JPS5850292B2 - Fluidization reduction method for iron ore using circulation of heat carrier particles and reducing gas, coal and air - Google Patents
Fluidization reduction method for iron ore using circulation of heat carrier particles and reducing gas, coal and airInfo
- Publication number
- JPS5850292B2 JPS5850292B2 JP7060381A JP7060381A JPS5850292B2 JP S5850292 B2 JPS5850292 B2 JP S5850292B2 JP 7060381 A JP7060381 A JP 7060381A JP 7060381 A JP7060381 A JP 7060381A JP S5850292 B2 JPS5850292 B2 JP S5850292B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- reaction tower
- coal
- gas
- iron ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0033—In fluidised bed furnaces or apparatus containing a dispersion of the material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
Description
【発明の詳細な説明】
本発明は、石炭、コークスなどの炭材を空気によって燃
焼させて熱媒体粒子を生成させ、この熱媒体粒子と還元
ガスを循環使用するとともに、更に石炭を還元剤として
直接使用する、鉄鉱石の流動還元法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention burns carbonaceous materials such as coal and coke with air to generate heating medium particles, and circulates and uses the heating medium particles and reducing gas, and further uses coal as a reducing agent. This relates to a method for fluid reduction of iron ore for direct use.
従来、鉄鉱石の還元法として各種の方法が実用化してい
るが、今後のエネルギー、資源および環境などからの制
約に対処するために、新しい方法が望まれている。Conventionally, various methods have been put into practical use as methods for reducing iron ore, but new methods are desired in order to cope with future constraints from energy, resources, the environment, etc.
鉄鉱石の形状については粉鉱石の比率が増加することが
予想されており、粉鉄鉱石の有効な還元法の開発が必要
である。Regarding the shape of iron ore, it is expected that the proportion of fine ore will increase, and it is necessary to develop an effective reduction method for fine iron ore.
その一つとして還元反応塔に鉄鉱石と石炭を直接、導入
する流動化還元法があり、この場合、鉄鉱石と石炭の直
接、接触による還元反応が吸熱反応であること、また比
較的高温(850℃以上)を維持しなければ、還元反応
が遅滞するため、還元反応塔への有効な熱の供給法を考
える必要がある。One of these methods is the fluidization reduction method, in which iron ore and coal are directly introduced into a reduction reaction tower. If the temperature (850° C. or higher) is not maintained, the reduction reaction will be delayed, so it is necessary to consider an effective method of supplying heat to the reduction reaction column.
本問題に対する一つの解決策として、燃焼反応塔に石炭
、コークスなどの炭材を供給し、空気を用いて燃焼させ
、高温になった炭材すなわち熱媒体粒子を生成させ、還
元反応塔に流動移送して、所定の熱量を供給した後、燃
焼反応塔に戻し、加熱して還元反応塔に再び供給する。One solution to this problem is to supply carbonaceous materials such as coal and coke to the combustion reaction tower, combust them using air, generate high-temperature carbonaceous materials, or heat transfer particles, and flow them into the reduction reaction tower. After being transferred and supplying a predetermined amount of heat, it is returned to the combustion reaction tower, heated, and again supplied to the reduction reaction tower.
熱媒体粒子循環法が有効である。The heating medium particle circulation method is effective.
このとき還元反応塔で発生するガスは、還元に有効な成
分を含有しているので、精製後加熱して再び還元反応塔
に供給して、これを循環利用することも可能であり、ま
た燃料ガスとして取りだすことも可能である。The gas generated in the reduction reaction tower at this time contains components effective for reduction, so it is possible to recycle it by heating it after purification and supplying it to the reduction reaction tower again, and it can also be used as a fuel. It is also possible to extract it as a gas.
ところが、燃焼反応塔では空気を使用するので、燃焼反
応塔発生ガスを燃料ガスとして別途使用することがむず
かしいため、燃焼反応塔に充填され流動化している石炭
、コークスなどの炭材と空気の燃焼を完全(こ行なわし
めて、燃焼反応塔発生ガス中には、未燃ガスである一酸
化炭素、水素などの発熱量を有するガスを極力、含まな
いように考慮する必要がある。However, since air is used in the combustion reaction tower, it is difficult to separately use the gas generated by the combustion reaction tower as a fuel gas. In doing so, consideration must be given to ensuring that the gas generated by the combustion reaction tower does not contain unburned gases such as carbon monoxide and hydrogen that have a calorific value as much as possible.
