールを得るためには、炭素数2〜4の低
級飽和脂肪酸および/またはその無水物を溶媒として使
用することが必須条件であり、低級飽和脂肪酸としては
特に酢酸が、低級飽和脂肪酸無水物としては特に無水酢
酸がすぐれており、これらを併用するとさらにすぐれた
結果を示すことは前記のとおりである。
In order to obtain substituted benzaldehyde or substituted benzyl alcohol with good yield by the method of the present invention, it is essential to use a lower saturated fatty acid having 2 to 4 carbon atoms and/or its anhydride as a solvent. As mentioned above, acetic acid is particularly excellent as a lower saturated fatty acid anhydride, and acetic anhydride is particularly excellent as a lower saturated fatty acid anhydride, and even better results are obtained when these are used in combination.

しかし、無水酢酸を併用しなくても充分なほどコバルト
塩を添加する場合は、酢酸を単独使用する方が有利なこ
とは云うまでもない。
However, it goes without saying that if a sufficient amount of cobalt salt is added without using acetic anhydride in combination, it is more advantageous to use acetic acid alone.

なお、低級飽和脂肪酸単独使用時より無水物を併用した
場合の方が置換ベンジルアルコールの低級飽和脂肪酸エ
ステルが生威しやすい傾向も認められているので、無水
物を併用すべきか否かは反応条件や目的物などを勘案し
て適宜定めれば良い。
Furthermore, it has been observed that lower saturated fatty acid esters of substituted benzyl alcohol tend to grow more easily when an anhydride is used in combination than when lower saturated fatty acids are used alone, so whether or not an anhydride should be used in combination depends on the reaction conditions. It may be determined as appropriate, taking into consideration the purpose and purpose.

溶媒の添加量は、溶媒の種類や反応条件および被酸化物
の種類によっても変動するが、一般的には原料化合物の
0.2〜20モル倍程度であり、特にすぐれた範囲は2
〜15モル倍程度である。
The amount of solvent added varies depending on the type of solvent, reaction conditions, and type of oxidized product, but it is generally about 0.2 to 20 times the mole of the raw material compound, and a particularly good range is 2.
It is about 15 mole times.

溶媒使用量が少なすぎると、本発明法の特色が失なわれ
、大きな反応速度低下や選択率低下が認められ、反応が
生起しないことも多い。
If the amount of solvent used is too small, the characteristics of the method of the present invention will be lost, a significant decrease in reaction rate and selectivity will be observed, and the reaction will often not occur.

しかし、溶媒使用量が過大であっても大巾な変化はなく
、原料化合物の15モル倍以上の溶媒添加時に最高選択
率が得られる場合もあるが、過大な使用では酸化速度が
低下したりして生産性が下がるし、最適触媒量が増加し
たり生成液の後処理費用が増加するなどの欠点もあり、
好ましいことではない。
However, even if the amount of solvent used is excessive, there is no major change, and the highest selectivity may be obtained when the solvent is added in an amount of 15 moles or more of the raw material compound, but if it is used in an excessive amount, the oxidation rate may decrease. There are drawbacks such as lower productivity, an increase in the optimum amount of catalyst, and an increase in post-treatment costs for the produced liquid.
That's not a good thing.

本発明法では、共酸化剤としてアセトアルデヒド、パラ
アルデヒド、またはメチルエチルケトンを使用すれば、
その酸化によって酢酸が生成する。
In the method of the present invention, if acetaldehyde, paraldehyde, or methyl ethyl ketone is used as a co-oxidizing agent,
Its oxidation produces acetic acid.

それゆえ、このような共酸化剤を比較的大量に使用する
と、反応開始時にまったく低級飽和脂肪酸やその無水物
が存在しなくても、反応開始後の比較的早い時期に系内
で必要量の酢酸が生成するから、かなり収率良く酸化中
間体が得られる。
Therefore, when such co-oxidants are used in relatively large amounts, the required amount can be obtained within the system relatively early after the reaction starts, even if no lower saturated fatty acids or their anhydrides are present at the start of the reaction. Since acetic acid is produced, the oxidized intermediate can be obtained in fairly good yield.

すなわち、共酸化剤をあらかじめ大量使用することによ
り、低級飽和脂肪酸を1nsituに生成させる方法も
可能である。
That is, it is also possible to generate lower saturated fatty acids in situ by using a large amount of co-oxidizing agent in advance.

