JPS5850277B2 - chikunetzai - Google Patents

chikunetzai

Info

Publication number
JPS5850277B2
JPS5850277B2 JP5282475A JP5282475A JPS5850277B2 JP S5850277 B2 JPS5850277 B2 JP S5850277B2 JP 5282475 A JP5282475 A JP 5282475A JP 5282475 A JP5282475 A JP 5282475A JP S5850277 B2 JPS5850277 B2 JP S5850277B2
Authority
JP
Japan
Prior art keywords
mol
composition ratio
hexahydrate
magnesium chloride
lithium nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5282475A
Other languages
Japanese (ja)
Other versions
JPS51128053A (en
Inventor
潤二郎 甲斐
勝俊 武藤
寛 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5282475A priority Critical patent/JPS5850277B2/en
Publication of JPS51128053A publication Critical patent/JPS51128053A/en
Publication of JPS5850277B2 publication Critical patent/JPS5850277B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は冷房用蓄熱材として実用価値ある組成物に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composition that has practical value as a heat storage material for air conditioning.

従来より種々な冷房用蓄熱材が知られ、且つ、用いられ
ているが、例えばテトラデカン(C14H301融点5
℃)などのパラフィン類は熱伝導度が低いのでヒートポ
ンプを用いて蓄熱する場合の成績係数は予想されたほど
実質的には向上しないし、結晶水をもった無機化合物の
混合系の蓄熱材である塩化カルシウム6水塩(CaCl
2・6H20)50モル%と臭化カルシウム6水塩(C
aBr2・6H20)50モル%からなるものなどは融
点が15℃附近と比較的高いため、その用途はある程度
のものに限定される。
Various heat storage materials for cooling have been known and used in the past, but for example, tetradecane (C14H301 melting point 5
Since paraffins such as (℃) have low thermal conductivity, the coefficient of performance when storing heat using a heat pump does not improve as much as expected, and it is difficult to use a heat storage material that is a mixture of inorganic compounds with water of crystallization. Certain calcium chloride hexahydrate (CaCl
2.6H20) 50 mol% and calcium bromide hexahydrate (C
A substance containing 50 mol% of aBr2.6H20) has a relatively high melting point of around 15°C, so its use is limited to a certain extent.

また、融点が12.8℃とされている硫酸ナトリウム1
0水塩(Na S Qll 0 H20)50モル%、
塩化アンモニウム(NH4Ct)25モル%および塩化
ナトリウム(NaCt)25モル%よりなる三元系は融
解熱が43 catAfであるが融点が包晶反応点であ
り、融解に際して不溶性の硫酸ナトリウムを生成し固化
時に包晶反応が完了しないために熱サイクルを繰り返す
と不溶分が器底に沈殿し、蓄熱材としての能力が大幅に
減少することが避けられず、精々数ミリメートル程度の
薄い蓄熱槽しか使用することができないなど、いずれも
十分といえるものはないのが実情であった。
In addition, sodium sulfate 1 whose melting point is 12.8°C
0 hydrate salt (Na S Qll 0 H20) 50 mol%,
A ternary system consisting of 25 mol% ammonium chloride (NH4Ct) and 25 mol% sodium chloride (NaCt) has a heat of fusion of 43 catAf, but its melting point is the peritectic reaction point, and upon melting, it produces insoluble sodium sulfate and solidifies. Sometimes, when the peritectic reaction is not completed and the heat cycle is repeated, insoluble matter settles to the bottom of the vessel, and its ability as a heat storage material is inevitably reduced significantly, so only a thin heat storage tank of a few millimeters is used at most. The reality was that none of them could be said to be sufficient.

