JPS58501372A - Method for bonding semiconductor devices and semiconductor die to ceramic bases - Google Patents

Method for bonding semiconductor devices and semiconductor die to ceramic bases

Info

Publication number
JPS58501372A
JPS58501372A JP57502545A JP50254582A JPS58501372A JP S58501372 A JPS58501372 A JP S58501372A JP 57502545 A JP57502545 A JP 57502545A JP 50254582 A JP50254582 A JP 50254582A JP S58501372 A JPS58501372 A JP S58501372A
Authority
JP
Japan
Prior art keywords
glass
foil
die
base
yield strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57502545A
Other languages
Japanese (ja)
Other versions
JPH0340939B2 (en
Inventor
デービス,アール ケー
ドライ,ジエイムズ イー
リード,デピツド エル
Original Assignee
モトロ−ラ・インコ−ポレ−テツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by モトロ−ラ・インコ−ポレ−テツド filed Critical モトロ−ラ・インコ−ポレ−テツド
Publication of JPS58501372A publication Critical patent/JPS58501372A/en
Publication of JPH0340939B2 publication Critical patent/JPH0340939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • C03C8/245Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders containing more than 50% lead oxide, by weight
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/025Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of glass or ceramic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8389Bonding techniques using an inorganic non metallic glass type adhesive, e.g. solder glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Glass Compositions (AREA)
  • Die Bonding (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 改良されたガラス接着材料および方法 発明の背景 発明の分野 本発明は、一般的にはパッケージ内の電気デバイスを取シ付けるための装置、方 法および材料に関するものであυ、更に具体的に云うと半導体ダイをセラミック ベース(base)に接着させる(bond)ための改良されたガラス組成、方 法および構造、およびこれらの材料。[Detailed description of the invention] Improved glass bonding materials and methods Background of the invention field of invention The present invention generally relates to an apparatus and method for mounting an electrical device in a package. It concerns methods and materials υ, and more specifically, converting semiconductor dies to ceramics. Improved glass compositions and methods for bonding to bases laws and structures, and their materials.

方法構造を利用した改良された半導体デバイスに関する。The present invention relates to an improved semiconductor device utilizing the method structure.

先行技術の説明 金属、セラミックスおよびガラスは、半導体ダイなどの電気デバイスを保護外被 内に包装するのに一般に用いられている。この半導体ダイは例えばダイオード。Description of prior art Metals, ceramics, and glasses provide protective envelopes for electrical devices such as semiconductor dies. It is commonly used for packaging inside. This semiconductor die is, for example, a diode.

抵抗又はトランジスタなどの個々の素子、又はそのような素子の集合体のことも あり、又は何方又は何千という素子を含む集積回路であることもある。パッケー ジ又は保護外被は1個又はそれ以上の半導体ダイを含むことができ、2本乃至1 00本又はそれ以上の外部電気導線を有することもある。Also refers to individual elements such as resistors or transistors, or aggregates of such elements. It may be an integrated circuit containing several or even thousands of elements. package The die or protective envelope may contain one or more semiconductor die, and may contain between two and one die. It may have 00 or more external electrical conductors.

セルディップ(cardip)パッケージは、 今日産業界で広く用いられてい る半導体デバイスパッケージの−般的な形式である。代表的な場合にはセルディ ップは半導体ダイか接着しているアルミナセラミックベース、同じくセラミック ベースに接着している外部接触用リードフレーム、リードフレームをダイに結合 させる相互接続部、およびダイと相互接続部の上の保護蓋(Aid)を含む。半 導体ダイをパッケージベースに接着させるのに用いられる代表的手段は有機層( 例えば金属又はガラス混入(loaded)エポキシ樹脂)、ガラス層(低温接 着および/又は封止ガラス)、又は金属(例えば半導体ダイに蒸着され、セラミ ックベース上でスクリーニングされ、燃焼され、次に一緒に合金にされてダイを ベースに固定する金属層)である。熱又は熱と圧力が接着部を形成する一般的な 手段である。時にはこの接着部は、°洗浄(scrubbed) ”される。即 ち、接着期間中にダイをベースと接触させて横方向に左右に動かし、よシ均質な 接着領域を作る。Cell dip packages are widely used in industry today. This is a common type of semiconductor device package. In typical cases, Seldi The chip is an alumina ceramic base to which the semiconductor die is bonded; External contact lead frame glued to the base, bonding the lead frame to the die and a protective lid (Aid) over the die and interconnects. half The typical means used to attach a conductor die to a package base is an organic layer ( e.g. metal or glass loaded epoxy resin), glass layer (low temperature contact). metal (e.g. deposited on semiconductor die, ceramic The die is screened on the base, burned, and then alloyed together to form the die. (metal layer that fixes it to the base). Common methods where heat or heat and pressure form a bond It is a means. Sometimes this bond is "scrubbed". During the bonding period, the die is brought into contact with the base and moved laterally from side to side to create a more homogeneous Create a bonding area.

ダイとベースとの間の接着領域の物理的特性が極めて重要である。という訳は、 それらの特性は、ダイのうちの熱発生場所と熱を取り出すパッケージベース外面 との間の熱インピーダンスを決定する上での重要な因子(factor)である からである。金属層接着は、伝導率の高い材料を用いているので、一般に熱イン ピーダンスは低くなる。しかし、金属接着層は高価な材料を用いており、作り方 もより複雑である。従って、それらの層を用いたデバイスは一層高価になる。ガ ラス接着層は金属接着層よシ安価であるが、より高い熱インピーダンスを示す。The physical properties of the adhesive area between the die and the base are extremely important. That means, Their characteristics depend on where the heat is generated within the die and on the outside of the package base, where the heat is extracted. is an important factor in determining the thermal impedance between It is from. Metal layer bonding uses materials with high conductivity, so it generally has low heat input. pedance becomes low. However, the metal adhesive layer uses expensive materials and is difficult to make. is also more complex. Therefore, devices using those layers become more expensive. Ga Lath adhesive layers are less expensive than metal adhesive layers, but exhibit higher thermal impedance.

有機養液着層はそれよりも更に高い熱インピーダンスを示す。An organic nutrient deposit layer exhibits an even higher thermal impedance.

金共晶(eutectie)金属層接着物で16ピンセルデイツプパツケージベ ースに接着したーX図ミル(1,6X 1.6rnm) のシリコン半導体ダイ について測定したところ、接合−ケース熱インピーダンスθJCは約加℃/ワッ トであった。金共晶接着部は約2ミル(厚さ51μm)であった。先行技術の厚 さ2〜3ミル(51−76grn )のガラス層接着部で接着した同じチップお よびベースに対するθJCは30−40℃/ワット又はそれ以上であった。日本 1京都の京セラが製造し市販している接着/封止ガラスDIP−3型を用いた。16 pin cell dip package base with gold eutectic metal layer adhesive. -X diagram mill (1.6X 1.6rnm) silicon semiconductor die glued to the base The junction-to-case thermal impedance θJC was measured to be approximately It was. The gold eutectic bond was approximately 2 mils (51 μm thick). Prior art thickness The same chip or chips bonded with a 2-3 mil (51-76 grn) glass layer adhesive. and θJC relative to base was 30-40°C/Watt or higher. Japan 1. Adhesive/sealing glass DIP-3 type manufactured by Kyocera of Kyoto and commercially available was used.

先行技術のガラス層を更に薄くして、ガラス層に接着したダイ−パッケージの組 合せの熱インピーダンスを低くしようとする試みは不成功に終っている。シリコ ンおよびアルミナ基底部の熱膨張および収縮の不整合によりダイに加えられる応 力はガラスの厚さによって決まり、その応力はガラスの厚さが増すにつれて大き くなる。約2ミル(51prn )以下の場合には、その応力はシリコン半導体 ダイの耐力(yieldstrength)を上廻り割れが発生する。従って、 先行技術のガラス材料を用いた場合には、より薄いガラス層は実用向きではなく 、ガラス層を用いた半導体デバイスの改良されたθJCは達成できなかった。従 って、半導体ダイおよびその他の部品の改良され九ガラス層接着を達成し、ガラ ス層接着を用いてよシ低い熱インピーダンスヲ有スる改良された電気デバイスを 達成するための手段(装置)、方法および材料に対する必要性が依然として存在 する。The glass layer of the prior art is made thinner and the die-package assembly is bonded to the glass layer. Attempts to lower the combined thermal impedance have been unsuccessful. Silico The stress applied to the die due to the thermal expansion and contraction mismatch of the core and the alumina base. The force is determined by the thickness of the glass, and the stress increases as the thickness of the glass increases. It becomes. If the stress is less than about 2 mils (51 prn), the stress Cracking occurs when the yield strength of the die is exceeded. Therefore, When using prior art glass materials, thinner glass layers are not practical. , improved θJC of semiconductor devices using glass layers could not be achieved. subordinate Achieves improved nine-layer adhesion of semiconductor dies and other components Improved electrical devices with lower thermal impedance using layered adhesives There remains a need for means (apparatus), methods and materials to achieve do.

従って、本発明の目的は、電気デバイス、特に半導体ダイをパッケージベースに 結合させるための改良された接着および封止ガラス組成を提供することである。Accordingly, it is an object of the present invention to package electrical devices, especially semiconductor dies, on a package-based basis. An object of the present invention is to provide improved bonding and sealing glass compositions for bonding.