そこで本発明者らは、以上の点に関連して、燃焼反応塔
において有効な空気供給手段による炭材の燃焼法を提案
する。Therefore, in connection with the above points, the present inventors propose a method of combustion of carbonaceous material using an effective air supply means in a combustion reaction tower.
本発明を図面によって説明する。The present invention will be explained with reference to the drawings.
第1図は、熱媒体粒子と還元ガス循環法による鉄鉱石の
流動化還元ならびに石炭のガス化による燃料ガス製造法
の設備概要ならびに発生ガスの利用形態の概要図である
。FIG. 1 is a schematic diagram of the equipment and the utilization form of the generated gas for the fluidization reduction of iron ore using heating medium particles and the reducing gas circulation method and the fuel gas production method by gasifying coal.
流動化還元装置は還元反応塔1と燃焼反応塔2で構成し
、鉄鉱石は前記還元反応塔1内に図示していない供給機
を介して、供給口3から導入し、石炭は供給口4から導
入する。The fluidization reduction apparatus is composed of a reduction reaction tower 1 and a combustion reaction tower 2. Iron ore is introduced into the reduction reaction tower 1 through a feeder (not shown) through a feed port 3, and coal is introduced into the feed port 4. Introduced from.
還元反応塔1と燃焼反応塔2との間は、連絡管9を介し
て連絡しており、燃焼反応塔2内で生成する熱媒体粒子
を連絡管9を通じて、還元反応塔1内に流動移送し、所
要の熱量を付与し、流動化還元ならびに石炭のガス化を
行なわせる。The reduction reaction tower 1 and the combustion reaction tower 2 are connected through a communication pipe 9, and heat carrier particles generated in the combustion reaction tower 2 are fluidly transferred into the reduction reaction tower 1 through the communication pipe 9. Then, the required amount of heat is applied to perform fluidization reduction and gasification of the coal.
また、還元反応塔1内には、ガス供給口5を通じて、還
元反応塔発生ガスの一部を精製した循環ガスを供給し、
この循環ガスによって、前記鉄鉱石や熱媒体粒子を流動
化させ、還元反応終了後生成する還元鉄粒子を還元反応
塔1の下部排出口8から排出させる一方、熱媒体粒子は
、連絡管10を通じて、燃焼反応塔2内へ移送する。Further, a circulating gas obtained by purifying a part of the gas generated in the reduction reaction tower is supplied into the reduction reaction tower 1 through the gas supply port 5,
The circulating gas fluidizes the iron ore and heat carrier particles, and the reduced iron particles generated after the reduction reaction is discharged from the lower outlet 8 of the reduction reaction tower 1, while the heat carrier particles are discharged through the connecting pipe 10. , and transferred into the combustion reaction tower 2.
前記還元反応塔発生が/は、脱硫装置などを含むガス清
浄器14、冷却清浄器15を通って洗滌冷却される。The gas generated in the reduction reaction tower is washed and cooled through a gas purifier 14 including a desulfurization device and a cooling purifier 15.
本発生ガスは石炭と鉄鉱石の流動反応時発生するガスで
あり、還元能力を有する水素、一酸化炭素、炭化水素を
含有し、前述の概要を述べたごとく、ガス昇圧機16を
用いて昇圧した後、必要があれば、シフトコンバータ1
7、脱水脱炭酸ガス装置18を経て、850′C以上の
高温にするため、循環ガス加熱器19に導入したのち還
元反応塔1の下部にある供給口5を通じて導入する一方
、必要があれば、循環ガス用に使用する以外に、還元反
応塔発生ガスは、2000〜3500 Kcal/N−
の中カロリー燃料ガスとして、あるいはメタノール用原
料あるいは広く化学工業用原料ガスとして系外に取り出
し、製品ガスとすることも可能である。This generated gas is a gas generated during the fluid reaction of coal and iron ore, and contains hydrogen, carbon monoxide, and hydrocarbons with reducing ability, and is pressurized using the gas booster 16 as outlined above. After that, if necessary, shift converter 1
7. After passing through the dehydration and decarbonation gas device 18, the gas is introduced into the circulation gas heater 19 to raise the temperature to 850'C or higher, and then introduced through the supply port 5 at the bottom of the reduction reaction tower 1. In addition to being used for circulating gas, the gas generated by the reduction reaction tower is
It is also possible to take it out of the system as a medium calorie fuel gas, as a raw material for methanol, or as a raw material gas for a wide variety of chemical industries, and use it as a product gas.