しかしながら、実施例からも明らかなように、この方法
は反応開始時に低級飽和脂肪酸および/またはその無水
物を添加した場合より、一般に酸化中間体選択率は低い
し、cost的にも有利とは云えない。
However, as is clear from the examples, this method generally has a lower selectivity of oxidized intermediates than the case where a lower saturated fatty acid and/or its anhydride is added at the start of the reaction, and it cannot be said that it is advantageous in terms of cost. do not have.

なお、この方法では0.5〜5モル倍程度の共酸化剤の
添加が望ましいが、このような大量添加では、稀釈剤と
して不活性溶媒を添加しないと反応制御が困難な点や、
最適反応条件域がかなりせまいことも認められ、これら
の点からも特に好ましい方法とは云えない。
In addition, in this method, it is desirable to add about 0.5 to 5 moles of the co-oxidant, but when adding such a large amount, it is difficult to control the reaction unless an inert solvent is added as a diluent.
It is also recognized that the range of optimal reaction conditions is quite narrow, and from these points of view it cannot be said to be a particularly preferred method.

コバルトを触媒とし、低級飽和脂肪酸および/またはそ
の無水物を溶媒とするクレゾールのアルキルまたはアリ
ールエーテルの酸化反応性は、アルキル基やアリール基
が複雑なほど低下するうえ、原料化合物の分解(クレゾ
ールの生成反応)は相対的に生起しやすい傾向を持つの
で、それだけ低温で反応が円滑に進行し得るような反応
条件を選択しなげれば反応が生起しなくなり、複雑な化
合物はど臭素化合物や共酸化剤の添加効果は顕著と云え
る。
The oxidation reactivity of the alkyl or aryl ether of cresol using cobalt as a catalyst and a lower saturated fatty acid and/or its anhydride as a solvent decreases as the alkyl or aryl group becomes more complex. (formation reactions) tend to occur relatively easily, so unless reaction conditions are selected that allow the reaction to proceed smoothly at low temperatures, the reaction will not occur, and complex compounds such as bromine compounds and It can be said that the effect of adding an oxidizing agent is remarkable.

しかしながら、あまり複雑な化合物は原料合成が困難で
あるし、臭素化合物を添加しても酸化反応より分解反応
が容易となるためか反応性や選択性も減少して行くので
、実際上はアルキル基やアリール基の炭素数は12以下
に限定するのが良く、特に臭素化合物添加効果が顕著な
のは、o−クレゾールのフェニル、シクロヘキシル、0
またはm−)リル、あるいはC1〜C8の直鎖アルキル
エーテルを原料とする場合であった。
However, it is difficult to synthesize raw materials for very complex compounds, and even if a bromine compound is added, the reactivity and selectivity decrease, probably because the decomposition reaction is easier than the oxidation reaction. It is best to limit the number of carbon atoms in the or aryl group to 12 or less, and the effect of adding a bromine compound is particularly remarkable in phenyl, cyclohexyl, and o-cresol.
or m-)lyl, or a C1-C8 linear alkyl ether as a raw material.

また、p−メ)キシトルエンではコバルト触媒単独でも
かなり選択率良く酸化中間体を生成するので、臭素化合
物や共酸化剤の添加効果はあまり大きくなく、p−クレ
ゾール誘導体で特に添加効果の大キナ化合物は、フェニ
ル、トリルシクロヘキシル、または04〜CI2のアル
キルエーテルであった。
In p-meth)oxytoluene, cobalt catalyst alone produces oxidized intermediates with high selectivity, so the effect of adding bromine compounds and co-oxidants is not very large. was phenyl, tolylcyclohexyl, or an alkyl ether of 04-CI2.

本発明によれば、前記した原料化合物はそのベンゼン核
に結合するメチル基はヒドロキシル基やアルデヒド基に
酸化され、対応する酸化誘導体に変換されるが、この場
合、酸素圧が0.1〜2kg/ca程度の低い場合の反
応と、それより高い場合の反応とでは、生成物組成や最
適反応液組成などには明確な差異が見られ、目的の製品
な高収率で得るには、反応温度、溶媒組成、触媒量など
の反応条件を適正に選定することが必要である。
According to the present invention, the methyl group bonded to the benzene nucleus of the above-mentioned raw material compound is oxidized to a hydroxyl group or an aldehyde group, and is converted into the corresponding oxidized derivative. In this case, the oxygen pressure is 0.1 to 2 kg. There is a clear difference in the product composition and optimal reaction solution composition between the reaction when the /ca is low and the reaction when it is higher. It is necessary to appropriately select reaction conditions such as temperature, solvent composition, and amount of catalyst.