本発明はこのような従来品の欠点を克服すべく研究の結
果到達したものであって、すなわち硝酸リチウム3水塩
(L 1Nos・3H20)と塩化マグネシウム6水塩
(M@C4・6H20)からなる二元系あるいは硝酸リ
チウム3水塩と臭化マグネシウム6水塩(MyBr2・
6H20)からなる二元系のものが10℃附近に調和融
点を有し、しかも融解熱が大きく冷房用蓄熱材として最
適な混合物を生じることが見いだされたのである。
The present invention was achieved as a result of research in order to overcome the drawbacks of conventional products. A binary system or lithium nitrate trihydrate and magnesium bromide hexahydrate (MyBr2.
It was discovered that a binary system consisting of 6H20) has a harmonic melting point around 10° C. and has a large heat of fusion, producing an optimal mixture as a heat storage material for air conditioning.

もちろん、塩化マグネシウム6水塩と臭化マグネシウム
6水塩とは類似物質であり、両者の混合モル比を任意に
変え、硝酸リチウム3水塩−塩化マグネシウム6水塩臭
化マグネシウム6水塩の三元混合系としても利用可能で
ある。
Of course, magnesium chloride hexahydrate and magnesium bromide hexahydrate are similar substances, and the mixing molar ratio of the two can be arbitrarily changed to create a mixture of lithium nitrate trihydrate - magnesium chloride hexahydrate and magnesium bromide hexahydrate. It can also be used as an original mixed system.

* 下記の表に硝酸リチウム3水塩−塩化マグネシウム
6水塩系混合物の主な物理的性質を示す。
* The table below shows the main physical properties of the lithium nitrate trihydrate-magnesium chloride hexahydrate mixture.

なお、上表中の試料番号を附した組成のものは添付図面
に示す擬三元系相図中で同一番号を用いて示し、以下の
表においても同様とする。
In addition, compositions with sample numbers in the above table are indicated using the same numbers in the pseudo-ternary system phase diagram shown in the attached drawings, and the same applies to the following tables.

そして、添付図面において横軸Iに硝酸リチウム3水塩
のモル%数、横軸■に塩化マグネシウム6水塩のモル%
数および横軸■に臭化マグネシウム6水塩のモル%数を
とり、アラビヤ数字を附した丸印は上記表1および下出
表2、表3における対応する試料番号のものの組成点を
示すものとする。
In the attached drawings, the horizontal axis I is the mol% number of lithium nitrate trihydrate, and the horizontal axis ■ is the mol% number of magnesium chloride hexahydrate.
The mol% number of magnesium bromide hexahydrate is taken on the number and horizontal axis ■, and the circles with Arabic numerals indicate the composition points of the corresponding sample numbers in Table 1 above and Tables 2 and 3 below. shall be.

また、添付図面中で(1:1)および(1:3)と記し
た2本の実線は塩化マグネシウム6水塩と臭化マグネシ
ウム6水塩の組成モル比を表わし、その線分上ではいず
れの場所でも同一モル比が保たれていることを示す。
In addition, the two solid lines marked (1:1) and (1:3) in the attached drawings represent the compositional molar ratio of magnesium chloride hexahydrate and magnesium bromide hexahydrate, and any line on the line segment This shows that the same molar ratio is maintained even at the location.

点線に囲まれた斜線てい影領域が本発明の組成比のもの
を示している。
The diagonally shaded area surrounded by dotted lines indicates the composition ratio of the present invention.

上記表1に示されるように塩化マグネシウム6水塩を1
1.1モル%含む組成物のものは高温相が20℃以上の
融点をもつ上に高温相が優勢であるオところから冷房用
には不適当であるが、塩化マグネシウム6水塩を16.
7モル%含むものは高温相を生ずるものの、その融点が
13〜16℃でかつ低温相が優勢となって冷房用蓄熱材
に適したものとなった。
As shown in Table 1 above, magnesium chloride hexahydrate was added to
A composition containing 1.1 mol% of magnesium chloride hexahydrate is unsuitable for cooling because the high-temperature phase has a melting point of 20°C or higher and the high-temperature phase is predominant.
Although the material containing 7 mol % produced a high temperature phase, its melting point was 13 to 16°C and the low temperature phase was predominant, making it suitable for a heat storage material for air conditioning.