もちろん、その時適宜本燃料ガスをガス変成器20など
を用いて処理すれば、合成天然ガス(メタン濃化ガス)
に転換して増熱することも可能である。Of course, if the present fuel gas is processed using the gas converter 20 or the like at that time, synthetic natural gas (methane enriched gas) can be obtained.
It is also possible to increase the heat by converting to
以上Qつように還元反応塔は石炭と鉄鉱石を原料とし、
後述する熱焼反応塔からの高温熱媒体粒子を利用して、
粉鉄鉱石の還元による還元鉄の製造と石炭のガス化によ
る燃料ガスの製造を同時に行なわせることが可能である
。As mentioned above, the reduction reaction tower uses coal and iron ore as raw materials,
Utilizing high-temperature heat carrier particles from the thermal sintering reaction tower described later,
It is possible to simultaneously produce reduced iron by reducing powdered iron ore and produce fuel gas by gasifying coal.
一方、燃焼反応塔2内には供給ロアを介して熱媒体粒子
となる石炭、コークスなどの炭材を図示していない供給
機より供給し、供給口6を通じて空気を供給する。On the other hand, into the combustion reaction tower 2, carbonaceous materials such as coal and coke, which become heat carrier particles, are supplied from a feeder (not shown) through a supply lower, and air is supplied through a supply port 6.
必要によっては、さらに水蒸気を導入しても良い。If necessary, water vapor may be further introduced.
供給された炭材は空気で燃焼し、高温の熱媒体粒子とな
り、前記連絡管9を介して、還元反応塔1に移送する。The supplied carbonaceous material is combusted in the air, becomes high-temperature heat carrier particles, and is transferred to the reduction reaction tower 1 via the communication pipe 9.
また燃焼残渣は、燃焼反応2内の排出口11より排出す
る。Further, the combustion residue is discharged from the discharge port 11 in the combustion reaction 2.
燃焼反応塔排ガスは排出口13より排出し、硫黄含有量
などの炭材の品質などを考慮しつつ、排ガス処理装置2
1に導入した後、煙突22より廃棄する。The combustion reaction tower exhaust gas is discharged from the exhaust port 13, and the exhaust gas treatment device 2
1 and then disposed of through the chimney 22.
さて、還元反応塔に熱を供給するための熱媒体粒子を加
熱するため、燃焼反応塔では、空気を利用して、熱媒体
粒子となる石炭、コークスなどの炭材を燃焼させる。Now, in order to heat the heating medium particles for supplying heat to the reduction reaction tower, the combustion reaction tower uses air to burn carbonaceous materials such as coal and coke that become the heating medium particles.
したがって、燃焼反応塔発生ガスは、多量の窒素ガスを
本質的に含有するため、燃料ガスとしての使用が効果的
でなく、また炭材と空気を燃焼させる場合、炭酸ガスと
水蒸気まで完全燃焼に近づくにつれて、発生熱量が多大
となるので空気を使用する炭材の燃焼法においては、完
全燃焼に近づけた状況で、燃焼反応を遂行させるための
効果的な方法を創案する必要がある。Therefore, since the combustion reaction tower generated gas essentially contains a large amount of nitrogen gas, it is not effective to use it as a fuel gas, and when carbonaceous material and air are combusted, carbon dioxide gas and water vapor cannot be completely combusted. As the temperature approaches, the amount of heat generated increases, so in the combustion method of carbonaceous materials that uses air, it is necessary to devise an effective method to carry out the combustion reaction under conditions close to complete combustion.
