JPS5850474A - Measuring method for line-to-line impedance - Google Patents

Measuring method for line-to-line impedance

Info

Publication number
JPS5850474A
JPS5850474A JP14871281A JP14871281A JPS5850474A JP S5850474 A JPS5850474 A JP S5850474A JP 14871281 A JP14871281 A JP 14871281A JP 14871281 A JP14871281 A JP 14871281A JP S5850474 A JPS5850474 A JP S5850474A
Authority
JP
Japan
Prior art keywords
line
voltage
phase
waveform
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14871281A
Other languages
Japanese (ja)
Other versions
JPH0314145B2 (en
Inventor
Mitsuaki Fukushima
福島 光明
Hidefumi Fujinuma
藤沼 秀文
Satoshi Komazawa
駒沢 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKI DENKI KOGYO KK
Osaki Electric Co Ltd
Original Assignee
OSAKI DENKI KOGYO KK
Osaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKI DENKI KOGYO KK, Osaki Electric Co Ltd filed Critical OSAKI DENKI KOGYO KK
Priority to JP14871281A priority Critical patent/JPS5850474A/en
Publication of JPS5850474A publication Critical patent/JPS5850474A/en
Publication of JPH0314145B2 publication Critical patent/JPH0314145B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To measure a line impedance in an arbitrary phase by computing the line-to-line impedance from the maximum values of voltage and current and the phase difference of an injected wave to be measured in a prescribed phase of a power-line AC voltage. CONSTITUTION:The phase of a power-line AC voltage in a low-voltage distribution line 1 is detected by a power-line AC wave phase detecting circuit 7. When it becomes a phase to be measured, a wave to be measured of known frequency is injected into the line of the low-voltage distribution line 1 via an injection circuit 3. The graph shows the waveform of the voltage (curve v) of the injected wave to be measured and the waveform of the current (curve i) thereof, wherein T denotes the interval of one cycle of the injected wave to be measured, ta a time of the phase difference between the waveform of the voltage v and that of the current i, Vp the maximum value of the waveform of the voltage, and Ip the maximum value of the waveform of the current, respectively. Accordingly, the absolute value¦Z¦of a line-to-line impedance on the occasion can be calculated by¦Vp/Ip¦and the phase difference theta by ta/TX 2pi, respectively.

Description

【発明の詳細な説明】 本発明は線間インピーダンスの測定方法に係り、特に低
圧配電線における線間インピーダンスの測定方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring line impedance, and particularly to a method for measuring line impedance in a low voltage distribution line.

現在、低圧配電線などの電力線を利用して、位相パルス
方式により信号を伝送する遠方計測や遠方制御が行なわ
れている。この場合、電力線の信号伝送特性を知るため
に、信号周波数における電力線の線間インピーダンスを
測定する必要がある。
Currently, power lines such as low-voltage distribution lines are used for remote measurement and remote control that transmit signals using a phase pulse method. In this case, in order to know the signal transmission characteristics of the power line, it is necessary to measure the line-to-line impedance of the power line at the signal frequency.

従来、この線間インピーダンスを測定するのに、既知の
周波数の測定波を電力線の線間に注入し、その際の電圧
値と電流値を計測して、その計測値から線間インピーダ
ンスを算出する方法がとられている。ところがこの積分
により実効値の測定方法では、電力線の平均的な線間イ
ンピーダンスを測定することはできるが、電力線交流電
圧の任意の位相における線間インピーダンスを測定する
ことはできない。
Conventionally, to measure this line-to-line impedance, a measurement wave of a known frequency is injected between the power lines, the voltage and current values at that time are measured, and the line-to-line impedance is calculated from the measured values. A method is being taken. However, although this integration-based effective value measurement method can measure the average line-to-line impedance of a power line, it cannot measure the line-to-line impedance at any phase of the power line AC voltage.

すなわち、特に低圧配電線に接続されている負荷のうち
には、整流器やサイリスタを内蔵した種々の家庭用電気
製品やその他電気機器が多い。実際にこれら整流器やサ
イリスタを内蔵した負荷の電流の流れ状態をみると、電
圧波の零クロス点の近辺では電流が流れず、またサイリ
スタの導通角制御により流れる電流の導通角が異なる。
In other words, many of the loads connected to low-voltage distribution lines include various household electrical appliances and other electrical equipment that have built-in rectifiers and thyristors. When we actually look at the current flow state of a load that incorporates these rectifiers and thyristors, no current flows near the zero-crossing point of the voltage wave, and the conduction angle of the flowing current varies depending on the conduction angle control of the thyristor.