本発明のもう1つの目的は、電気デバイスを中間の延性箔に結合し、次にその延 性箔をセラミックパッケージベースに結合して熱不整合応力を減少させる上での 助けにするための改良された接着および封止ガラス組成を提供することである。Another object of the invention is to bond an electrical device to an intermediate ductile foil and then bonding foils to ceramic package bases to reduce thermal mismatch stresses. It is an object of the present invention to provide improved adhesive and sealing glass compositions to aid in adhesion and sealing.

本発明のもう1つの目的は、中間の延性箔をセラミックパッケージベースに結合 して熱膨張不整合応力を更に減少させるための改良された接着および封止ガラス 組成を提供させることである。Another object of the invention is to bond an intermediate ductile foil to a ceramic package base. Improved bonding and sealing glass to further reduce thermal expansion mismatch stresses The purpose is to provide composition.

本発明のもう1つの目的は、延性箔をセラミックベースに接着するための改良さ れた方法を提供し、更にその箔が本質的にはアルミニウムである方法を提供する ことである。Another object of the invention is to provide an improved method for bonding ductile foils to ceramic bases. and the foil is essentially aluminum. That's true.

本発明のもう1つの目的は、半導体ダイをセラミックベースに付着させるための 改良された方法を提供することである。Another object of the present invention is to provide a method for attaching a semiconductor die to a ceramic base. An object of the present invention is to provide an improved method.

本発明のもう1つの目的は、中間ガラス層を用いて、又は用いずにセラミックベ ースに封止された中間延性箔を用いて半導体ダイをセラミックベースに付着し、 次にその延性箔を別のガラス層を用いて半導体ダイに封止するための改良された 方法を提供することである。Another object of the invention is to provide ceramic bases with or without an intermediate glass layer. attaching the semiconductor die to the ceramic base using an intermediate ductile foil encapsulated in the ceramic base; An improved method for sealing the ductile foil to the semiconductor die using another glass layer is then used. The purpose is to provide a method.

本発明のもう1つの目的は、ガラス層で接着したダイを用い、先行技術より低い 熱インピーダンスを有する改良された半導体デバイスを提供することである。Another object of the present invention is to use a die bonded with a glass layer to reduce the An object of the present invention is to provide a semiconductor device with improved thermal impedance.

本発明の更にもう1つの目的は、応力軽減と熱インピーダンスの低下とを同時に 達成するため、中間延性箔とともにガラス層に接着したダイを用いて改良された 半導体デバイスを提供することである。Yet another object of the present invention is to reduce stress and thermal impedance at the same time. To achieve this, a modified die was bonded to the glass layer along with an intermediate ductile foil. The objective is to provide semiconductor devices.

本発明の更にもう1つの目的は、ガラス接着および封止層が先行技術で可能であ ったそのような層よシ薄い、ガラス層接着ダイ吏用の改良された半導体デバイス を提供することである。Yet another object of the invention is that the glass adhesion and sealing layer is not possible in the prior art. Improved semiconductor devices for thinner, glass-layer bonded dies with such layers The goal is to provide the following.

発明の要約 上述した、およびその他の目的および利点は、セラミックベース、その中間に第 1接着/封止ガラス領域を用いて又は用いずにベースに接着された延性箔、箔に 接触している第2接着/封止ガラス領域、および第2接着/封止ガラスによって 箔に接着され之半導体ダイなどの電気デバイスを含む改良された電気デバイスお よびパッケージ構造が提供されている本発明によって達成される。Summary of the invention The above-mentioned and other objects and advantages are achieved by ceramic-based, intermediate 1. Ductile foil glued to base with or without adhesive/sealing glass area, to foil a second bonding/sealing glass area in contact with the second bonding/sealing glass; improved electrical devices, including electrical devices such as semiconductor dies that are adhered to foil; and a package structure are provided according to the present invention.

更に、箔を箔の降伏強さく耐力)を超える圧力と熱を用いることによってセラミ ックベースに直接に接着させる製造方法、又は別の実施例においては、アルカリ を殆んど含んでおらず、ガラス軟化点よシは高いがベースおよび箔の溶融温度よ り低い温度にまで加熱して接着させた第1接着/封止ガラスを使用し、プラスチ ック又は粘性流ガラスに十分な圧力を加えてセラミックベースと箔の間の空所( vaids)を殆んどなくすことによって箔をベースに接着させる製造方法が提 供されている。ダイは、その軟化温度が第1ガラスの軟化温度より低く、構造物 のその他の材料の溶融温度より低い異なる組成の第2接着/封止ガラスによって 箔に接着されている。加熱して第2ガラスを軟化させ、ダイを“こすシつけ″( scrubbing)ながら、又はその”こすりつけ1を行わずに圧力を加えて 、ダイと箔の間に第2ガラスをは譬一様に分配する。Furthermore, the foil is made into ceramic by using pressure and heat that exceeds the yield strength (yield strength) of the foil. In another embodiment, an alkaline adhesive may be used. The glass softening point is higher than that of the base and the melting temperature of the foil. The first bonding/sealing glass is heated to a low temperature to bond the plastic. Apply sufficient pressure to the foil or viscous flow glass to fill the void between the ceramic base and the foil ( A manufacturing method is proposed in which the foil is bonded to the base by eliminating most of the vaids. It is provided. The die has a softening temperature lower than that of the first glass, and the die has a softening temperature lower than that of the first glass. by a second bonding/sealing glass of a different composition below the melting temperature of the other material of Glued to foil. The second glass is heated and softened, and the die is “rubbed” ( scrubbing) or by applying pressure without scrubbing. , the second glass is evenly distributed between the die and the foil.

更に、下記の組成範囲(重量比にて)を有する第1接着/封止ガラス材料が提供 されている。Further provided is a first adhesive/sealing glass material having the following composition range (by weight): has been done.

Sing 10 〜15 PbO45〜 55 Zn0 8 〜12 AA!go1 2〜5 B、0. 25〜30 更に、下記の範囲の組成(重量比にて)を有する第2接着/封止ガラス材料が提 供されている。Sing 10-15 PbO45~55 Zn0 8 ~ 12 AA! go1 2-5 B, 0. 25~30 Furthermore, a second adhesive/sealing glass material is provided having a composition (by weight) in the following range: It is provided.

G、0. 2〜1O 8in、 0〜3 PbO62〜 72 PbF 2 0〜5 820、 9〜12 1120m 3〜6 ZnOo〜5 VtOs 0.5〜2 CdOO〜5 TiO意 4、 図面の簡単な説明 第1図人は、半導体チップを含むセルディップパッケージの平面図を簡略化した 形で示す。内部の詳細が見えるようにするためにパッケージの蓋又は頂部は取り 除かれている。G, 0. 2~1O 8in, 0-3 PbO62~72 PbF 2 0~5 820, 9-12 1120m 3-6 ZnOo~5 VtOs 0.5~2 CdOO~5 TiO intention 4, Brief description of the drawing Figure 1: A simplified top view of a cell dip package containing a semiconductor chip. Show in shape. The lid or top of the package must be removed to reveal internal details. It is excluded.

第1図Bは、蓋を含めた第1図人のセルディップパッケージの側面図を簡略化し た形で示す。Figure 1B is a simplified side view of the Figure 1 human cell dip package including the lid. Shown in the form below.

第2図は、先行技術による第1図A−Hのパッケージの中央部分の拡大断面図を 簡略化した形で示す。FIG. 2 is an enlarged cross-sectional view of the central portion of the package of FIGS. 1A-H according to the prior art. Shown in simplified form.

第3図は、本発明による第1図A−Hのパッケージの中央部分の拡大断面図を簡 略化した形で示す。FIG. 3 is a simplified enlarged cross-sectional view of the central portion of the package of FIGS. 1A-H according to the present invention. Shown in simplified form.

第4図は、本発明の代わシの実施例による第1図A−Bのパッケージの中央部分 の拡大断面図を簡略化した形で示す。FIG. 4 shows the central portion of the package of FIGS. 1A-B in accordance with an alternative embodiment of the present invention. An enlarged cross-sectional view of the figure is shown in a simplified form.

第5図は、ガラス厚さの関数としての熱インピーダンスの曲線図形である。FIG. 5 is a curve diagram of thermal impedance as a function of glass thickness.

図面の詳細説明 第1図A−Bは、半導体ダイ用セルディップパッケージとして描かれている場合 の電気デバイス10の平面図および側面図を簡略化した形式で示す。デバイスl Oは、代表的な場合には高アルミナセラミックで作られたベース11、および基 底部11上に横たわる内部部分13を有する外部リードルを含む。ベース11は 凹所15ヲ含み、その凹所15には接続領域17ヲ有する半導体ダイ16が取シ 付けられている。代表的な場合には接続領域17は、ワイヤボンド(図示されて いない)又は技術上周仰の同様な手段によってデバイスパッケージ10の内部リ ード部分13に電気的に接続されている8そのようなデバイスの製造においては 、リード部分りおよび13を含むリードフレームはベース11上に取り付けられ 、ダイ16は凹所15内に結合され、リード部分詔と接続領域17の間にワイヤ ボンド(図示されていない)が完成される。蓋14は蓋密封剤(sealant ) 18によってベース11に付着される。Detailed explanation of the drawing Figure 1 A-B is depicted as a cell dip package for semiconductor die. 1 shows in simplified form a plan view and a side view of an electrical device 10 of FIG. device l O includes a base 11, typically made of high alumina ceramic; It includes an outer reedle having an inner portion 13 overlying the bottom 11. Base 11 is It includes a recess 15 in which a semiconductor die 16 having a connection area 17 is mounted. It is attached. In the typical case, the connection area 17 is a wire bond (not shown). ) or by similar means of technically circumferential lifting of the device package 10. 8 In the manufacture of such devices, the , a lead frame including a lead portion and 13 is mounted on the base 11. , the die 16 is coupled within the recess 15 and the wire is connected between the lead section and the connection area 17. A bond (not shown) is completed. The lid 14 is coated with a lid sealant. ) 18 to the base 11.