ところで850℃以上の高温流動層において、炭材と空
気を燃焼させると、一旦生成した炭酸ガスや水蒸気が(
1)、(2)式に示す反応CO2+C→2 CO(1)
HO+C−+CO+H2(2)
によって再び炭材と反応して一酸化炭素や水素を生じ、
この反応が吸熱反応であるため、効果的な熱の発生の阻
害要因となる。By the way, when carbonaceous material and air are combusted in a high-temperature fluidized bed at a temperature of 850°C or higher, the carbon dioxide and water vapor generated (
1), Reacts with the carbonaceous material again by the reaction CO2+C→2 CO(1) HO+C-+CO+H2(2) shown in equations (2) to produce carbon monoxide and hydrogen,
Since this reaction is endothermic, it becomes a factor that inhibits effective heat generation.
そこで本発明は、このような阻害要因を解消するために
、熱媒体粒子を生成する燃焼反応塔において、炭材を空
気で燃焼するに当り、空気の供給を上下二段にて行なう
方法を提供するものである。Therefore, in order to eliminate such inhibiting factors, the present invention provides a method in which air is supplied in two stages, upper and lower, when carbonaceous material is combusted with air in a combustion reaction tower that generates heat carrier particles. It is something to do.
まず、通常の流動化ガスを兼ねる、下段の6の供給口よ
り吹きこまれた空気中の酸素は、炭材の流動層中におい
て燃焼し、炭酸ガスと水蒸気を生成し、前述したように
、流動層の上部に至る過程で(1)、(2)式に示した
反応により部分的に一酸化炭素と水素を発生させる。First, the oxygen in the air that is blown in from the lower supply port 6, which also serves as a normal fluidizing gas, is combusted in the fluidized bed of carbonaceous material, producing carbon dioxide gas and water vapor, and as mentioned above, In the process of reaching the upper part of the fluidized bed, carbon monoxide and hydrogen are partially generated by the reactions shown in equations (1) and (2).
この一酸化炭素、水素などの未燃ガスを炭酸ガスと水蒸
気まで燃焼させるため、付加的に設置した上段の供給口
6′より更に空気を、下段よりの空気供給量と等置場上
で供給する。In order to combust this unburned gas such as carbon monoxide and hydrogen into carbon dioxide gas and water vapor, further air is supplied from the additionally installed supply port 6' in the upper stage at the same level as the air supply from the lower stage. .
ここで必要な条件は、下段6の供給空気量と等置場上の
空気量を確保することと、6′の上段空気供給口より上
部に充填、流動化している炭材量(M、t)に対する6
′からの空気供給量(■。The necessary conditions here are to secure the amount of air supplied to the lower stage 6 and the amount of air on the same place, and the amount of carbon material (M, t) filled and fluidized above the upper stage air supply port 6'. 6 against
Air supply amount from ′ (■.
Nrrl/hr)が、
V(Nm”/hr)〉x2so (3)−一一可r−
−−
を満足するように、上段6′から供給する空気量を調節
することである。Nrrl/hr) is V(Nm”/hr)〉x2so (3)-11possibler-
-- The amount of air supplied from the upper stage 6' is adjusted so as to satisfy the following.
もちろんV/Mが多大に大きい場合には、空気中の酸素
が充分に活用されず不適切であるとともに、必要以上に
多大の空気を使用することは、経済的に望ましくない。Of course, if V/M is too large, the oxygen in the air will not be fully utilized, which is inappropriate, and it is economically undesirable to use a larger amount of air than necessary.
すなわら、上記(3)式の関係式で示された条件による
炭材の空気による燃焼においては、空気中の酸素により
、すみやかに生成する炭酸ガス、水蒸気が炭材流動層を
通過する時間が短かいため、(1)。In other words, in the combustion of carbonaceous materials with air under the conditions shown in the relational expression (3) above, the time required for carbon dioxide gas and water vapor, which are quickly generated by oxygen in the air, to pass through the carbonaceous fluidized bed. (1) because is short.
(2)式で示した反応の生起する割合がきわめて少なく
、流動層全体としては、炭酸ガスと水蒸気まで完全燃焼
に近い状況で燃焼反応を行なわせることができる。The rate at which the reaction expressed by equation (2) occurs is extremely small, and the fluidized bed as a whole can carry out combustion reactions in conditions close to complete combustion, including carbon dioxide gas and water vapor.