このようなことから、電力線交流電圧の位相によって線
間インピーダンスが変動する。
For this reason, line impedance varies depending on the phase of the power line AC voltage.

従来の測定方法では、位相による線間インピーダンスの
違いを正確に把握することはできない。
Conventional measurement methods cannot accurately determine the difference in line impedance due to phase.

本発明の目的は、このような従来技術の欠点を解消し、
電力線交流電圧の任意の位相における線間インピーダン
スを測定できる線間インピーダンス測定方法を提供する
ことである。
The purpose of the present invention is to eliminate such drawbacks of the prior art,
An object of the present invention is to provide a line impedance measurement method capable of measuring line impedance at any phase of a power line AC voltage.

この目的を達成するため、本発明は、低圧配電線などの
電力線の線間に、電力線交流電圧の所定の位相において
既知の周波数の測定波を注入し、該測定波の電圧波形の
最大値と、電流波形の最大値と、電圧波形と電流波形の
位相差をそれぞれ計測し、それら計測値から電力線にお
ける線間インピーダンスを算出することを特徴とする。
To achieve this objective, the present invention injects a measurement wave of a known frequency between the lines of a power line such as a low-voltage distribution line at a predetermined phase of the power line AC voltage, and the maximum value of the voltage waveform of the measurement wave is The method is characterized in that the maximum value of the current waveform and the phase difference between the voltage waveform and the current waveform are measured, respectively, and the line-to-line impedance in the power line is calculated from these measured values.

次に本発明の実施例を図とともに説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の線間インピーダンスの測定方法を説明
するためのブロック図、第2図は測定波の電圧波形およ
び電流波形図である。
FIG. 1 is a block diagram for explaining the method for measuring line impedance of the present invention, and FIG. 2 is a diagram of voltage and current waveforms of measurement waves.

第1図においては線間インピーダンスを測定へ しようとする低圧配電線で、図示していないがそれには
無数の引込線があり、各引込線には種々の家庭電気製品
、その他電気機器などが接続される。2は測定波電源で
、ここから出力する既知の周波数の測定波が注入回路3
を介して前記低圧配電線1の線間に注入される。4は電
流計、5は電圧計、6は低圧配電線1に注入された測定
波の電圧波形と電流波形の位相差を検出する測定波位相
差検出回路、7は低圧配電線1の電力線交流波における
位相を検出する電力線交流波位相検出回路、8は前記電
流計4、電圧計5、測定波位相差検出回路6ならびに電
力線交流波位相検出回路7からの各検出値をもとにして
線間インピーダンスを算出する演算装置である。
Figure 1 shows a low-voltage power distribution line whose line-to-line impedance is to be measured.Although not shown, it has countless drop-in wires, and each drop-in wire is connected to various household appliances and other electrical devices. . 2 is a measurement wave power supply, from which the measurement wave of a known frequency is outputted to the injection circuit 3.
It is injected between the lines of the low-voltage distribution line 1 via the. 4 is an ammeter, 5 is a voltmeter, 6 is a measurement wave phase difference detection circuit that detects the phase difference between the voltage waveform and current waveform of the measurement wave injected into the low-voltage distribution line 1, and 7 is the power line AC of the low-voltage distribution line 1. A power line AC wave phase detection circuit 8 detects the phase of a power line AC wave based on each detected value from the ammeter 4, voltmeter 5, measurement wave phase difference detection circuit 6, and power line AC wave phase detection circuit 7. This is an arithmetic device that calculates inter-impedance.

次に線間インピーダンスの測定方法について説明する。Next, a method for measuring line impedance will be explained.

低圧配電線1における電力線交流電圧の位相は前述のよ
うに電力線交流波位相検出回路7で検出されるから、測
定しようとする位相になったとき、注入回路3を介して
既知周波数の測定波を低圧配電線10線間に注入する。
The phase of the power line AC voltage on the low voltage distribution line 1 is detected by the power line AC wave phase detection circuit 7 as described above, so when the phase to be measured is reached, a measurement wave of a known frequency is sent via the injection circuit 3. Inject between 10 low-voltage distribution lines.