第2図は、先行技術による凹所15付近におけるデバイス10のベース11の拡 大断面図を簡略化した形で示す。FIG. 2 shows an enlargement of the base 11 of the device 10 in the vicinity of the recess 15 according to the prior art. A large cross-sectional view is shown in a simplified form.

明確に判るようにするため金属リード12−13は省いである。凹所15は底面 23i1−vする。ダイ16は厚さ部の接着/封止ガラス21によシ凹所15内 に取シ付けられておシ、このガラス21はダイ16の面22をベース11の面詔 に7 結合させている。日本1京都の京セラ社が製造していDIP−3型ガラスは、市 販されている代表的な先行技術接着/封止ガラスである。先行技術の接着ガラス 21の厚さ部が2ミル(51μm)よシ著しく薄くなると、ダイ割れが生じ、接 着は失敗することが見出されている。Metal leads 12-13 have been omitted for clarity. Recess 15 is on the bottom 23i1-v. The die 16 is inserted into the recess 15 by the adhesive/sealing glass 21 in the thick part. This glass 21 connects the surface 22 of the die 16 to the surface of the base 11. to 7 are combined. DIP-3 type glass manufactured by Kyocera Corporation in Kyoto, Japan, is It is a representative prior art adhesive/sealing glass on the market. prior art adhesive glass If the thickness of 21 becomes significantly thinner than 2 mils (51 μm), die cracking will occur and the contact will fail. Wearing has been found to fail.

これは、半導体チップとセラミックベースの熱膨張および収縮に差があるために 生じる機械的応力によって起きる。例えば半導体が室温からsoo ′Cまでは 1℃当たり23−45X10”の範囲の線膨張係数を有するシリコンであり、ベ ースが1℃当たり約65X10−7の線膨張係数を有する高アルミナセラミック (代表的な場合には95 % A71zOs )である場合には、集合体がガラ スが凝固する温度(約500℃)以下に冷えるとセラミックベースはシリコンチ ップ以上に収縮する。厚い、即ち約2ミル(51pm )又はそれ以上のガラス 領域を用いると、収縮の差によって発生する力は容易に吸収され、応力はシリコ ンとガラスの降伏強さく耐力)以下に留っている。しかし、ガラス層の厚さが薄 くなり、同じ力がよす薄いガラス領域を横切って第一近似で分配され、応力はガ ラスの厚さにはy反比例して増大する。約2ミル(517m )以下では、ダイ 16とガラス領域21との間の境界におけるシリコン内の応力はシリコンの破砕 強さくfracture strength)を超えて、チップの割れが生じる 。This is due to the difference in thermal expansion and contraction between semiconductor chips and ceramic bases. Caused by mechanical stress. For example, if a semiconductor goes from room temperature to soo'C, It is silicon with a coefficient of linear expansion in the range of 23-45 High alumina ceramic with a coefficient of linear expansion of approximately 65X10-7 per degree Celsius (typically 95% A71zOs), the aggregate is glass When the ceramic base cools below the temperature at which it solidifies (approximately 500℃), the silicone Shrinks more than the top. Glass that is thick, i.e. about 2 mils (51 pm) or thicker With the area, the forces generated by differential shrinkage are easily absorbed and the stress is The yield strength (yield strength) of glass and glass remains below 100%. However, the glass layer is thin , the same force is distributed in a first approximation across a thin glass region, and the stress is The thickness of the lath increases inversely with y. Below about 2 mils (517 m), the die The stress in the silicon at the interface between 16 and the glass region 21 causes the silicon to fracture. If the strength exceeds the strength, the chip will crack. .

第3図は、第2図におけるのと同じベース11の横断面部分20ヲ示すが、先行 技術のガラスは本発明の手段(means)に置きかえられている。ダイ16は 、本発明のダ、イ接着ガラス31および延性箔(によって凹所ルの面nに接着さ れている。延性箔βは凹所正の2羽に接着された面あを有する。ダイ接着ガラス 領域31はダイ16の面nを延性箔諺の面おに接着させている。ダイ接着ガラス 31は厚さあを有する。箔諺は厚さ謁を有する。FIG. 3 shows the same cross-sectional portion 20 of the base 11 as in FIG. The glass of technology has been replaced by the means of the invention. Die 16 is , the adhesive glass 31 of the present invention and the ductile foil (attached to the surface n of the recess). It is. The ductile foil β has a surface bonded to the two wings of the recess. die bond glass Region 31 adheres face n of die 16 to face n of the ductile foil. die bond glass 31 has a thickness. The proverbial foil has a thickness audience.

第4図は、本発明の別の実施例を示し、この場合にも第2図および第3図におけ るのと同じベース11の断面図部分銀を示す。第4図において、ダイ16はダイ 接着ガラス31によって延性箔諺に接着されており、延性箔支は蓄液着ガラス4 1によってベース11の凹所15の面おに接着されている。この応用例で用いら れている1ダイ−ガラス”、′ダイ接着ガラス“又は1ダイ接着/封止ガラス″ という語は、ダイ16と段性箔諺との間に位置するガラス材料領域又はそれと同 等のものを意味することが意図されている。更に、この応用例で用いられている 1箔−ガラス″、“蓄液着ガラス”又は1蓄液着/封止ガラス”という語は、箔 翌とベース11との間に位置するガラス材料領域又はそれと同等のものを意味す ることが意図されている。ガラス31はダイ16の面nを延性箔諺の面あに接着 させている。ガラス4]は延性箔蕊の面34を凹所15の面おに接着させている 。FIG. 4 shows another embodiment of the invention, again with respect to FIGS. 2 and 3. A cross-sectional view of the same base 11 as shown in FIG. In FIG. 4, die 16 is a die The adhesive glass 31 is attached to the ductile foil, and the ductile foil is attached to the liquid-adhesive glass 4. 1 to the surface of the recess 15 of the base 11. used in this application ``one-die glass'', ``die-attached glass'' or ``one-die attach/sealing glass'' The term refers to the area of glass material located between the die 16 and the stepped foil or the like. It is intended to mean something like. Furthermore, the example used in this application The terms “1 foil-glass”, “liquid glass” or “liquid storage/sealing glass” refer to foil means the glass material area located between the base 11 and the base 11 or equivalent thereto It is intended that Glass 31 is bonded to surface n of die 16 to the proverbial surface of ductile foil. I'm letting you do it. Glass 4] has the surface 34 of the ductile foil glued to the surface of the recess 15. .

延性箔βは厚さ46を有する。蓄液着ガラス41は厚さ47を有する。蓄液着ガ ラスの厚さ47は代表的な場合にはダイ接着ガラスの厚さぁよう薄い。Ductile foil β has a thickness of 46. The liquid storage glass 41 has a thickness 47. Liquid storage moth The lath thickness 47 is typically as thin as the thickness of die-attached glass.

第5図は、第2図に示したダイ−ガラス−箔セルディップベース構成を有し後述 する本発明のダイガラス組成を用いた場合の、ダイガラス領域31の厚さの関数 としての/ワット当たシの摂氏温度における熱インピーダンス測定値θJCの曲 線固形である。2ミル(51pm)のダイガラス領域のガラスの熱インピーダン スは約加℃/ワットであシ、これは同じ厚さの先行技術のガラスによって代表的 な場合に見られる値に匹敵する点に気づくであろう。しかし、延性層羽が存在す る結果として、著しいダイ割れを生じることなくダイガラスの厚さあを1ミル( 25gm )以下に薄くすることができる。Figure 5 has the die-glass-foil cell dip base configuration shown in Figure 2 and will be described later. A function of the thickness of the die glass region 31 when using the die glass composition of the present invention Thermal impedance measurements θJC at / Watts per Celsius temperature as It is a solid line. Thermal impedance of the glass in the die glass area of 2 mils (51 pm) The current is approximately ℃/watt, which is typical for prior art glass of the same thickness. You will notice that the values are comparable to those found in the case of However, the presence of ductile layer feathers As a result, die glass thicknesses can be reduced to 1 mil (1 mil) without significant die cracking. It can be made as thin as 25 gm or less.

そのような薄いダイ−ガラス層を用いると、20℃/ワットに近い熱インピーダ ンス値が得られ、これは金属接着層の性能に匹敵する。箔ガラス領域41の厚さ 47が0.1ミル(2,5μm)程度又はそれ以下であった第4図の別の実施例 を用いて上記に匹敵する、又はそれ以上の結果が得られた。従って、本発明は割 れを生じることなしにより薄いガラスダイ接着部の夏用を可能にし、それに対応 する熱性能の改良が得られる。With such a thin die-glass layer, thermal impedances approaching 20°C/watt can be achieved. values are obtained, which are comparable to the performance of metal adhesive layers. Thickness of foil glass region 41 Another example of FIG. 4 in which 47 was on the order of 0.1 mil (2.5 μm) or less. Comparable or better results were obtained using the above. Therefore, the present invention Enables and accommodates summer use of thinner glass die bonds without causing damage Improved thermal performance is obtained.