また33.3モル%含むものは塩化マグネシウム6水塩
に富む別の高温相が優勢で融解熱も非常に小さく、これ
又実用には適さない。
Further, in the case containing 33.3 mol%, another high-temperature phase rich in magnesium chloride hexahydrate predominates and the heat of fusion is very small, which is also not suitable for practical use.

従って、塩化マグネシウム6水塩含量にして14モル%
から27モル%以内の混合物が実用に適したものといえ
る。
Therefore, the magnesium chloride hexahydrate content is 14 mol%.
It can be said that a mixture having a content of 27 mol % or less is suitable for practical use.

塩化マグネシウム6水塩を16.7モル%含む混合物液
体の比重は1.41 ? /ccであるので融解熱は単
位体積当り59.1 cal/cc以上となり、また2
2.2モル%含むものの液体比重は1、41 ?/cc
であるので単位体積当りの融解熱は48、9 cat/
cc以上となる。
The specific gravity of a liquid mixture containing 16.7 mol% of magnesium chloride hexahydrate is 1.41? /cc, so the heat of fusion is 59.1 cal/cc or more per unit volume, and 2
The liquid specific gravity of something containing 2.2 mol% is 1.41? /cc
Therefore, the heat of fusion per unit volume is 48.9 cat/
cc or more.

次の表で硝酸リチウム3水塩−臭化マグネシウム6水塩
系混合物の主な物理的性質を示す。
The following table shows the main physical properties of the lithium nitrate trihydrate-magnesium bromide hexahydrate mixture.

臭化マグネシウム6水塩の濃度が10モル%以下では高
温相の融点が20℃を超えるので冷房用には不適当であ
るが、11.1モル%のものは高温相の融点は20℃以
下でかつ低温相が優勢であって、冷房用蓄熱材として使
用可能であった。
If the concentration of magnesium bromide hexahydrate is less than 10 mol%, the melting point of the high temperature phase will exceed 20°C, making it unsuitable for cooling, but if the concentration is 11.1 mol%, the melting point of the high temperature phase will be 20°C or less. The material was large and had a predominant low-temperature phase, so it could be used as a heat storage material for air conditioning.

また27モル%以上含むものは臭化マグネシウム6水塩
に富む別の高温相があられれる上に融解熱が20cat
/f以下となり、これ又実用的ではない。
Also, if it contains 27 mol% or more, another high-temperature phase rich in magnesium bromide hexahydrate is formed, and the heat of fusion is 20 cat.
/f or less, which is also not practical.

従って実用的なのは臭化マグネシウム6水塩の濃度にし
て10モル%から27モル%までの間の混合物に限られ
ることが明らかとなった。
Therefore, it has become clear that mixtures having a concentration of magnesium bromide hexahydrate between 10 mol% and 27 mol% are practical.

また、混合物液体の密度は臭化マグネシウム6水塩の濃
度がそれぞれ11.1 、16.7および22.2モル
%のものについてそれぞれ1.46 、1.51および
1.53☆☆P/ccであるので、単位体積当りの融解
熱はそれぞれ60.9,57.4および43.0 ca
l/cc以上となり、前述の硝酸リチウム3水塩−塩化
マグネシウム6水塩系混合物とほぼ同じであることが判
明した。
The densities of the liquid mixtures are 1.46, 1.51 and 1.53☆☆P/cc for magnesium bromide hexahydrate concentrations of 11.1, 16.7 and 22.2 mol%, respectively. Therefore, the heat of fusion per unit volume is 60.9, 57.4, and 43.0 ca, respectively.
l/cc or higher, which was found to be almost the same as the aforementioned lithium nitrate trihydrate-magnesium chloride hexahydrate mixture.

次に硝酸リチウム3水塩に塩化マグネシウム6水塩と臭
化マグネシウム6水塩を同時に混合した一例を表3とし
て示す。
Next, Table 3 shows an example in which lithium nitrate trihydrate was mixed with magnesium chloride hexahydrate and magnesium bromide hexahydrate at the same time.