たとえば、溶媒に関しては、前記のように、本発明によ
る0、1〜2 kg/crA(絶対圧)程度の低い酸素
圧を用いる場合は、共酸化剤不在時には脂肪酸と脂肪酸
無水物の混合溶媒を用いるのが有利であったが、高酸素
圧時には混合溶媒使用が有利な場合は稀であった。
For example, regarding the solvent, as mentioned above, when using a low oxygen pressure of about 0.1 to 2 kg/crA (absolute pressure) according to the present invention, a mixed solvent of fatty acids and fatty acid anhydrides may be used in the absence of a co-oxidant. However, it was rarely advantageous to use a mixed solvent at high oxygen pressures.

共酸化剤の併用効果についても、低酸素圧時と高酸素圧
時では大きな差異が認められ、前者では多くの場合、酸
化中間体を高収率で得るためには共酸化剤の添加が必須
であったが、後者では多くの場合、必須条件とは云えな
かった。
There is also a large difference in the combined effect of co-oxidants between low oxygen pressure and high oxygen pressure; in the former case, the addition of a co-oxidant is often necessary to obtain a high yield of oxidized intermediates. However, in many cases the latter could not be said to be a necessary condition.

また、触媒量に関しては、低酸素圧時には被酸化物の0
.01モル倍以上の添加が必要であったが、高酸素圧時
には0.001モル倍以上の添加で良かった。
Regarding the amount of catalyst, when the oxygen pressure is low, the amount of oxidized material is 0.
.. Although it was necessary to add 0.01 mole or more, it was sufficient to add 0.001 mole or more at high oxygen pressure.

本発明法の適温は、被酸化物の種類や反応条件、および
目的物により大巾に変動し、アニスアルデヒド合成を目
的として、アセトアルデヒド共存下にp−メトキシトル
エンを酸化する場合は30〜60℃が特に良いが、臭素
化合物のみを添加して0−フエノキシトルエンヤp−n
−ドデシロキシトルエンを酸化する場合は100℃以上
でなげればよい結果が得られなかった。
The appropriate temperature for the method of the present invention varies widely depending on the type of oxidized product, reaction conditions, and target product, and is 30 to 60°C when p-methoxytoluene is oxidized in the coexistence of acetaldehyde for the purpose of anisaldehyde synthesis. is particularly good, but 0-phenoxytoluenya p-n with only the bromine compound added
When oxidizing -dodecyloxytoluene, good results could not be obtained by oxidizing it at 100°C or higher.

それゆえ、本発明法における適温域を示すことは困難で
あるが、一般的な反応温度域は30〜180℃であり、
難酸化性化合物はど最適温度が高温側に移動すると云え
る。
Therefore, it is difficult to indicate the appropriate temperature range for the method of the present invention, but the general reaction temperature range is 30 to 180°C,
It can be said that the optimum temperature for oxidation-resistant compounds shifts to the higher temperature side.

本発明によりクレゾール類のアルキルまたはアリールエ
ーテルを酸化する場合は、後記実施例に示した実験結果
から理解されるように、所望する酸化中間体を高選択率
で得るには、0−クレゾールのアルキル又はアリールエ
ーテルを原料とする場合、反応率を80%以下、好まし
くは15〜75%程度にするのがよく、またp−クレゾ
ールのアルキル又はアリールエーテルを原料とする場合
、90%以下、好ましくは30〜80%にするのがよい
When oxidizing an alkyl or aryl ether of cresols according to the present invention, as understood from the experimental results shown in the examples below, in order to obtain the desired oxidized intermediate with high selectivity, the alkyl or aryl ether of 0-cresol must be Or, when aryl ether is used as a raw material, the reaction rate is preferably 80% or less, preferably about 15 to 75%, and when p-cresol alkyl or aryl ether is used as raw material, the reaction rate is 90% or less, preferably It is better to set it to 30-80%.