第2図はその注入測定波の電圧波形(曲線V)と電流波
形(曲線i)を示す図で、図中のTは注入した測定波の
1周期間隔、1.は電圧波形Vと電流波形iの位相差時
間、■、は電圧波形の最大値、IPは電流波形の最大値
をそれぞれ示す。従ってこで、位相差θはt侍x 2x
でそれぞれ算出することができる。
FIG. 2 is a diagram showing the voltage waveform (curve V) and current waveform (curve i) of the injected measurement wave, where T in the figure is one cycle interval of the injected measurement wave, 1. is the phase difference time between the voltage waveform V and the current waveform i, ■ is the maximum value of the voltage waveform, and IP is the maximum value of the current waveform. Therefore, the phase difference θ is t Samurai x 2x
can be calculated respectively.

第3図(イ)、(ロ)、(ハ)、に)は、低圧配電線1
における電力線交流電圧の位相によって線間インピーダ
ンスが変化することを説明するための図である。同図(
イ)は電力線交流電圧の波形図、同図(ロ)は注入測定
波の電圧レベルを示す図で、図中のLは電圧最大値、■
は電圧実効値を示している。同図(ハ)は注入測定波の
電流レベルを示す図で、電力線交流電圧の位相の違いに
より、電流値が2段階に変化した状態を示している。図
中のIl+1はt。−t8間の電流最大値、工、は11
−1.間の電流最大値、■1は1o−1,間の電流実効
値、■。
Figure 3 (a), (b), (c), ni) shows the low voltage distribution line 1
FIG. 3 is a diagram for explaining that line impedance changes depending on the phase of a power line AC voltage in FIG. Same figure (
(a) is a waveform diagram of the power line AC voltage, and (b) is a diagram showing the voltage level of the injection measurement wave. L in the diagram is the maximum voltage value,
indicates the effective voltage value. FIG. 3(C) is a diagram showing the current level of the injection measurement wave, and shows a state in which the current value changes in two stages due to a difference in the phase of the power line AC voltage. Il+1 in the figure is t. - The maximum current value between t8, h, is 11
-1. Maximum value of current between, ■1 is 1o-1, effective value of current between, ■.

は1.−1.間の電流実効値、■は全体の電流実効値を
それぞれ示している。同図に)は各位相においてインピ
ーダンスの絶対値IZIが違うことを示す計算図である
is 1. -1. The rms current value in between, and . ) is a calculation diagram showing that the absolute value IZI of impedance is different in each phase.

ところで、インピーダンスZは、次の(1)式で表わさ
れる。
By the way, impedance Z is expressed by the following equation (1).

Z=R+  jx        ・・・・・・・・・
・・・・・・(1)但し式中の几は等価抵抗値、Xは等
価リアクタンスである。そして等価抵抗値Rは次の(2
)式により、等価リアクタンスXは次の(3)式により
て求められるから、前記(1)式は(4)式のように変
形できる。
Z=R+ jx ・・・・・・・・・
(1) However, in the formula, 几 is an equivalent resistance value, and X is an equivalent reactance. And the equivalent resistance value R is as follows (2
), the equivalent reactance X is determined by the following equation (3), so the equation (1) can be transformed into equation (4).

t。t.

几= IZI cos〒×2π     ・・・・・・
・・・・・・・・・(2)°t1         ・
・・・・・・・・・・・・・・(3)X =l Zl 
s t n T X 2”t、      ・を鳳 Z = IZI cos−X2π−)−jlZI S1
n〒X2ff −・−・・−(4)また、インピーダン
スの絶対値IZ1は次の(5)式で求められるから、 とにより前記(4)式、(5)式から、任意の位相にお
ける線間インピーダンスをそれぞれ正確に算出すること
ができる。なお、電力線交流波の位相は第1図で示した
ように電力線交流波位相検出回路7で、電圧波形と電流
波形の位相差時間t。
几=IZI cos〒×2π ・・・・・・
・・・・・・・・・(2)°t1 ・
・・・・・・・・・・・・・・・(3)X=l Zl
s t n T
n 〒 The respective impedances can be calculated accurately. As shown in FIG. 1, the phase of the power line AC wave is determined by the power line AC wave phase detection circuit 7 based on the phase difference time t between the voltage waveform and the current waveform.