また、その場合の発生熱量が極めて犬であるため、所定
の熱量を熱媒体粒子(こよって還元反応塔に供給するこ
とについては、燃焼反応塔の供給ロアより供給する石炭
、コークスなどの炭材量を少なくてよいし、また全空気
供給量も少なくすることができる。In addition, since the amount of heat generated in this case is extremely small, it is necessary to supply a predetermined amount of heat to the heat carrier particles (thus, the reduction reaction tower is supplied with carbonaceous materials such as coal or coke supplied from the supply lower of the combustion reaction tower). The amount can be reduced, and the total air supply amount can also be reduced.
前述したように(3)式で示した条件外で炭材の空気燃
焼を行なわせると、燃焼反応塔発生ガス中に一酸化炭素
、水素などの未燃ガスが多量に残存するので、還元反応
塔Oこ熱を供給するための熱媒体粒子の加熱に対して有
効でない。As mentioned above, if carbonaceous material is air-combusted under conditions other than the conditions shown in equation (3), a large amount of unburned gas such as carbon monoxide and hydrogen will remain in the gas generated by the combustion reaction tower, so the reduction reaction will be delayed. It is not effective for heating the heat carrier particles for supplying heat to the tower.
なお、燃焼反応塔の下段供給口6より供給される空気量
が、その供給口より上部に充填、流動している炭材量に
ついて(3)式を満足する場合では、上段供給口6′か
らの空気の供給は、必ずしも行なう必要はない。In addition, if the amount of air supplied from the lower supply port 6 of the combustion reaction tower satisfies equation (3) regarding the amount of carbon material filled and flowing above the supply port, then the air amount supplied from the upper supply port 6' It is not necessary to supply air.
実施例
図面に示したような装置によって、本発明の流動化還元
方法の試験を行なった。EXAMPLE A test of the fluidization reduction method of the present invention was conducted using an apparatus as shown in the drawings.
その際の試験条件と試験結果を示す。The test conditions and test results are shown below.
1、還元反応塔 鉄鉱石の銘柄 MBR鉱石 (ご却 65% 品位 O016% 2.4% 粒 径 2關以下 供給量 730kg/hr 石炭の銘柄 ワークワース炭 ↓三、C058% 品位 、M、 36% 石 7% 粒 径 1朋以下 供給量 150 kv/h r 循環ガス供給量 720べ/hr 温度 948°C 組成 H2:86%、H20・: 3%、CO: 2%。1. Reduction reaction tower Iron ore brand MBR ore (Rejected 65% Quality 0016% 2.4% Particle size 2 or less Supply amount 730kg/hr Coal brand Warkworth coal ↓3, C058% Quality, M, 36% Stone 7% Particle size 1 mm or less Supply amount 150 kv/hr Circulating gas supply amount 720be/hr Temperature 948°C Composition H2:86%, H20: 3%, CO: 2%.
CO2:3%。CO2: 3%.
CH4:6% 燃料ガス製造量 93rIVhr 組成 H2ニア5%、CO:16%。CH4: 6% Fuel gas production amount 93rIVhr Composition H2nia 5%, CO: 16%.
C02:4%、 CI−(4: 5%
還元鉄製造量 482 ’q/h r還元率
92.5%
粒径 2mrIL以下
還元反応塔 反応温度933°C
2、燃焼反応塔
石炭の銘柄 ワークワース炭
粒径 1關以下
供給量 182 kg/h r
空気供給量 1781 Nm’/hr上段からの
空気供給量 975 Nrrt/hr上段空気供給口よ
り上部の充填、流動化
炭材の量
0.6t
1625
下段からの空気供給量 806 Nm/h r下段空気
供給口より上段空気供給口下方
における、充填、流動化炭材量 6.6を燃焼反応塔
反応温度 1031℃
なお流動化炭材量は、炉内各高さにおける圧力測定結果
より、流動層層高などを推定し、算出した。C02: 4%, CI-(4: 5% Reduced iron production amount 482'q/hr r reduction rate
92.5% Particle size 2mr IL or less Reduction reaction tower Reaction temperature 933°C 2. Combustion reaction tower Coal brand Warkworth coal particle size 1 or less Supply amount 182 kg/hr r Air supply amount 1781 Nm'/hr From the upper stage Air supply amount 975 Nrrt/hr Filling above the upper stage air supply port, amount of fluidized carbonaceous material 0.6t 1625 Air supply amount from the lower stage 806 Nm/hr r Filling below the upper stage air supply port from the lower stage air supply port , the amount of fluidized carbon material 6.6 is burned in the reaction tower
Reaction temperature: 1031° C. The amount of fluidized carbon material was calculated by estimating the fluidized bed height etc. from the pressure measurement results at each height in the furnace.