反応率の最小値はプロセスの経済性を考えて一般的には
10%以上にするのがよいが、もちろん、それ以下の反
応率例えば5〜lO%であっても、生成物の種類(商品
価値)によっては十分な経済性が得られる場合があるの
で、特にこれに限定されるものでもない。
Considering the economic efficiency of the process, it is generally better to set the minimum reaction rate to 10% or more, but of course, even if the reaction rate is lower than that, e.g. 5 to 10%, depending on the type of product (product Depending on the value (value), sufficient economic efficiency may be obtained, so it is not particularly limited to this.

酸化剤としては、酸素のほか空気または空気と酸素の混
合ガスなど種々の酸素含有ガスが使用できる。
As the oxidizing agent, in addition to oxygen, various oxygen-containing gases such as air or a mixed gas of air and oxygen can be used.

また、反応形式はバッチ式、連続式の何れでも良く、生
産性や装置費などを勘案して適宜定めれば良い。
Further, the reaction format may be either a batch type or a continuous type, and may be appropriately determined in consideration of productivity, equipment cost, etc.

反応生成物より触媒、溶媒、原料、生成物などの分離回
収は、この方面の技術者に公知の方法、例えば反応液中
の低級飽和脂肪酸の過半を減圧下に留去し、残液にトル
エンと水を加え、触媒および低級飽和脂肪酸を溶解した
水層と、原料や生成物を含むトルエン層に分離し、トル
エン層を減圧下に精留することによって容易にかつ高収
率に行なうことができる。
The catalyst, solvent, raw materials, products, etc. can be separated and recovered from the reaction products using methods known to those skilled in the art, such as distilling off the majority of the lower saturated fatty acids in the reaction solution under reduced pressure, and adding toluene to the remaining solution. This can be easily done in high yield by adding water and separating the aqueous layer containing the catalyst and lower saturated fatty acids and the toluene layer containing the raw materials and products, and rectifying the toluene layer under reduced pressure. can.

また、このようにして回収した溶媒や触媒は再度反応に
使用し得ることは云うまでもない。
Furthermore, it goes without saying that the solvent and catalyst thus recovered can be used again in the reaction.

次に本発明法を実施例によりさらに詳細に説明する。Next, the method of the present invention will be explained in more detail with reference to Examples.

なお、後記表中に示した「アルデヒド」「酢酸エステル
」及び「アルコール」はいずれも使用した原料に対応す
るものを意味する。
In addition, "aldehyde", "acetic acid ester", and "alcohol" shown in the table below all mean those corresponding to the raw materials used.

実施例 1 攪拌器、温度計、ガス吹込口、および還流冷却器を備え
たガス出口を持つ500ynl容パイレツクスガラス製
四つ目フラスコに、0−メトキシトルエン:酢酸二〇〇
(OAc)2・4H20: 臭素化合物=1 :8 :
0.1 : 0.01 (モル比)の組成を持つ原料液
200rILlを加え、湯浴で反応温度を60〜65℃
に保つとともに、r、p、m、1000〜1200で液
を激しく攪拌しながら3.6J/hrの速度で酸素を送
入し、所定時間反応を行った。
Example 1 0-Methoxytoluene:200 acetic acid (OAc) 2. 4H20: Bromine compound = 1:8:
Add 200ml of raw material solution having a composition of 0.1 : 0.01 (molar ratio), and adjust the reaction temperature to 60 to 65°C in a hot water bath.
The reaction was carried out for a predetermined time by supplying oxygen at a rate of 3.6 J/hr while stirring the solution vigorously at r, p, m of 1000 to 1200.

反応生成液は、シラン処理したセライト545に10重
量%のシリコン油0V−17を担持させたものを充填剤
とする昇温ガスクロマトグラフ法により分析した。
The reaction product liquid was analyzed by heating gas chromatography using silane-treated Celite 545 supported with 10% by weight silicone oil 0V-17 as a filler.

実験結果は表1のとおりである。なお、臭素化合物を添
加しない場合は、この条件ではまったく反応しなかった
The experimental results are shown in Table 1. Note that when no bromine compound was added, no reaction occurred under these conditions.

原料の0−メトキシトルエンは、0−クレゾールとジメ
チル硫酸より常法によって合成し、アルカリ洗浄および
精留をくり返し、充分精製して使用した。
The raw material 0-methoxytoluene was synthesized from 0-cresol and dimethyl sulfuric acid by a conventional method, and was sufficiently purified by repeated alkali washing and rectification before use.