は測定波位相差検出回路6で、電圧の最大値■。is the maximum voltage value ■ of the measurement wave phase difference detection circuit 6.

は電圧計5で、電流の最大値工、は電流計4でそれぞれ
計測され、それらの計測値は演算装置8に入力されて、
前記(4)式、(5)式に基いて線間インピーダンスが
算出される。
is measured by the voltmeter 5, and the maximum value of the current is measured by the ammeter 4, and these measured values are input to the calculation device 8,
The line impedance is calculated based on the above equations (4) and (5).

第4図は、第3図に)と対応させた従来の積分によるイ
ンピーダンス絶対値IZIの計算図で、IZ+はどの位
相においても一定値としてしか算出されない。
FIG. 4 is a calculation diagram of the impedance absolute value IZI by conventional integration corresponding to FIG. 3), in which IZ+ is only calculated as a constant value in any phase.

以上説明したように、本発明によれば電力線交流電圧の
所定の位相における注入測定波の電圧最大値、電流最大
値及び位相差から線間インピーダンスを算出するように
したから、注入測定波の1周期か2周期以内で線間イン
ピーダンスの算出ができ、任意の位相における線間イン
ピーダンスを測定することができる。
As explained above, according to the present invention, line impedance is calculated from the voltage maximum value, current maximum value, and phase difference of the injection measurement wave at a predetermined phase of the power line AC voltage. Line-to-line impedance can be calculated within two cycles, and line-to-line impedance at any phase can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の線間インピーダンスの測定方法を説明
するためのブロック図、第2図は注入測定波の電圧波形
および電流波形図、第3図(イ)は電力線交流電圧の波
形図、第3図(ロ)は注入測定波の電圧レベルを示す図
、第3図(ハ)は注入測定波の電流レベルを示す図、第
3図に)はインピーダンス絶対値の計算図、第4図は従
来の測定法によるインピーダンス絶対値の計算図である
。 1・・・低圧配電線、2・・・測定波電源、3・・・注
入回路、4・・・電流計、5・・・電圧計、6・・・測
定波位相差検出回路、7・・・電力線交流波位相検出回
路、8・・・演算装置、V・・・測定波の電圧波形、i
・・・測定波の電流波形、■、・・・電圧波形の最大値
、■、・・・電流波形の最大値、1.・・・位相差時間
、Z・・・線間インピーダンス 特許出願人   大崎電気工業株式会社代理人 中村 
 稔 才1 興 才2日
Fig. 1 is a block diagram for explaining the method for measuring line impedance of the present invention, Fig. 2 is a voltage and current waveform diagram of the injection measurement wave, Fig. 3 (a) is a waveform diagram of the power line AC voltage, Figure 3 (b) is a diagram showing the voltage level of the injection measurement wave, Figure 3 (c) is a diagram showing the current level of the injection measurement wave, Figure 3) is a diagram for calculating the absolute value of impedance, and Figure 4 is a calculation diagram of an absolute value of impedance using a conventional measurement method. DESCRIPTION OF SYMBOLS 1... Low voltage distribution line, 2... Measurement wave power source, 3... Injection circuit, 4... Ammeter, 5... Voltmeter, 6... Measurement wave phase difference detection circuit, 7... ...Power line AC wave phase detection circuit, 8... Arithmetic device, V... Voltage waveform of measurement wave, i
... Current waveform of measurement wave, ■, ... Maximum value of voltage waveform, ■, ... Maximum value of current waveform, 1. ...Phase difference time, Z...Line impedance patent applicant Osaki Electric Co., Ltd. agent Nakamura
Fertility 1 Kosai 2 days

Claims (1)

【特許請求の範囲】[Claims] 1、 電力線の線間に、電力線交流電圧の所定の位相に
おいて既知の周波数測定波を注入し、該測定波の電圧波
形の最大値と電流波形の最大値と、電圧波形と電流波形
の位相差をそれぞれ計測し、それら計測値から電力線に
おける線間インピーダンスを算出することを特徴とする
線間インピーダンス測定方法。
1. Inject a known frequency measurement wave at a predetermined phase of the power line AC voltage between the power lines, and calculate the maximum value of the voltage waveform and the maximum value of the current waveform of the measurement wave, and the phase difference between the voltage waveform and the current waveform. A method for measuring line-to-line impedance, characterized in that the line-to-line impedance is calculated from the measured values.
JP14871281A 1981-09-22 1981-09-22 Measuring method for line-to-line impedance Granted JPS5850474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14871281A JPS5850474A (en) 1981-09-22 1981-09-22 Measuring method for line-to-line impedance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14871281A JPS5850474A (en) 1981-09-22 1981-09-22 Measuring method for line-to-line impedance