下記はシリコン半導体ダイかアルミナセルディップベースに接着されている本発 明の方法の実施例である。Below is a sample of the present invention bonded to a silicon semiconductor die or alumina cell dip base. This is an example of the method described below.

延性箔nはベース11の凹所15内に置かれておシ、第1の代わシの実施例では 熱と圧力だけを加えることによって四所巧の下面器に接着されてお夛、第2の代 わりの実施例では箔!と凹所面2との間の蓄液着/封止ガラス41とともに熱と 圧力を加えることによって凹所15の下面器に接着されている。アルミニウムは 延性箔としてすぐれた結果を生じさせることが見出されており、好ましい材料で ある。A ductile foil n is placed in the recess 15 of the base 11, in the first alternative embodiment By applying only heat and pressure, the second generation In this example, foil! and the liquid storage/sealing glass 41 between the recess surface 2 and the heat. It is adhered to the lower surface of the recess 15 by applying pressure. aluminum is It has been found to yield excellent results as a ductile foil and is a preferred material. be.

延性箔は、接着作業中に用いられその後の工程期間中にパッケージがさらされる 温度よシ高い所定の溶融温度を有し、半導体ダイ、パッケージベースおよびダイ をパッケージベースに接着させるのに用いられるダイ−ガラスの降伏強さく耐力 )よシ弱い所定の降伏強さを有する種類の材料から選択しなければならない。Ductile foils are used during bonding operations and to which the package is exposed during subsequent processing. It has a predetermined melting temperature higher than that of the semiconductor die, package base and die. The yield strength and yield strength of the die glass used to bond the die glass to the package base. ) Must be selected from materials of a type with a relatively weak predetermined yield strength.

有用と思われるその他の材料には例えば延性アルミニウム合金、金、銀、銅およ び延性はんだ合金がある。Other materials that may be useful include, for example, ductile aluminum alloys, gold, silver, copper and There are ductile solder alloys.

しかし、アルミニウムは比較的高い融点(660℃)を有し、同時に3000  psi (2iMPa)という比較的弱い降伏強さを肩しガラスによシ接着する ので、アルミニウムは特に望ましい。However, aluminum has a relatively high melting point (660°C) and at the same time It has a relatively weak yield strength of psi (2iMPa) and is bonded to glass. Therefore, aluminum is particularly desirable.

降伏強さく耐力)をかなり超える圧力を加えて、延性アルミニウム箔を直接にセ ラミックベースに接着させる。550〜650℃の範囲の温度における約140 00psi(97MPa)の圧力値が良い結果を生じることが発見された。この 圧力は、イー2l10面乙に延性箔を押しつける焼き入れ鋼工具によって加えら れた。焼き入れ鋼工具にふりかけた窒化硼素細粉の薄層は、工員がアルミニウム に付着するのを防ぐ。The ductile aluminum foil is directly sewn by applying a pressure that significantly exceeds the yield strength (yield strength). Adhere to the ramic base. Approximately 140 at temperatures ranging from 550 to 650°C It has been discovered that a pressure value of 00 psi (97 MPa) produces good results. this Pressure was applied by a hardened steel tool pressing the ductile foil onto the 10th side of E2l. It was. A thin layer of fine boron nitride powder sprinkled on hardened steel tools helps workers Prevent it from adhering to.

上記の代わシとして、後述する特殊な組成を有する薄い蓄液着/封止ガラス41 によって箔支をベース11に接着させてもよい。取り扱いやすさと接着性能との 間の最善の妥協点金与えるものとして2−5ミル(51−127pm)の範囲の アルミニウム箔の厚さが好ましいが、1〜lOミル(25〜254μm)の範囲 の厚さの箔もまた有用である。約1ミル(25μm)以下ではアルミニウム箔の せん断破損が起きる可能性が大となる。10ミル以上の厚さも可能と考えられる が、付加的箔の厚さは、接着性をそれ以上改良することなく熱経路の長さを増大 させる。As an alternative to the above, a thin liquid storage/sealing glass 41 having a special composition described below The foil support may be adhered to the base 11 by using the following method. Ease of handling and adhesive performance The range of 2-5 mils (51-127 pm) gives the best compromise between The thickness of the aluminum foil is preferred, but ranges from 1 to 10 mils (25 to 254 μm). Also useful are foils with a thickness of . Below about 1 mil (25 μm), aluminum foil There is a high possibility that shear damage will occur. Thicknesses of 10 mils or more are considered possible. However, the additional foil thickness increases the thermal path length without further improving adhesion. let

蓄液着/封止ガラス41は、吹付け(spra)’ing) +塗装。The liquid storage/sealing glass 41 is sprayed + painted.

スクリーニング、スピニング(spinning) +又は技術上周矧のその他 の方法によって適用できる。吹付は法によってこのガラスを箔に適用するのが便 利な技術であることが判った。有用な0.1ミル(2,5μm)程度の厚さの場 合にはごく少量のガラスを必要とするだけであjo、0.01ミル(0,25μ m)程度又はそれ以下のよシ薄い/lが好ましい。ガラス液種したアルミニウム ff1t−ベース11の凹所15内に置き、箔−ガラスの軟化点よりは高いが箔 の溶融温度(660℃)又はセラミックベースの溶融温度(約2000℃)よシ は低す温度(例えば550−650℃)にまで加熱した。箔!の上側に鋼工具を 押しつけて加圧し、ガラス41がはソ一様な層に流し込むようにしてセラミック 表面の空所および隙間金満たし、箔表面の不均等性があればそれを調節した。1 4,000p8i(97MPa )の圧力が便利なことが発見されたが、それよ りかなシ低い圧力が有用と考えられる。アルミニウム箔を用いた場合には、55 0〜650 ℃の範囲の軟化温度を有する箔−ガラス組成を用いることが便利で あることが見出され、610〜650℃の範囲が好ましかった。Screening, spinning + or other technical limitations It can be applied by the following method. It is convenient to apply this glass to foil according to the law. It turned out to be a useful technique. Useful for thicknesses on the order of 0.1 mil (2.5 μm) In some cases, only a small amount of glass is required, 0.01 mil (0.25 μm). A very thin /l of about m) or less is preferable. Aluminum with glass liquid ff1t-Place in the recess 15 of the base 11, foil-Although the softening point is higher than that of the glass. (660°C) or the melting temperature of ceramic base (approximately 2000°C) was heated to a low temperature (e.g. 550-650°C). Foil! Place a steel tool on the top side of the Press and apply pressure so that the glass 41 is poured into a uniform layer to form the ceramic. Surface voids and gaps were filled and any unevenness in the foil surface was adjusted. 1 Although a pressure of 4,000 p8i (97 MPa) has been found convenient, Lower pressures may be useful. When using aluminum foil, 55 It is convenient to use foil-glass compositions with softening temperatures ranging from 0 to 650 °C. It was found that the temperature range was from 610 to 650°C.

込づれにせよ、蓄液看/封止ガラスは、延性箔の溶融温度よシは低く、その後ダ イを箔に接着するのに用いられるダイ−ガラス層の軟化温度よシ高い軟化温度を 有することが重要である。In any case, the liquid storage/sealing glass has a lower melting temperature than the ductile foil, and then The die used to bond the glass to the foil has a softening temperature higher than that of the glass layer. It is important to have

一般的に云ってセラミックベースに対するアルミニウム箔の直接的1ffiおよ びセラミックベースに対するアルミニウム箔のガラス接着はいづれも満足な結果 をもたらすことが発見された。セラミックベースに対する箔のガラス接着はより 強力な接Nを生じさせ、同等又はより優れた熱特性を生じさせた。Generally speaking, direct 1ffi and Both aluminum foil and glass adhesion to ceramic base had satisfactory results. It was discovered that it brings about Glass adhesion of foil to ceramic base is better It produced a strong contact N and produced equivalent or better thermal properties.

ダイ16は、その軟化温度が蓄液着/封止ガラス41の軟化温度より低く、1ミ ル(25μm)以下の、できれば0.5ミル(13μm)以下のダイ−ガラス接 着部厚さができるのに十分な程小さい充填剤(filler )粒子を有するダ イ接着/封止ガラスを用いて箔に接着される。そのようなガラス材料の組成は後 述する。約0.1ミル(2,5μm)はど薄いダイ−ガラス厚さが有用と考えら れる。The die 16 has a softening temperature lower than that of the liquid storage adhesion/sealing glass 41, and has a softening temperature of 1 mil. die-to-glass contact of less than 0.5 mil (13 μm), preferably less than 0.5 mil (13 μm). A daub with filler particles small enough to create a deposit thickness. Adhesive/sealing glass is used to adhere to the foil. The composition of such glass materials will be Describe. Die-glass thicknesses as thin as about 0.1 mil (2.5 μm) are considered useful. It will be done.

ダイ接着/封止ガラス31は吹付け、塗装、スクリーン印刷(5creen p rinter ) 、スピニング、又は技術上周知の他の方法によってパッケー ジ又は半導体ダイの上に適用してもよい。ウェーハを個々のダイに分離する前に ダイかそれから作られる半導体ウェーハにダイ−ガラスを適用することが好まし い。The die bonding/sealing glass 31 is sprayed, painted, or screen printed (5 screens). packaged by printing, spinning, or other methods known in the art. It may be applied on top of a die or a semiconductor die. Before separating the wafer into individual die It is preferred to apply the die glass to the die or to the semiconductor wafer made therefrom. stomach.