実施例 2 臭素化合物としてNaBrを使用し、実施例1と※※ま
った(同様な酸化実験を行ない、反応温度および反応率
の影響について検討し表2の結果を得た。
Example 2 Using NaBr as the bromine compound, the same oxidation experiment as in Example 1 was carried out, and the effects of reaction temperature and reaction rate were studied, and the results shown in Table 2 were obtained.

実施例 3 酢酸を溶媒とし、co(OAc)2・4H20およびN
aBrを触媒として、実施例1とまったく同様にして0
−メトキシトルエンの常圧酸素酸化を行※※ない、酢酸
量、Co量、NaBr量、およびアセトアルデヒドの添
加効果などについて検討し、表3の結果を得た。
Example 3 Using acetic acid as a solvent, co(OAc)2.4H20 and N
0 in exactly the same manner as in Example 1 using aBr as a catalyst.
- The results shown in Table 3 were obtained by examining the amount of acetic acid, the amount of Co, the amount of NaBr, the effect of adding acetaldehyde, etc. without performing normal pressure oxygen oxidation of methoxytoluene.

* * * 1 AcHの代りにパラアルデヒドを使用した。* * * 1 Paraldehyde was used instead of AcH.

2 Co(OAc)2・4H20の代りに安息香酸コ
バルトを使用した。
Cobalt benzoate was used in place of 2Co(OAc)2.4H20.

3 酸素の代りに空気(流速300 ml/mi!L)
を酸化剤として使用した。
3 Air instead of oxygen (flow rate 300 ml/mi!L)
was used as the oxidizing agent.

4 AcOHの代りに正酪酸を使用した。4 Orthobutyric acid was used instead of AcOH.

5 正酪酸エステル 6 NaBrの代りにKBr を使用した。5 Orthobutyric acid ester 6 KBr was used instead of NaBr.

7 Co(OAc)2・4H20の代りに■価のコバ
ルトアセチルアセトネートを使用した。
7 Co(OAc)2.4H20 was replaced with 2-valent cobalt acetylacetonate.

8 AcOHの代りにプロピオン酸を使用した。8 Propionic acid was used instead of AcOH.

9 プロピオン酸エステル 10 Co(OAc)2・4H20の代りにステアリ
ン酸コバルトを使用した。
9 Propionate ester 10 Cobalt stearate was used in place of Co(OAc)2.4H20.

11 Co (OAc )2 ・4 H20の代りに
co(NO3)2・6H20を使用した。
co(NO3)2.6H20 was used instead of 11Co(OAc)2.4H20.

12AcHの代りにメチルエチルケトンを使用した。Methyl ethyl ketone was used instead of 12AcH.

実施例 4 被酸化物をp−メトキシトルエンとする以外は実施例3
とまったく同様にして実験を行ない、表※※4の結果を
得た。
Example 4 Example 3 except that the oxidized substance is p-methoxytoluene
An experiment was conducted in exactly the same manner as above, and the results shown in Table ※※4 were obtained.

なお、p−メトキシトルエンは市販品を実施例1と同様
な方法で充分に精製して使用した。
Note that p-methoxytoluene was a commercially available product that was sufficiently purified in the same manner as in Example 1 before use.

*IAcHの代りにパラアルデヒドを使用した。*Paraldehyde was used instead of IAcH.

*2 AcOHの代りに正酪酸を使用した。*2 Orthobutyric acid was used instead of AcOH.

*3 AcHの代りにメチルエチルケトンを使用した
*3 Methyl ethyl ketone was used instead of AcH.

*4 Co(OAc)2・4H20の代りにナフテン
酸コバルト(コバルト含量10wt%)を使用した。
*4 Cobalt naphthenate (cobalt content 10 wt%) was used instead of Co(OAc)2.4H20.

*5 酸素の代りに空気(流速300rrLl/m11
t)を酸化剤として使用した。
*5 Air instead of oxygen (flow rate 300rrLl/m11
t) was used as oxidizing agent.

*6 Co(OAc)2・4H20の代りにco(NO
3)2・6H20を使用した。
*6 Co(NOAc) instead of Co(OAc)2.4H20
3) 2.6H20 was used.

*7 これらの実験は、AcoHO代りにベンゼンを溶
媒とし、co(OAc)2・4H20の代りに2価のコ
バルトアセチルアセトネートを触媒として使用したもの
であり、実施例ではパラアルデヒドより1nsituに
酢酸が生成するためか、アルデヒドの生成が認められる
が、参考例では低級脂肪酸がin 5ituにも生成し
ないためか、アルデヒドの生成はまったく認められなか
った。
*7 In these experiments, benzene was used as a solvent instead of AcoHO, and divalent cobalt acetylacetonate was used as a catalyst instead of co(OAc)2.4H20. The production of aldehydes was observed, probably because of the production of , but in the reference example, no production of aldehydes was observed at all, probably because lower fatty acids were not produced even in 5 situ.