Publications (2)

Publication Number Publication Date
JPS5850474A true JPS5850474A (en) 1983-03-24
JPH0314145B2 JPH0314145B2 (en) 1991-02-26

Family

ID=15458905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14871281A Granted JPS5850474A (en) 1981-09-22 1981-09-22 Measuring method for line-to-line impedance

Country Status (1)

Country Link
JP (1) JPS5850474A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647220A1 (en) * 1989-05-19 1990-11-23 Merlin Gerin DIGITAL ISOLATION CONTROLLER FOR ELECTRICAL NETWORK
CN103063926A (en) * 2012-12-19 2013-04-24 中国电力科学研究院 Test method and test device for low-voltage power line narrowband carrier access impedance
US8441248B2 (en) 2010-10-21 2013-05-14 Whirlpool Corporation Laundry treating appliance with voltage detection

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2647220A1 (en) * 1989-05-19 1990-11-23 Merlin Gerin DIGITAL ISOLATION CONTROLLER FOR ELECTRICAL NETWORK
US8441248B2 (en) 2010-10-21 2013-05-14 Whirlpool Corporation Laundry treating appliance with voltage detection
CN103063926A (en) * 2012-12-19 2013-04-24 中国电力科学研究院 Test method and test device for low-voltage power line narrowband carrier access impedance
CN103063926B (en) * 2012-12-19 2016-03-02 中国电力科学研究院 A kind of method of testing of low-voltage power line narrowband carrier termination and proving installation

Also Published As

Publication number Publication date
JPH0314145B2 (en) 1991-02-26

Similar Documents

Publication Publication Date Title
El-Habrouk et al. Design and implementation of a modified Fourier analysis harmonic current computation technique for power active filters using DSPs
US6667692B2 (en) Electrical utility meter having harmonic data templates for power quality alarm thresholds
Rhode et al. Complete characterization of utilization-voltage power system impedance using wideband measurement
CA2071033A1 (en) Method and apparatus for controlling the output voltage of an ac electrical system
CN108318852A (en) A kind of intelligent electric energy meter square wave influence test method
CN104569904A (en) Test device for testing direct current and even harmonic influence quantity of electric energy meter
CN111044871A (en) Integrated 10kV zinc oxide arrester test system and method
JPS5850474A (en) Measuring method for line-to-line impedance
CN105738677B (en) A kind of power network capacitive earth current detection method
CN105572452B (en) A kind of Gaussian beam group average current measuring method of particle accelerator under quasi-continuous operation state
KR101989459B1 (en) Apparatus and method for measuring leakage current of three-phase four-wire type power line
CN103399208A (en) Measuring device and method for impedance between live wire and ground wire of power supply
CN211263720U (en) Double-clamp-meter type direct current grounding searching instrument
CN113358913B (en) Voltage detection device and method
CN207601664U (en) A kind of electric current moment establishes the controllable constant-current source circuit of output cycle
RU2025740C1 (en) Method of locating damage of power transmission lines and apparatus for performing the same
SU1541532A1 (en) Method of determining components of internal resistance of electric network
CN204331016U (en) A kind ofly test the direct current of electric energy meter and the test unit of even-order harmonic influence amount
Mwaniki et al. Reproducibility of Network Impedance Measurements Using Single-Frequency and Broadband Signal Injection
CN113589032A (en) Method and system for carrying out real-time power test on load on single live wire
CN203479935U (en) One-tower double-circuit power frequency parameter measuring device
RU1816603C (en) Method of testing active resistance of welding circuit at contact welding
SU815683A1 (en) Method of determining short-circuiting circuit parameters
JPH0614463A (en) Testing apparatus for higher harmonics suppressing device
CN117192289A (en) Offline positioning method for single-phase earth fault of transmission line