すなわち、上表より硝酸リチウム3水塩に塩化マグネシ
ウム6水塩と臭化マグネシウム6水塩とを同時に混合す
ることにより低温相の融点が6℃附近まで低下するが融
解熱はほとんど減少せず、前出の硝酸リチウム3水塩−
塩化マグネシウム6水塩系あるいは硝酸リチウム3水塩
−臭化マグネシウム6水塩系のものに比して冷房用蓄熱
材として好ましい性質の改善がみられる上に過冷却も破
れやすくなるなどの多くの優れた特徴を有することが示
される。
That is, from the table above, by simultaneously mixing magnesium chloride hexahydrate and magnesium bromide hexahydrate with lithium nitrate trihydrate, the melting point of the low temperature phase decreases to around 6°C, but the heat of fusion hardly decreases. Lithium nitrate trihydrate mentioned above -
Compared to magnesium chloride hexahydrate-based or lithium nitrate trihydrate-magnesium bromide hexahydrate-based materials, it has improved properties suitable for use as a heat storage material for air conditioners, and also has many problems such as being less susceptible to supercooling and breaking. It is shown that it has excellent characteristics.

ただし、上記表3中の試料番号10は15.3〜20℃
に融点をもつ高温相が認められたものの、低温和が優勢
であって実用可能であるが、13および16の組成物は
臭化マグネシウム6水塩分に富む別の高温和が室温にお
いて晶出するもので実用化に不適である。
However, sample number 10 in Table 3 above is 15.3-20℃
Although a high-temperature phase with a melting point of It is unsuitable for practical use.

以下に実施例を述べる。Examples will be described below.

実施例 1 硝酸リチウム3水塩の430.5A−9に塩化マグネシ
ウム6水塩を203.3にりすなわち塩化マグネシウム
6水塩含量に換算して22.2モル%に混合し、過冷却
防止材として0.1重量%の氷晶石(Na5AI F6
)を加えて融解した後蓄熱槽に入れる。
Example 1 Magnesium chloride hexahydrate was mixed with 430.5A-9 of lithium nitrate trihydrate to 203.3%, that is, 22.2 mol% in terms of magnesium chloride hexahydrate content, to form a supercooling prevention material. as 0.1% by weight of cryolite (Na5AI F6
) and melt it, then put it in a heat storage tank.

実施例 2 硝酸リチウム3水塩615A−9に臭化マグネシウム6
水塩を292.2kqすなわち臭化マグネシウム6水塩
含量に換算して16.7モル%に混合したものを蓄熱材
として使用する。
Example 2 Magnesium bromide 6 in lithium nitrate trihydrate 615A-9
A mixture of 292.2 kq of aqueous salt, that is, 16.7 mol % in terms of magnesium bromide hexahydrate content, is used as a heat storage material.

実施例 3 硝酸リチウム3水塩1045.5Ayに塩化マグネシウ
ム6水塩を203.3kfおよび臭化マグネシウム6水
塩を292.2Ayの割合すなわち硝酸リチウム3水塩
を81.0モル%および塩化マグネシウム6水塩と臭化
マグネシウム6水塩とをそれぞれ共に9,5モル%の比
に混合し融解した後蓄熱槽に入れる。
Example 3 The ratio of 203.3 kf of magnesium chloride hexahydrate and 292.2 Ay of magnesium bromide hexahydrate to 1045.5 Ay of lithium nitrate trihydrate, that is, 81.0 mol% of lithium nitrate trihydrate and 6 mol% of magnesium chloride Water salt and magnesium bromide hexahydrate were mixed together at a ratio of 9.5 mol %, melted, and then placed in a heat storage tank.

実施例 4 硝酸リチウム3水塩172.2A−9に塩化マグネシウ
ム6水塩を20.3に9および臭化マグネシウム6水塩
を87.7 kgの割合すなわち硝酸リチウム3水塩:
塩化マグネシウム6水塩:臭化マグネシウム6水塩を7
7.7 : 5.6 : 16.7モル%の割合で混合
、融解した後蓄熱槽に入れる。
Example 4 Ratio of lithium nitrate trihydrate 172.2A-9, magnesium chloride hexahydrate 20.3 to 9 and magnesium bromide hexahydrate 87.7 kg, that is, lithium nitrate trihydrate:
Magnesium chloride hexahydrate: Magnesium bromide hexahydrate
After mixing and melting at a ratio of 7.7: 5.6: 16.7 mol%, the mixture is placed in a heat storage tank.