実施例 5 実施例1とまったく同様にして、酢酸を溶媒とし、Co
(OA c ) 2 ・4 H20を触媒とする、種
々の化合物の常圧酸素酸化を行ない、反応系に臭素化合
物、または臭素化合物と共酸化剤が共存する場合と、存
在しない場合の比較を試み、表5を得た。
Example 5 In exactly the same manner as in Example 1, acetic acid was used as a solvent, and Co
(OA c ) 2 ・4 Various compounds were oxidized with oxygen at atmospheric pressure using H20 as a catalyst, and a comparison was made between cases where a bromine compound, or a bromine compound and a co-oxidant, coexisted in the reaction system and cases where a co-oxidant did not exist. , Table 5 was obtained.

なお、原料化合物は0−クレゾールまたはpクレゾール
と臭化炭化水素より、銅粉を触媒とし苛性アルカリを縮
合剤とする常法によって合成し、実施例1と同様な方法
で充分に精製して使用した。
The raw material compound was synthesized from 0-cresol or p-cresol and a brominated hydrocarbon by a conventional method using copper powder as a catalyst and caustic alkali as a condensing agent, and was sufficiently purified in the same manner as in Example 1 before use. did.

また、反応生成物の確認はGC−MS法によって行なっ
た。
In addition, the reaction product was confirmed by GC-MS method.

実施例 6 攪拌器、温度計、およびガス吹込口をそなえた300r
Ill容5US−316ステンレス鋼製オートクレーブ
に、所定組成の原料液150m1を加え、1600 r
、p、m、で激しく液を攪拌し、所定液温にしてから、
蓄圧器より圧力調整器を通して酸※※素を導入し、酸素
圧を1.5kg/ca(絶対圧)に保った。
Example 6 300r equipped with stirrer, thermometer and gas inlet
Add 150 ml of raw material solution of the specified composition to a 5US-316 stainless steel autoclave, and heat at 1600 r.
, p, m, stir the liquid vigorously to bring it to the specified liquid temperature, and then
Oxygen* was introduced from the pressure accumulator through the pressure regulator, and the oxygen pressure was maintained at 1.5 kg/ca (absolute pressure).

蓄圧器の酸素圧減少量から、お工よその酸素消費量を求
め、はg所定量の酸素を吸収したところで反応器を急冷
し、反応を停止させた。
The amount of oxygen consumed was determined from the amount of oxygen pressure decrease in the pressure accumulator, and when a predetermined amount of oxygen had been absorbed, the reactor was rapidly cooled to stop the reaction.

実施例1とまったく同様にして生成液を分析した結果は
表6のとおりである。
Table 6 shows the results of analyzing the produced liquid in exactly the same manner as in Example 1.

実施例 7 を原料とし、 溶媒、臭素化合物、およびコバルト塩としてAcOH,
NaBr 、およびco(OAc)2・4H20をそれ
ぞれ使用し、実施例1とまったく同様な実験を行ない、
表7の結果を得た。
Using Example 7 as a raw material, AcOH, as a solvent, a bromine compound, and a cobalt salt.
Exactly the same experiment as in Example 1 was conducted using NaBr and co(OAc)2.4H20, respectively.
The results shown in Table 7 were obtained.

Claims (1)