なお上記実施例で、下段のみで1781 N771”/
hrの空気供給を行なうと、
V−−1781=270 となり、
M6.に
のために燃焼反応塔の塔頂排ガスは、未燃ガスの一酸化
炭素や水素が多量に残存し、燃焼の効率が良好でない。In the above example, only the lower row has 1781 N771”/
When air is supplied for hr, V--1781=270, and M6. Because of this, a large amount of unburned carbon monoxide and hydrogen remain in the top exhaust gas of the combustion reaction tower, resulting in poor combustion efficiency.
上記実施例に示すごとく、上段の空気供給口6′から9
75 N771”/hrを供給すると、一酸化炭素や水
素などが燃焼して、発熱量が大きく、燃焼の効率が良好
である。As shown in the above embodiment, the upper air supply ports 6' to 9
When 75 N771"/hr is supplied, carbon monoxide, hydrogen, etc. are combusted, the calorific value is large, and the combustion efficiency is good.
本発明の効果を集約すると次のようになる。The effects of the present invention can be summarized as follows.
1)粉状の鉄鉱石を塊成化することなしに使用できるの
で、塊成化のためのエネルギーや原材料が不要であり、
塊成化にともなうNOX、SOXおよびダストの発生が
ない。1) Powdered iron ore can be used without agglomeration, so energy and raw materials for agglomeration are not required.
There is no generation of NOX, SOX, or dust associated with agglomeration.
2)高温熱媒体粒子の製造に空気を使用しているため、
粉鉄鉱石、石炭などの炭材、空気で全システムを構成す
ることが可能であり、立地条件的にきわめて有利な立場
をとることができるとともに、空気を使用しているにも
かかわらず、還元反応塔と燃焼反応塔それぞれの発生ガ
スを別々(こ処理しているため、窒素を含有しない中カ
ロリー燃料ガスを製造できる特徴を持っている。2) Because air is used to manufacture high-temperature heat transfer particles,
It is possible to construct the entire system using powdered iron ore, carbonaceous materials such as coal, and air, which allows us to take an extremely advantageous position in terms of location, and even though air is used, there is no reduction Because the gas generated from the reaction tower and the combustion reaction tower are processed separately, it has the characteristic of producing a medium-calorie fuel gas that does not contain nitrogen.
3)石炭中の硫黄など大気放散されると有害な取分につ
いては、ガス化したとき脱硫され易い硫化水素の形態と
なっており、清浄装置で容易に除くことが出来るため、
大気汚染などの整置が少ない燃料ガスあるいは還元鉄製
造に硫黄など有害成分の少ない循環ガスが製造できる。3) Sulfur in coal, which is harmful when released into the atmosphere, is in the form of hydrogen sulfide, which is easily desulfurized when gasified, and can be easily removed with a purifying device.
It is possible to produce a fuel gas that does not cause air pollution or other problems, or a circulating gas that contains fewer harmful components such as sulfur for reduced iron production.
4)石炭が直接、還元反応に利用できるので、一般の還
元鉄製造法と比較して、還元ガス製造装置が必要でなく
、システム上簡単であり、経済的価値が大きい。4) Since coal can be used directly for the reduction reaction, compared to general reduced iron production methods, there is no need for reducing gas production equipment, the system is simple, and it has great economic value.
5)一般に還元鉄製造プラントは、製造された還元鉄を
溶解精錬するプロセスや造塊・圧延プロセスなどと複合
されたシステムの一部として機能させる事例が圧倒的に
多い。5) In general, reduced iron production plants are overwhelmingly operated as part of a system that combines the process of melting and refining the produced reduced iron, or the ingot making/rolling process.
そのような事例では、還元鉄製造以後の工程において加
熱工程などが必らず含まれている。In such cases, a heating step is necessarily included in the process after producing reduced iron.
そこで、本発明によれば、清浄にされているため使用し
易く、発熱量の高い燃料ガスの製造が還元鉄の製造とと
もに可能であるから、上記システムに対して本発明の利
用価値は大きい。Therefore, according to the present invention, it is easy to use because it is clean, and it is possible to produce a fuel gas with a high calorific value as well as the production of reduced iron, so the present invention has great utility value for the above system.