【図面の簡単な説明】[Brief explanation of drawings]

図面は硝酸リチウム3水塩−塩化マグネシウム6水塩−
臭化マグネシウム6水塩よりなる擬三元系相図の平面図
を表わす。 IはL 1NO3・3H20−M3H2O−・6H20
の組成比を表わす軸で、軸上の数字はL i NOa・
3H20のモル%数を示す。 ■はMgCl2・6H2o−Mgct2〜MgBr2・
6H20の組成比を表わす軸で、軸上の数字はMgCl
2・6H2oのモル数を示す。 ■はMgBr2 ’6H20−LtNO3”3H20ノ
組成比を表わす軸で、軸上の数字はMg B r 2・
6H2oのモ)L/%数ヲ示ス。 A・・・・・・LiNO3・3H2086モル%テMf
Ct2・6H2014モル%の組成比の点。 B・・・・・・L 1NOs・3H2073モル%でM
、C4・6H2027モル□の組成比の点。 C・・・・・・L I NOs・3H2073モル%で
MyBr2j 6H2027モ7L/%の組成比の点。 D””・・LiNO3’3H2090モiv%でMyB
r2・6H2010モル%の組成比の点。 なお、図面中1〜16の数字を付した○印はそれぞれの
試料番号の組成物を示す。
The drawing shows lithium nitrate trihydrate - magnesium chloride hexahydrate -
1 shows a plan view of a pseudo-ternary system phase diagram made of magnesium bromide hexahydrate. I is L 1NO3・3H20−M3H2O−・6H20
The axis represents the composition ratio of L i NOa・
The number of mole % of 3H20 is shown. ■ is MgCl2・6H2o-Mgct2~MgBr2・
The axis represents the composition ratio of 6H20, and the numbers on the axis are MgCl
Shows the number of moles of 2.6H2o. ■ is the axis representing the composition ratio of MgBr2'6H20-LtNO3''3H20, and the numbers on the axis are MgBr2'6H20-LtNO3''3H20.
6H2o) Shows the L/% number. A...LiNO3.3H2086 mol%teMf
Regarding the composition ratio of Ct2.6H2014 mol%. B・・・・・・L 1NOs・3H2073 mol% M
, the point of the composition ratio of C4.6H2027 mol□. C...L I NOs.3H2073 mol% and MyBr2j 6H2027 mo7L/% composition ratio point. D""...MyB at LiNO3'3H2090moiv%
Regarding the composition ratio of r2.6H2010 mol%. Note that in the drawings, the circles with numbers 1 to 16 indicate the compositions of the respective sample numbers.

Claims (1)