【特許請求の範囲】 10−クレゾールまたはp−クレゾールのアルキルまた
はアリールエーテルを、低級飽和脂肪酸および/または
その無水物を溶媒とし、被酸化物の0.01モル倍以上
の可溶性コバルト塩と被酸化物の0.001〜0.3モ
ル倍でかつコバルト塩の0.005〜5モル倍の可溶性
臭素化合物の共存下に、あるいはこれに被酸化物のo、
ooi〜0.2モル倍の共酸化剤を加えた王者共存下に
、0.1〜2kg/c4(絶対圧)の酸素分圧下で、0
−クレゾールのアルキルまたはアリールエーテルを原料
とする場合、反応率10〜80%及びp−クレゾールの
アルキルまたはアリールエーテルを原料とする場合、反
応率10〜90%の条件下で分子状酸素により液相酸化
することを特徴とする。 エーテル結合を持ったベンジルアルコールおよび/また
はベンズアルデヒド誘導体の製造方法。
[Scope of Claims] An alkyl or aryl ether of 10-cresol or p-cresol is mixed with a soluble cobalt salt in an amount of 0.01 times or more mole of the amount of the oxidized substance, using a lower saturated fatty acid and/or its anhydride as a solvent. In the coexistence of a soluble bromine compound of 0.001 to 0.3 times the mole of the cobalt salt and 0.005 to 5 times the mole of the cobalt salt, or
In the coexistence of a co-oxidant with ooi~0.2 times the mole of co-oxidant, under an oxygen partial pressure of 0.1~2 kg/c4 (absolute pressure), 0
- When the alkyl or aryl ether of cresol is used as a raw material, the reaction rate is 10 to 80%, and when the alkyl or aryl ether of p-cresol is used as a raw material, the reaction rate is 10 to 90%. Characterized by oxidation. A method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond.
JP52071379A 1977-06-16 1977-06-16 Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond Expired JPS5850204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52071379A JPS5850204B2 (en) 1977-06-16 1977-06-16 Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52071379A JPS5850204B2 (en) 1977-06-16 1977-06-16 Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15875776A Division JPS5382736A (en) 1976-12-27 1976-12-27 Preparation of benzyl alcohol and/or benzaldehyde having ether bond

Publications (2)

Publication Number Publication Date
JPS5382739A JPS5382739A (en) 1978-07-21
JPS5850204B2 true JPS5850204B2 (en) 1983-11-09

Family

ID=13458799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52071379A Expired JPS5850204B2 (en) 1977-06-16 1977-06-16 Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond

Country Status (1)

Country Link
JP (1) JPS5850204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327762B2 (en) * 1983-07-25 1991-04-17 Ishikawajima Harima Heavy Ind

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962438A (en) * 1972-10-16 1974-06-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4962438A (en) * 1972-10-16 1974-06-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327762B2 (en) * 1983-07-25 1991-04-17 Ishikawajima Harima Heavy Ind

Also Published As

Publication number Publication date
JPS5382739A (en) 1978-07-21

Similar Documents

Publication Publication Date Title
JP4955886B2 (en) Method for producing aliphatic carboxylic acid from aldehyde
US2723994A (en) Oxidation of xylene and toluic acid mixtures to phthalic acids
EP1674440B1 (en) Process for transition metal free catalytic aerobic oxidation of alcohols under mild conditions using stable free nitroxyl radicals
US2376674A (en) Method for oxidation of aromatic hydrocarbons
US4970338A (en) Preparation process of biphenyl-4,4'-dicarboxylic acid
JPS60246334A (en) Reductive carbonylation for aldehydes through hemiacetal esters and catalized with cobalt carbonyl complex
JP3715492B2 (en) Improved process for the production of benzaldehyde by catalytic liquid phase air oxidation of toluene
JPS5850204B2 (en) Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond
KR930006077B1 (en) 1-(3-vinylphenyl)-1-phenylethylene and method for producing the same
US4226790A (en) Process for oxidizing thallium (I) to thallium (III)
HU177337B (en) Process for producing terephtaloic acid
CA2603160C (en) A process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JPS5850970B2 (en) Method for producing benzyl alcohol and/or benzaldehyde derivatives having an ether bond
US6160159A (en) Preparation of dimethyl terephthalate via the air oxidation of p-tolualdehyde
CA2028818C (en) Production of alpha-(3-benzoylphenyl)-propionic acid derivative
JP3217538B2 (en) Method for producing 1,6-hexanediol
JPS5850205B2 (en) Method for producing benzaldehyde and benzyl alcohol having two aliphatic ether groups
JP3756537B2 (en) Dimethyldecandial and process for producing the same
EP0226566B1 (en) Oxidation of 2-arylpropanals
JP2891533B2 (en) α- (4-isobutylphenyl) ethyl hydroperoxide and method for producing the same
US3703547A (en) Method of preparing phthalic acids
KR810001885B1 (en) Process for the production of intermediate oxidation products of toluene having ether linkages
JPS5821642A (en) Preparation of adipic acid
EP1398307A1 (en) Process for producing trimellitic acid
CN112439452A (en) Catalyst for preparing adipic acid by direct oxidation of cyclohexane