6)燃焼反応塔では、空気により石炭などの炭材の燃焼
を行なうため、出来るだけ炭酸ガスと水蒸気まで完全燃
焼することが望ましい。6) In the combustion reaction tower, since carbonaceous materials such as coal are combusted with air, it is desirable to completely combust carbon dioxide and water vapor as much as possible.
これに対して本発明は、燃焼反応塔にその上下2段にお
いて空気供給を行なって石炭の燃焼効率を高めるように
するのであって、これにより還元反応塔への必要な供給
熱量に対する石炭、空気の原単位を低くすることができ
る。In contrast, the present invention improves the combustion efficiency of coal by supplying air to the combustion reaction tower in two stages, the upper and lower stages. It is possible to lower the unit consumption.
図面は、本発明の方法を実施するために使用する流動化
還元装置の1例を示す縦断面及び上記還元装置で発生す
るガスの利用方式を示す概略図である。
1・・・・・・還元反応塔、2・・・・・・燃焼反応塔
、3・・−・・鉄鉱石供給口、4・・・・・・石炭供給
口、5・・・・・・循環ガス供給口、6.6’・・・・
・・空気供給口、7・・・・・・石炭供給口、8・・・
・・・還元鉄排出口、9.10・・・・・・連絡管、1
1・・・・・・燃焼残渣排出口、12・・・・・・還元
反応塔発生ガス排出口、13・・・・・・燃焼反応塔排
ガス排出口、14・・・・・・ガス清浄器、15・・・
・・・冷却清浄器、16・・・・・・ガス昇圧機、17
・・・・・・シフトコンバータ、18・・・・・・脱水
、脱炭酸ガス装置、19・・・・・・循環ガス加熱器、
20・・・・・・ガス変成器、21・・・・・・排ガス
処理装置、22・・・・・・煙突。The drawings are a longitudinal section showing an example of a fluidization reduction device used to carry out the method of the present invention, and a schematic diagram showing a method of utilizing the gas generated in the reduction device. 1... Reduction reaction tower, 2... Combustion reaction tower, 3... Iron ore supply port, 4... Coal supply port, 5...・Circulating gas supply port, 6.6'...
...Air supply port, 7...Coal supply port, 8...
...Reduced iron outlet, 9.10...Connection pipe, 1
1... Combustion residue outlet, 12... Reduction reaction tower generated gas outlet, 13... Combustion reaction tower exhaust gas outlet, 14... Gas cleaning Vessel, 15...
... Cooling purifier, 16 ... Gas booster, 17
......Shift converter, 18...Dehydration, decarbonation gas device, 19...Circulating gas heater,
20...Gas converter, 21...Exhaust gas treatment device, 22...Chimney.
Claims (1)
とを供給する一方、燃焼反応塔には石炭、コークスなど
の炭材及び空気、必要に応じて更に水蒸気を供給して炭
材を燃焼させて炭材からなる熱媒体粒子を生成させ、こ
の熱媒体粒子を還元反応塔と燃焼反応塔との間に設けた
連絡管を介して、両反応塔に循環させることにより、還
元反応塔内で鉄鉱石の流動化還元を行なう方法において
、燃焼反応塔に上記空気を供給するに当って、燃焼反応
塔に上下2段の空気供給口を設け、上段の供給口からの
空気の供給量(Nm’/hr)を下段の供給口からの空
気供給量(Nm’/hr)と等置板上とし、かつ上段の
供給口の水準面より上方に充填され、流動している石炭
、コークスなどの炭材重量(1)との間で、V/M≧1
280(ただし、■は上段の供給口への空気供給量(N
m’/hr)であり、Mは上記の炭材重量(1)である
。 〕を満足させるように、燃焼反応塔に空気を供給するこ
とを特徴とする、熱媒体粒子及び還元ガスの循環並びに
石炭及び空気を使用する、鉄鉱石の流動化還元方法。[Claims] 1. Iron ore, coal, and heated circulating gas are supplied to the reduction reaction tower, while coal, carbonaceous materials such as coke, air, and, if necessary, steam are supplied to the combustion reaction tower. combust the carbonaceous material to generate heat carrier particles made of the carbonaceous material, and circulate these heat carrier particles to both reaction towers via a connecting pipe provided between the reduction reaction tower and the combustion reaction tower. In the method of fluidizing reduction of iron ore in a reduction reaction tower, in order to supply the above-mentioned air to the combustion reaction tower, two stages of upper and lower air supply ports are provided in the combustion reaction tower, and air is supplied from the upper stage supply port. The air supply amount (Nm'/hr) is placed on the plate equidistantly with the air supply amount (Nm'/hr) from the lower supply port, and the air is filled above the level of the upper supply port and flows. V/M≧1 between the weight of carbonaceous materials such as coal and coke (1)
280 (However, ■ is the amount of air supplied to the upper supply port (N