ダイを箔に接着させるためには、代表的な場合にはガラス被覆ダイ金箔に接触す るように置き、熱と圧力を加えてガラスを軟化させ、それを箔に接着させる。To adhere the die to the foil, typically the glass coated die must be in contact with the gold foil. Heat and pressure are applied to soften the glass and bond it to the foil.

市販のグイ接着剤(ユニチック8−140)がこの目的に適していることが発見 された。他の市販のダイ接着剤も同様に役に立つと思われる。代表的な工程では 、ダイ接着剤のヒータブロック温度を575℃に調節した。It was discovered that a commercially available Gui adhesive (Unitic 8-140) is suitable for this purpose. It was done. Other commercially available die adhesives may be useful as well. In a typical process , the die attach heater block temperature was adjusted to 575°C.

セルディッフベースを約10−15秒間このヒータプロ゛ツク上に置き、ベース 温度をダイ−ガラスの軟化点(約530℃)t−超える値にまで高めた。徊×− ミル(1,6X 1.15 mm )のガラス被覆ダイをダイコレット内で引き 上げて箔被覆ベース上に置き、70−90グラスの刀の下で約2秒間その位置に 保ち、次に約10秒間左右に動かしてこすりつけ、延性箔の表面がダイ接着/封 止ガラスによって確実に均等に濡れるようにして空所をなくシ、ダイと箔との間 にはソ均一なガラス接着領域を作る。Place the cell-diff base on this heater block for approximately 10-15 seconds and then The temperature was increased to a value above the softening point of the die glass (approximately 530 DEG C.). Wandering x- The glass-coated die of the mill (1.6X 1.15 mm) is pulled in the die collet. Lift it up and place it on the foil coated base and hold it in that position for about 2 seconds under a 70-90 glass sword. Hold and then rub from side to side for about 10 seconds until the surface of the ductile foil is bonded/sealed. The stopper glass ensures even wetting and eliminates voids between the die and foil. Create a uniform glass bonding area.

延性アルミニウム箔をセラミック箔に接着させるのに適した有用な蓄液着/封止 ガラス材料が見出されており、それは重量パーセントで下記の範囲の成分組成を 有する。Useful liquid storage adhesive/seal suitable for adhering ductile aluminum foil to ceramic foil A glass material has been found that has a component composition in the following range in weight percent: have

5i(h 10〜15 PbO45〜55 Zn0 8〜12 Ad20a 2〜5 8208 25〜30 溶融物(me 1 t )は下記重量(g)の粉末材料を用いて調製した。5i (h 10-15 PbO45~55 Zn0 8-12 Ad20a 2-5 8208 25-30 The melt (me1t) was prepared using the following weight (g) of powdered material.

成 分 重量(g) ケイ砂(Sing ) 34.6 ケイ酸鉛(85チPbO+15%5i(h) 379−3鉛丹(Pb5O+)  38.4 酸化亜鉛(ZnO) 75.0 水酸化アルミニウム A/(OH)1 40.2ホウ酸(HsBOl) 350 .3 上記の一群の混成分を直径および高さが3インチ(7,6cm)のプラナするつ ぼに入れて溶融した。るつぼを約80%満たし、実験室グローバー炉内に降ろし 、溶融およびその後の攪拌作業中1200 ℃に保った。るつぼに最初に入れた 量を15分間溶融した後に、るつぼを取り出して更に材料を加え、るつぼ管再び 炉内に戻した。Ingredients Weight (g) Silica sand (Sing) 34.6 Lead silicate (85PbO+15%5i(h) 379-3 Red lead (Pb5O+) 38.4 Zinc oxide (ZnO) 75.0 Aluminum hydroxide A/(OH)1 40.2 Boric acid (HsBOl) 350 .. 3 A planar plate of 3 inches (7.6 cm) in diameter and height contains the above group of mixed components. I put it in a pot and melted it. Fill the crucible to about 80% and lower it into the Grover furnace in the laboratory. , maintained at 1200° C. during melting and subsequent stirring operations. first put into the crucible After melting the amount for 15 minutes, remove the crucible, add more material, and reinsert the crucible tube. It was returned to the furnace.

この方法を約4回くシ返し、−変分の量の材料全部をるつぼ内に入れ九。Repeat this process about 4 times and place all of the varying amounts of material in the crucible.

材料を最後に付加してから(資)分径に、直径2インチ(5,4am )のプロ ペラ羽根を有するプラチナ攪拌機を溶融したガラス内に約1インチ(2,5cm )潰し、溶融物を2時間90 rpmで攪拌した。次に、るつぼを炉から取り出 し、ガラスを水中にそ\ぎ入れ1フリツト”の形のガラスを生産した。このガラ スフリットを水から取り出し、約ioo℃で乾燥させた。このフリットをボール ミルで粉砕し、4ooメツシユのステンレススチール製篩で篩分けした。この篩 分けした湿9 (wet)粉砕ガラス粉末を6〜24時間更時間枠するのが便利 であることが見出された。技術上周知の材料であるテルピネオールを、湿式粉砕 およびガラス適用のため液体として用い念。ガラスは技術上周知の方法によって 適用することができる。After the last addition of material, add a 2 inch (5.4 am) diameter profile to the (material) diameter. A platinum stirrer with propeller blades is placed approximately 1 inch (2.5 cm) into the molten glass. ) and the melt was stirred at 90 rpm for 2 hours. Next, remove the crucible from the furnace. The glass was then placed in water to produce glass in the form of 1 frit. The sprift was removed from the water and dried at about ioO<0>C. ball this frit It was ground in a mill and sieved through a 4oo mesh stainless steel sieve. this sieve It is convenient to separate the wet crushed glass powder for 6 to 24 hours. It was found that Wet grinding of terpineol, a material well known in technology. Used as a liquid for and glass applications. glass by methods well known in the art. Can be applied.

上述した混合および溶融方法によって作ったガラス材料は、Icc当たシ4.1 gの密度、1℃当た#)(25〜300℃)52X10 の熱膨張係数、および 約600 ℃の軟化/封止温度を有することが発見された。混合、溶融および冷 却後に決定された組成は重量パーセントにて下記の表に示している。The glass material made by the mixing and melting method described above has an Icc rating of 4.1. density of g, thermal expansion coefficient of #) (25-300℃) 52X10, and It was discovered to have a softening/sealing temperature of about 600°C. Mixing, melting and cooling The composition determined after cooling is given in weight percent in the table below.

Stow 12.2 PbO48,0 Zn0 1(LO AA!zOs 3.5 B208 26.s 下記のダイ接着および封止ガラス材料はシリコン半導体ダイをアルミニウム延性 箔に接着させるのに有用なことが発見されており、重量パーセントで下記の範囲 の組成からはソ成り立っている。Stow 12.2 PbO48,0 Zn0 1(LO AA! zOs 3.5 B208 26. s The die attach and encapsulation glass materials listed below attach silicon semiconductor die to aluminum ductile It has been found to be useful for adhering to foils, in weight percentages in the following ranges: From the composition of

Ge022〜10 SiO20〜3 PbO62〜 72 PbF20〜5 820 m 9〜12 AJ20g 3〜6 ZnOO〜5 VzOs 0.5〜2 Cd0 0〜5 上記の組成パーセントは、調製し九ガラスを砕いてチタン酸鉛末で希釈した後の 組成についてのものである。Ge022~10 SiO20~3 PbO62~72 PbF20~5 820m 9-12 AJ20g 3-6 ZnOO~5 VzOs 0.5~2 Cd0 0~5 The above composition percentages are after preparing and crushing nine glasses and diluting them with lead titanate powder. It is about composition.

下記は上記に具体的に述べた範囲内の組成を有するガラス材料の調製物の2つの 例である。下記の(ダラムで示した)一度分の成分量はR−233およびR−2 48として示しであるダイ接着/封止ガラスを製造するのに用いられた。Below are two preparations of glass materials having compositions within the ranges specifically mentioned above. This is an example. The following ingredients (indicated by Durham) per serving are R-233 and R-2. It was used to make a die attach/sealing glass designated as No. 48.