【特許請求の範囲】[Claims] 1 硝酸リチウム3水塩(LiNO2・3H20)を主
成分とし、これに塩化マグネシウム6水塩(M、C12
・6H20)および/または臭化マグネシウム6水塩(
MyBr2・6H20)を混合してなる組成物において
、二次元系相の場合はMfC12・6H20の含量が1
4〜27モル%またはM1Br2・6H20の含量が1
0〜27モル%の組成比よりなり、そして、三元系相の
場合は添付図面の擬三元系相図を参照して、■軸上のL
iNO2・3H2086モル%でM、Ct2・6H20
14モル%の組成比を示すA点とLiNO2・3H20
73モル%でMfIC12・6H2027モル%の組成
比を示すB点および■軸上のLiNO2・3H2073
モル□でM、?B r 2・6H2027モル%の組成
比を示すC点とLiNO2・3H2090モル%でMf
IB r2 a6H2010モル%の組成比を示すD点
の4点を順次結んでなる不等辺四角形で表示される領域
内の組成比よりなることを特徴とする蓄熱材。
1 Lithium nitrate trihydrate (LiNO2.3H20) is the main component, and magnesium chloride hexahydrate (M, C12
・6H20) and/or magnesium bromide hexahydrate (
In a composition formed by mixing MyBr2.6H20), in the case of a two-dimensional phase, the content of MfC12.6H20 is 1.
4 to 27 mol% or the content of M1Br2.6H20 is 1
The composition ratio is 0 to 27 mol%, and in the case of a ternary phase, with reference to the pseudo-ternary phase diagram in the attached drawing,
iNO2・3H2086 mol% M, Ct2・6H20
Point A and LiNO2.3H20 showing a composition ratio of 14 mol%
LiNO2.3H2073 on the B point and ■ axis showing a composition ratio of 73 mol% and MfIC12.6H2027 mol%
M in mole □? Point C showing the composition ratio of B r 2.6H2027 mol% and Mf at 90 mol% of LiNO2.3H2
A heat storage material characterized by having a composition ratio within a region represented by a trapezoid formed by sequentially connecting four points D indicating a composition ratio of IB r2 a6H2010 mol%.
JP5282475A 1975-04-30 1975-04-30 chikunetzai Expired JPS5850277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5282475A JPS5850277B2 (en) 1975-04-30 1975-04-30 chikunetzai

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5282475A JPS5850277B2 (en) 1975-04-30 1975-04-30 chikunetzai

Publications (2)

Publication Number Publication Date
JPS51128053A JPS51128053A (en) 1976-11-08
JPS5850277B2 true JPS5850277B2 (en) 1983-11-09

Family

ID=12925590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5282475A Expired JPS5850277B2 (en) 1975-04-30 1975-04-30 chikunetzai

Country Status (1)

Country Link
JP (1) JPS5850277B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916477A (en) * 1996-10-29 1999-06-29 Mitsubishi Chemical Corporation Heat storage/heat radiation method
WO2024106296A1 (en) * 2022-11-16 2024-05-23 株式会社カネカ Cold storage material composition and use thereof

Also Published As

Publication number Publication date
JPS51128053A (en) 1976-11-08

Similar Documents

Publication Publication Date Title
JPH0225947B2 (en)
RU2104291C1 (en) Heat-retaining mixture for storage and utilization of heat of phase transformation and method of its production
Kimura et al. Mixtures of calcium chloride hexahydrate with some salt hydrates or anhydrous salts as latent heat storage materials
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
CN106318330A (en) Preparation method of phase-change energy storage material and phase-change energy storage material
JPS6324555B2 (en)
JPS5966480A (en) Reversible phase converting composition between calcium chl-oride hexahydrate and potassium salt
Berchiesi et al. Supercooling phenomena in binary mixtures of acetamide and inorganic salts
JPS5850277B2 (en) chikunetzai
US4540502A (en) Heat storage material
JP2003041242A (en) Mixed cold reserving agent
ES8607047A1 (en) Reversible phase change composition for storing energy.
EP0141550A1 (en) Heat storage composition
JPS59109578A (en) Heat storage material
ES2213769T3 (en) REVERSIBLE COMPOSITIONS OF CHANGE OF HYDRATIONED MAGNESIUM CHLORIDE PHASE TO STORE ENERGY.
SE410004B (en) SEE BY REPEATED MELTING AND CRYSTALIZATION OF A SYSTEM BASED ON CACLŸ2-6HŸ2O
Campbell et al. THE SYSTEM LITHIUM CHLORATE–LITHIUM CHLORIDE–WATER AT VARIOUS TEMPERATURES
JPS6251311B2 (en)
JPH0237957B2 (en)
JP4100590B2 (en) Latent heat storage material composition and heat storage method
JPS6151079A (en) Thermal energy storage material
JPH0292987A (en) Cold-storing material composition
JPH0261995B2 (en)
JPS59109577A (en) Heat storage material
JPS6035076A (en) Reversible phase transfer composition of calcium chloride hexahydrate and potassium chloride