m'/hr), and M is the above carbon material weight (1). ] A method for fluidizing and reducing iron ore using circulation of heat carrier particles and reducing gas, coal and air, characterized in that air is supplied to a combustion reaction column so as to satisfy the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7060381A JPS5850292B2 (en) | 1981-05-13 | 1981-05-13 | Fluidization reduction method for iron ore using circulation of heat carrier particles and reducing gas, coal and air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7060381A JPS5850292B2 (en) | 1981-05-13 | 1981-05-13 | Fluidization reduction method for iron ore using circulation of heat carrier particles and reducing gas, coal and air |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57185915A JPS57185915A (en) | 1982-11-16 |
JPS5850292B2 true JPS5850292B2 (en) | 1983-11-09 |
Family
ID=13436307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7060381A Expired JPS5850292B2 (en) | 1981-05-13 | 1981-05-13 | Fluidization reduction method for iron ore using circulation of heat carrier particles and reducing gas, coal and air |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5850292B2 (en) |
-
1981
- 1981-05-13 JP JP7060381A patent/JPS5850292B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS57185915A (en) | 1982-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11193074B2 (en) | All-steam gasification with carbon capture | |
US7083658B2 (en) | Hot solids gasifier with CO2 removal and hydrogen production | |
JP2004534903A (en) | How to create clean energy from coal | |
US11193073B2 (en) | All-steam gasification for supercritical CO2 cycle system | |
SE436760B (en) | PROCEDURE FOR DIRECT REDUCTION OF IRON OXIDE WITH THE REDUCING GAS | |
RU2678862C2 (en) | Process and apparatus for chemical looping redox combustion with control of heat exchange | |
RU2012107293A (en) | METHOD OF RESTORING BASED ON REFORMING GAS WITH REDUCED NOX EMISSIONS | |
AU593286B2 (en) | Process and apparatus for producing a hydrogen-containing gas | |
KR20000015802A (en) | Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system | |
CN101155753B (en) | Combustion device that produces hydrogen with re-use of captured Co2 | |
US20220073828A1 (en) | All-Steam Gasification with Solid Fuel Preparation System | |
CN103509605B (en) | Method and device using high temperature air and high temperature steam as gasification agents for coal gas production | |
JP2011026489A (en) | Pyrolysis furnace in circulating fluidized bed gasification system and temperature control system of gasification furnace | |
CN103525465B (en) | Coal gas production method and device using high-temperature rich oxygen and high temperature steam as gasification agent | |
JP2014074144A (en) | Co-gasification method of coal and biomass by three bed type circulation layer and its device | |
JPH05523B2 (en) | ||
CN203530252U (en) | Coal gas production device using high-temperature rich oxygen and high-temperature steam as gasifying agents | |
CN207193218U (en) | A kind of biomass char vaporizing system for synthesis gas system | |
JPS5850292B2 (en) | Fluidization reduction method for iron ore using circulation of heat carrier particles and reducing gas, coal and air | |
CN103484180A (en) | Technology for preparing natural gas through self-heating catalytic gasification of fire coal, and system thereof | |
KR20150109413A (en) | Method and apparatus for sequestering carbon dioxide from a spent gas | |
NO844802L (en) | PROCEDURE AND DEVICE FOR REDUCTION OF OXYDE MATERIAL | |
JPS5919965B2 (en) | Fluid reduction method for iron ore that simultaneously produces reduced iron and fuel gas | |
JP2986901B2 (en) | Working fluid supply method and combustion equipment | |
JP3576330B2 (en) | CaS oxidation / char combustion device |