酸化ゲルマニウム GeO210,0 酸化鉛 PbO634,0 ホウ酸 HsBOa 243.3 水酸化アルミニウム hlcOH)a 105.6五酸化バナジウム VzOs  10.OR−248ガラス 酸化ゲルマニウム Ge0z 50.0ケイ酸鉛(85慢/15% ) PbO /5iOz 133.0酸化鉛 Pb0 554.0 ハ%7)”75%鉛丹(75%/25%) Pb504/PbO50,9弗化鉛  PbFz 50.0 ホウ酸 HgBOB 243.3 水酸化アルミニウム AJ(OH,) 75.0酸化亜鉛 ZnO50,0 五酸化バナジウム V’gOs 10−0酸化カドミウム Cd0 30.0 各一度分の量金箔封止ガラスについて上述した方法と同様な方法でプラナするつ ぼ内で溶融した。原料を次第に追加し、グローバー炉内で1200 ℃で溶融し 、(イ)rpmで2時間攪拌し、水のなかにそそぎ込んでガラスフリットを作り 、次にボールミルで粉砕し、400メツシユのステンレススチール製篩で篩分け して細粉を作った。この細粉を粒度8μm以下、比重的7.5の灰チタン石(p erovskite)相チタン酸塩加〜(資)容積パーセントと混合した。一部 の場合には、ガラスフリットは、箔封止ガラスと同じ方法でテルピネオール担体 (carrier)を周込て湿式粉砕した。上述したように調製したダイ接着/ 封止ガラス材料は、美〜I容積パーセントのチタン酸鉛と組み合わせた場合には 、下記の表のR−233およびR−248の項目の下に列記したような(希釈後 )最終的組成ヲ有していた。チタン酸鉛による希釈前には、R−233ガラスは 6.08g/am”の密度、87 x 10−7/ ℃の熱膨張係数およびデュ ポン社製(900型)示差熱分析器で測定した場合395℃の焼なまし点を有し た。加容量パーセントのチタン酸鉛と混合した場合には、R−233ガラスは5 30℃の軟化/封止温度を有し、熱膨張はωX 10−7/ 1:に低下した。Germanium oxide GeO210,0 Lead oxide PbO634,0 Boric acid HsBOa 243.3 Aluminum hydroxide hlcOH)a 105.6 Vanadium pentoxide VzOs 10. OR-248 glass Germanium oxide Ge0z 50.0 Lead silicate (85%/15%) PbO /5iOz 133.0 Lead oxide Pb0 554.0 75% Red Lead (75%/25%) Pb504/PbO50,9 Lead Fluoride PbFz 50.0 Boric acid HgBOB 243.3 Aluminum hydroxide AJ (OH,) 75.0 Zinc oxide ZnO50,0 Vanadium pentoxide V’gOs 10-0 Cadmium oxide Cd0 30.0 Each single serving is prepared using a method similar to that described above for gold foil-sealed glass. It melted inside the bottle. Raw materials were gradually added and melted at 1200℃ in the Grover furnace. (a) Stir at rpm for 2 hours and pour into water to make glass frit. , then ground in a ball mill and sieved through a 400 mesh stainless steel sieve. and made a fine powder. This fine powder is made of perovskite (p erovskite) phase titanate added ~ (capital) volume percent. part In the case of the glass frit, the terpineol carrier is sealed in the same way as the foil-sealed glass. (carrier) and wet pulverization. Die attach prepared as described above/ The sealing glass material when combined with lead titanate of ~I volume percent , as listed under R-233 and R-248 in the table below (after dilution). ) had the final composition. Before dilution with lead titanate, R-233 glass Density of 6.08 g/am”, coefficient of thermal expansion of 87 x 10-7/℃ and du It has an annealing point of 395°C when measured with a PON (Model 900) differential thermal analyzer. Ta. When mixed with a loaded volume percent of lead titanate, R-233 glass has a It had a softening/sealing temperature of 30°C, and the thermal expansion was reduced to ωX 10-7/1:.

成分の混合比を変えることによって、ガラス材料の最終的組成を上述した一般的 範囲内で変化させることができた。下記の特定的なガラス材料組成は有用なこと が発見された。By changing the mixing ratio of the components, the final composition of the glass material can be adjusted to the general composition described above. I was able to change it within the range. The following specific glass material compositions may be useful. was discovered.

Ge0z 8.1 4.0 3.7 SiO21,61,5 PbO69,463,163,9 PbF24.8 3.7 B20g 11.1 11.0 10.0All!08 5.6 3.9 3. 6TiOz 5.0 s、a 7.0 熱膨張係数Xl0760 65 59 接着/封止温度(℃) 530 500 500上記の組成は重量パーセントで 示されている。R−233およびR−248の名称は実験Si、認番号である。Ge0z 8.1 4.0 3.7 SiO21,61,5 PbO69,463,163,9 PbF24.8 3.7 B20g 11.1 11.0 10.0All! 08 5.6 3.9 3. 6TiOz 5.0s, a 7.0 Thermal expansion coefficient Xl0760 65 59 Adhesion/sealing temperature (℃) 530 500 500 The above composition is in weight percent It is shown. The names R-233 and R-248 are Experimental Si, approval numbers.

上記のダイ接着/封止ガラスはすべてセルディップパッケージ内において接着さ れた延性アルミニウム箔にシリコン半導体ダイを接着させる上で満足な結果を示 すことが発見された。All die attach/encapsulation glasses listed above are bonded within the cell dip package. demonstrated satisfactory results in bonding silicon semiconductor die to ductile aluminum foil. It was discovered that

従って、延性箔、特にアルミニウムをセラミックベースに封止するための改良さ れた組成、半導体ダイおよびその他の部品を箔、セラミックベースおよび外被( enclosure)に封止するための改良されたガラス組成。Therefore, improvements in ductile foils, especially for sealing aluminum into ceramic bases, have been proposed. foils, ceramic bases and envelopes ( Improved glass composition for sealing in enclosures.

延性箔をセラミックベースに接着させるための改良された方法、半導体ダイをセ ラミックベースに接着させるための改良された方法、ガラス接着/封止手段を用 いて半導体ダイをセラミックベースに接着させるための方法および構造、および デバイスがガラスダイ接着の先行技術において得られる熱インピーダンスより低 い熱インピーダンスを有する場合にガラス接着ダイを用いる改良された半導体ダ イが本発明によって提供されていることが明らかになる。Improved method for bonding ductile foils to ceramic bases for semiconductor die assembly Improved method for bonding to lamic bases, using glass bonding/sealing means a method and structure for bonding a semiconductor die to a ceramic base; The device has a lower thermal impedance than that obtained with prior art glass die attachment. Improved semiconductor die using glass bonded die when having high thermal impedance It becomes clear that B is provided by the present invention.

上記に本発明を説明したが、本発明の精神および範囲内において種々の変形を行 いうろことが当業者には明らかであろう。例えば、シリコン以外の材料の半導体 ダイも、その融点又は分解温度がガラスの軟化温度を超えていれば使用できる。Although the invention has been described above, various modifications can be made within the spirit and scope of the invention. The details will be obvious to those skilled in the art. For example, semiconductors made of materials other than silicon A die can also be used, provided its melting point or decomposition temperature exceeds the softening temperature of the glass.

セラミック以外の他のベース材料も、その溶融又は軟化温度が使用するガラスの 軟化温度を超えていれば使用できる。アルミニウム以外の他の延性箔も、その降 伏強さく耐力)が半導体ダイ、ベースおよび使用するガラス材料の降伏強さより 弱く、その溶融温度が使用するガラスの軟化温度より高ければ使用できる。その ような変更はすべて本発明の精神および範囲のなかにあるものであることが意図 されている。。Other base materials other than ceramic may also have melting or softening temperatures that are similar to those of the glass used. It can be used if it exceeds the softening temperature. Other ductile foils besides aluminum also yield strength) is greater than the yield strength of the semiconductor die, base, and glass material used. It is weak and can be used if its melting temperature is higher than the softening temperature of the glass used. the All such modifications are intended to be within the spirit and scope of the invention. has been done. .

FIG、fA FIG、fB FIG 2 補正嘗の翻訳文提出書(%許法第184条7の第1項)昭和58年4月ユ2 日 特許庁長官 若 杉 和 夫 殿 1、特許出願の表示 国際出願番号 PCT/US82101021、発明の名称 改良されたガラス接着材料および方法 1特許出願人 住 所 アメリカ合衆国イリノイ州60196 、シャンバーブ。FIG, fA FIG, fB FIG 2 Submission of revised translation (Article 184, Paragraph 7, Paragraph 1 of the Percentage Permit Act) April 2, 1982 Mr. Kazuo Wakasugi, Commissioner of the Patent Office 1. Display of patent application International application number PCT/US82101021, title of invention Improved glass bonding materials and methods 1 Patent applicant Address: Shambab, Illinois 60196, USA.

イースト・アルゴンフィン・ロード、 xaoa番名称 モトローラ・インコー ホレーテッド代表者 ラウナー、ビン七ント ジエイ国 箇 アメリカ合衆国 覗代理人 住 所 東京都豊島区南長崎2丁目5番2号1982年12、特許 請求の範囲 t 重量パーセントにて下記の範囲の成分を基本的に含む封止ガラス材料 Ge01 2〜10 Si02 Q〜3 Pb0 62〜72 PbFz O〜5 B、0. 9〜12 A120s3〜6 ZnOO〜5 VtOs O,5〜2 CdOO〜5 TiOx 4〜8 。East Algonfin Road, xaoa number name Motorola Inc. Horated Representative: Rauner, Vincent, United States of America Peeking agent Address: 2-5-2 Minami-Nagasaki, Toshima-ku, Tokyo December 1982, patent The scope of the claims t A sealing glass material that basically contains the following components in weight percent: Ge01 2-10 Si02 Q~3 Pb0 62~72 PbFz O~5 B, 0. 9~12 A120s3~6 ZnOO~5 VtOs O, 5~2 CdOO~5 TiOx 4-8.

2 (補正)重量パーセントにて下記の範囲の成分を基本的に含むアルカリを殆 んど含まない封止ガラス材料 5iO21o〜15 PbO45〜55 ZnOs〜12 AJs+Os 2〜5 B20325〜3o0 λ 所定のベース膨張係数およびベース溶融温度のセラミックベースを与える段 階、 前記セラミックベースの上に延性剤を配置する段階、 前記箔と前記セラミックベースの間にほとんどアルカリを含まない接着ガラス材 料を置き、前記接着ガラスは前記箔およびベース溶融温度よシ低い所定のガラス 軟化温度および所定のガラス膨張係数を有し、前記ガラス膨張係数は前記ベース 膨張係数より小さい接着ガラスを選定して集合体を形成する段階、前記集合体に 熱および圧力を加え、前記熱は前記ガラス軟化温度よシ高く、前記箔およびベー ス溶融温度よシは低い範囲になるように前記集合体の温度を上昇させるのに十分 であシ、前記圧力は前記ガラスの塑性流動をして前記ベースと前記箔との間の空 所を殆んどなくさせるのに十分である段階と、からなる 所定の箔溶融温度を有する延性剤をセラミックベースに接着させるための方法。2 (Correction) Most of the alkalis basically contain the following range of components by weight percentage: Encapsulating glass material that does not contain 5iO21o~15 PbO45~55 ZnOs~12 AJs+Os 2-5 B20325~3o0 λ Stage providing a ceramic base with a predetermined base expansion coefficient and base melting temperature floor, placing a ductile agent on the ceramic base; an adhesive glass material containing almost no alkali between the foil and the ceramic base; the bonding glass is a predetermined glass having a lower melting temperature than the foil and base melting temperature. has a softening temperature and a predetermined glass expansion coefficient, and the glass expansion coefficient is the base forming an aggregate by selecting adhesive glass having a coefficient of expansion smaller than that of the adhesive glass; Applying heat and pressure, the heat being above the glass softening temperature, the foil and base Sufficiently raise the temperature of the aggregate so that the melting temperature is in the lower range. In this case, the pressure causes plastic flow of the glass and creates a void between the base and the foil. a step which is sufficient to eliminate most of the A method for bonding a ductile agent with a predetermined foil melting temperature to a ceramic base.

4 (補正)前記箔が事実上アルミニウム又は延性アルミニウム合金であり、前 記のアルカリを殆んど含まない接着ガラス材料が下記の範囲の成分を基本的に含 む請求の範囲第3項の方法 Stow 10〜15 PbO45〜55 znO8〜12 1120m 2〜5 8201 25〜30 5、(削除) 6、所定の箔溶融温度および箔降伏強さの延性剤を前記ベースの一部の上に置き 、前記降伏強さは前記ダイおよびベースの降伏強さよシ弱く、 前記箔を熱および圧力によって前記ベースに接着させ、 所定のダイ−ガラス軟化温度、膨張係数および降伏強さの前記ダイ上にダイ−ガ ラス被覆を行い、前記ダイ−ガラス軟化温度は前記箔溶融温度よシ低く、前記ダ イ−ガラス降伏強さは前記箔降伏強さよシ強く、 前記ダイ上の前記ダイ−ガラス被覆が前記箔に接触するように前記ダイおよび前 記ベースの位置を定め、 前記ダイ−ガラス軟化温度よシは高く前記箔溶融温度より低い温度で前記ベース および前記ダイに対して一緒に熱および圧力を加え、前記箔と前記ダイとの間に 前記ダイ−ガラスをはソ均等に、空所が生じないように分配することを含む、 半導体ダイをセラミックベースに接着させるための方法。4 (Amendment) The foil is substantially aluminum or a ductile aluminum alloy, and the The adhesive glass material that contains almost no alkali basically contains the following components. The method according to claim 3 Stow 10-15 PbO45~55 znO8~12 1120m 2-5 8201 25-30 5. (Delete) 6. Place a ductility agent of a predetermined foil melting temperature and foil yield strength on a part of the base. , the yield strength is weaker than the yield strength of the die and base; adhering the foil to the base by heat and pressure; A die glass is placed on the die of a given die glass softening temperature, coefficient of expansion and yield strength. The softening temperature of the die glass is lower than the melting temperature of the foil. E-Glass yield strength is stronger than the foil yield strength, the die and front so that the die-glass coating on the die contacts the foil; Determine the position of the base, The die-glass softening temperature is higher than the foil melting temperature and the base is lower than the foil melting temperature. and applying heat and pressure together to the die, between the foil and the die. distributing the die glass evenly and without voids; A method for bonding a semiconductor die to a ceramic base.

7、(補正)前記接着ステップは、更に前記箔と前記ベースとの間に箔−ガラス 被覆を含み、 前記箔−ガラスが流動するようになるのには十分であるが前記箔溶融温度よυは 低い温度にまで加熱し、 前記箔ガラスが前記箔と前記ベースとの間にはソ均等に拡がるのに十分な圧力を 加えることからなシ、前記箔−ガラス被覆がほとんどアルカリを含まず、重量パ ーセントにて下記の範囲の成分からなる請求の範囲第6項の方法 5i(h 10〜15 Pb0 45〜55 ZnO8〜 12 AI!gOs 2〜5 Btus 25〜30 & 所定のセラミック膨張係数、降伏強さおよび溶融温度を有するセラミックベ ースと、 前記セラミックベースの少なくとも一部分に接着され、所定の箔降伏強さおよび 溶融温度を有する延性箔と、 前記箔の少なくとも一部分に接着され、所定のダイ−ガラス膨張係数、降伏強さ および軟化温度を有するダイ−ガラス領域と、 前記ダイ−ガラス領域の少なくとも一部分に接着され、所定のダイ膨張係数、降 伏強さおよび融点を有する半導体ダイとを含み、 前記箔降伏強さが前記セラミック、ダイ−ガラスおよびダイ降伏強さよシ弱く、 前記ダイ−ガラス膨張係数が前記セラミック膨張係数とダイ膨張係数との中間に あり、前記ダイ−ガラス軟化温度が前記ダイ、箔およびセラミック溶融温度よシ 低い半導体デバイス。7. (Correction) The adhesion step further includes a foil-glass bond between the foil and the base. including coating, The foil melting temperature υ is sufficient for the foil-glass to become fluid. heat to a low temperature, Sufficient pressure is applied so that the foil glass spreads evenly between the foil and the base. However, the foil-glass coating contains almost no alkali and has a low weight performance. The method of claim 6 comprising the following ingredients at -cent. 5i (h 10-15 Pb0 45~55 ZnO8~12 AI! gOs 2〜5 Btus 25~30 & Ceramic base with predetermined ceramic expansion coefficient, yield strength and melting temperature. with bonded to at least a portion of the ceramic base and having a predetermined foil yield strength and a ductile foil having a melting temperature; A die having a predetermined die glass expansion coefficient and yield strength is adhered to at least a portion of the foil. and a die glass region having a softening temperature. The die is bonded to at least a portion of the glass area and has a predetermined die expansion coefficient, a semiconductor die having toughness and a melting point; the foil yield strength is weaker than the ceramic, die-glass and die yield strength; The die-glass expansion coefficient is between the ceramic expansion coefficient and the die expansion coefficient. Yes, the die-glass softening temperature is higher than the melting temperature of the die, foil and ceramic. low semiconductor devices.

9、 前記箔が前記箔と前記ベースに接着させるため前記箔と前記ベースとの間 に箔−ガラス領域を更に含み、前記箔−ガラスは所定の箔−ガラス膨張係数、降 伏強さおよび軟化温度を有し、前記箔−ガラス膨張係数が前記ダイ−ガラス膨張 係数より低く、前記箔−ガラス軟化温度が前記箔溶融温度と前記ダイ−ガラス軟 化温度との中間にあυ、前記箔−ガラス降伏強さが前記箔降伏強さより強い請求 の範囲第8項のデバイス。9. between the foil and the base so that the foil adheres to the foil and the base; further includes a foil-glass region, said foil-glass having a predetermined foil-glass expansion coefficient, has a toughness and a softening temperature, and the foil-glass expansion coefficient is the die-glass expansion coefficient. the foil-glass softening temperature is lower than the foil-glass softening temperature and the die-glass softening temperature. υ, the foil-glass yield strength is stronger than the foil yield strength. Devices within the scope of item 8.

l06(補正)前記延性箔は、大体アルミニウム又はアルミニウム合金であり、 前記箔−ガラスは、重量パーセントにて 5t(h 10〜15 PbO45〜55 ZnOs〜12 AAzOs 2〜5 B寞O虐 25〜30 の範囲の成分を含み、 前記ダイ−ガラスが重量パーセントにてGe0z 2〜10 s io、 o〜3 Pb0 62〜72 PbF、 0〜5 B、0. 9〜12 AA!、0. 3〜6 ZnOO〜5 VzOs 0.5〜2 Cd0 0〜5 T i O24〜8 の範囲の成分を含む請求の範囲第9項のデバイス。l06 (Amendment) The ductile foil is generally aluminum or an aluminum alloy; The foil-glass is in weight percent 5t (h 10~15 PbO45~55 ZnOs~12 AAzOs 2-5 BO O torture 25-30 Contains ingredients in the range of The die glass has a weight percentage of Ge0z of 2 to 10 sio, o~3 Pb0 62~72 PbF, 0-5 B, 0. 9~12 AA! ,0. 3~6 ZnOO~5 VzOs 0.5~2 Cd0 0~5 T i O24~8 10. The device of claim 9, comprising ingredients in the range of .

11、(新規)前記箔−ガラスは、更に約52 Xl0−7/℃(25〜300 ℃)の膨張係数を有し、前記ダイ−ガラスは、更に約59〜65 xto−7/ C(25〜300℃)の膨張係数を有する請求の範囲第10項のデバイス。11. (New) The foil-glass further has a temperature of about 52 The die glass further has a coefficient of expansion of about 59-65 xto-7/ 11. The device of claim 10 having an expansion coefficient of C (25-300C).

国際調査報告international search report

Claims (1)

【特許請求の範囲】 L 重量パーセントにて下記の範囲の成分を基本的に含む封止ガラス材料 Gem5 2〜11 05to O〜3 Pb0 62〜72 PbFz O〜5 BgOs 9〜12 ム!20畠 3〜6 ZnOg〜5 VgOi 0.5〜2 Cd0 0〜5 Ti(h 4〜B 。 2 重量パーセントにて下記の範囲の成分を基本的に含む封止ガラス材料 Sing 10〜15 PbO45〜55 ZnO8〜12 AjgOm 2〜5 IhOs 25〜30 。 λ 所定のベース膨張係数およびベース溶融温度のセラミックベースを与える段 階、 前記セラミックベースの上に延性布を配置する段階、前記箔と前記セラミックベ ースの間にほとんどアルカリを含まない接着ガラス材料を置き、前記接着ガラス は前記箔およびベース溶融温度より低い所定のガラス軟化温度および所定のガラ ス膨張係数を有し、前記ガラス膨張係数は前記ベース膨張係数よシ小さい接着ガ ラスを選定して集合体を形成する段階、前記集合体に熱および圧力を加え、前記 熱は前記ガラス軟化温度よシ高く、前記箔およびベース溶融温度よシは低い範囲 になるように前記集合体の温度を上昇させるのに十分であシ、前記圧力は前記ガ ラスの塑性流動をして前記ベースと前記箔との間の空所を殆んどなくさせるのに 十分である段階と、から逢る所定の箔溶融温度を有する延性布をセラミックベー スに接着させるための方法。 瓜 前記箔が事実上アルミニウム又は延性アルミニウム合金である請求の範囲第 3項の方法。 & 前記接着ガラス材料が重量パーセントで下記の範囲の成分を基本的に含む請 求の範囲第4項の方法。 5t(h 10〜15 PbO45〜 55 ZnO8〜 12 Also1 2〜5 B意Os 25〜30 住 所定の箔溶融温度および箔降伏強さの延性布を前記ベースの一部の上に置き 、前記箔降伏強さは前記ダイおよびベースの降伏強さよシ弱く、前記箔を熱およ び圧力によって前記ベースに接着させ、 所定のダイ−ガラス軟化温度、豚張係数および降伏強さの前記ダイ上にダイ−ガ ラス被覆を行い、前記ダイ−ガラス軟化温度は前記箔溶融温度より低く、前記ダ イ−ガラス降伏強さは前記箔降伏強さより強く、前記ダイ上の前記ダイ−ガラス 被覆が前記箔に接触するように前記ダイおよび前記ベースの位置を定め、前記ダ イ−ガラス軟化温度よシは高く前記箔溶融温度よプ低い温度で前記ベースおよび 前記ダイに対し一緒に熱および圧力を加え、前記箔と前記ダイとの間に前記ダイ −ガラスをはy均等に、空所が生じないように分配することを含む、 半導体ダイをセラミックベースに接着させる之めの方法。 7、 前記接着ステップは、更に 前記箔と前記ベースとの間に箔−ガラス被覆を含み、前記箔−ガラスが流動する ようになるのには十分であるが前記箔溶融温度よシは低い温度にまで加熱し、前 記箔カラスが前記箔と前記ベースとの間にはソ均等に拡がるのに十分な圧力を加 えることからなシ、前記箔−ガラス被覆が重量パーセントにて下記の範囲の成分 からなる請求の範囲第6項の方法5i02 10〜15 pbQ 45〜55 Zn0 8〜12 AJ20. 2〜5 82011 25〜30 & 所定のセラミック膨張係数、降伏強さおよび溶融温度に!するセラミックベ ースと、 前記セラミックベースの少なくとも一部分に接着され、所定の箔降伏強さおよび 溶融温度を有する延性箔と、 前記箔の少なくとも一部分に接着され、所定のダイ−ガラス膨張係数、降伏強さ および軟化温度を有するダイ−ガラス領域と、 前記ダイ−ガラス領域の少なくとも一部分に接着され、所定のダイ膨張係数、降 伏強さおよび融点を有する半導体ダイとを含み、 前記箔降伏強さが前記セラミック、ダイ−ガラスおよびダイ降伏強さよシ弱く、 前記ダイ−ガラス膨張係数が前記セラミック膨張係数とダイ膨張係数との中間に あり、前記ダイ−ガラス軟化温度が前記ダイ、箔およびセラミック溶融温度よシ 低い半導体デバイス。 9、 前記箔が前記箔前記ベースに接着させる友め前記箔と前記ベースとの間に 箔−ガラス領域を更に含み、前記箔−ガラスは所定の箔−ガラス膨張係数、降伏 強さおよび軟化温度を有し、前記箔−ガラス膨張係数が前記ダイ−ガラス膨張係 数よシ低く、前記箔−ガラス軟化温度が前記箔溶融温度と前記ダイ−ガラス軟化 温度との中間にあシ、前記箔−ガラス降伏強さが前記箔降伏強さより強い請求の 範囲第8項のデバイス。 10、前記箔−ガラスが重量パーセントにて5i0210〜15 PbO45〜55 Zn0 8〜12 AJzOs 2〜5 B20s25〜30 の範囲の成分を含み、 前記ダイ−ガラスが重量パーセントで GeOx 2〜10 Si(h O〜3 Pb0 62〜72 PbF20〜5 Bs+Os 9〜12 A120g 3〜6 ZnOO〜5 VgOs O,5〜2 CdOQ〜5 T i 02 4〜8 の範囲の成分を含む請求の範囲第9項のデバイス。[Claims] L A sealing glass material that basically contains the following components in weight percent: Gem5 2-11 05to O~3 Pb0 62~72 PbFz O~5 BgOs 9〜12 Mu! 20 fields 3-6 ZnOg~5 VgOi 0.5~2 Cd0 0~5 Ti(h 4~B. 2. Sealing glass material that basically contains the following components in weight percent: Sing 10〜15 PbO45~55 ZnO8~12 AjgOm 2-5 IhOs 25-30. λ Stage providing a ceramic base with a predetermined base expansion coefficient and base melting temperature floor, placing a ductile fabric on the ceramic base; An adhesive glass material containing almost no alkali is placed between the is a given glass softening temperature lower than the foil and base melting temperature and a given glass The adhesive glass has a base expansion coefficient, and the glass expansion coefficient is smaller than the base expansion coefficient. selecting laths to form an aggregate; applying heat and pressure to the aggregate; The heat is in a range higher than the glass softening temperature and lower than the foil and base melting temperatures. and the pressure is sufficient to raise the temperature of the assembly such that plastic flow of the lath to almost eliminate the void between the base and the foil. Ceramic base ductile cloth with a predetermined foil melting temperature that meets the stage and which is sufficient method for adhering to the surface. Melon Claim No. 1, wherein the foil is substantially aluminum or a ductile aluminum alloy. Method 3. & The adhesive glass material basically contains components in the following ranges in weight percent: The method described in item 4 of the scope of the request. 5t (h 10~15 PbO45~55 ZnO8~12 Also1 2-5 B-I Os 25~30 Place a ductile fabric with a predetermined foil melting temperature and foil yield strength on top of a portion of the base. , the foil yield strength is weaker than the yield strength of the die and base, and the foil is heated and adhered to the base by pressure and pressure; A die glass is placed on the die with a predetermined die glass softening temperature, tensile modulus, and yield strength. The softening temperature of the die glass is lower than the melting temperature of the foil. The yield strength of the die glass on the die is stronger than the foil yield strength, and the yield strength of the die glass on the die is higher than the foil yield strength. Position the die and the base so that the coating contacts the foil, and A - The glass softening temperature is higher than the foil melting temperature and the base and lower temperature is lower than the foil melting temperature. Heat and pressure are applied together to the die to form a bond between the foil and the die. - including distributing the glass evenly and without voids; A method of bonding a semiconductor die to a ceramic base. 7. The adhesion step further includes: a foil-glass coating between the foil and the base, the foil-glass flowing; The foil is heated to a temperature lower than the melting temperature, which is sufficient to Apply enough pressure so that the foil crow spreads evenly between the foil and the base. If the foil-glass coating contains the following components in weight percent: Method 5i02 of claim 6 consisting of pbQ 45-55 Zn0 8-12 AJ20. 2~5 82011 25-30 & to a given ceramic expansion coefficient, yield strength and melting temperature! Ceramic surface with bonded to at least a portion of the ceramic base and having a predetermined foil yield strength and a ductile foil having a melting temperature; A die having a predetermined die glass expansion coefficient and yield strength is adhered to at least a portion of the foil. and a die glass region having a softening temperature. The die is bonded to at least a portion of the glass area and has a predetermined die expansion coefficient, a semiconductor die having toughness and a melting point; the foil yield strength is weaker than the ceramic, die-glass and die yield strength; The die-glass expansion coefficient is between the ceramic expansion coefficient and the die expansion coefficient. Yes, the die-glass softening temperature is higher than the melting temperature of the die, foil and ceramic. low semiconductor devices. 9. Between the foil and the base, the foil is bonded to the base. further comprising a foil-glass region, said foil-glass having a predetermined foil-glass expansion coefficient, yield strength and softening temperature, and the foil-glass expansion coefficient is the die-glass expansion coefficient. The foil-glass softening temperature is much lower than the foil melting temperature and the die-glass softening temperature. temperature, the foil-glass yield strength is stronger than the foil yield strength. Devices in scope 8. 10. The foil-glass is 5i0210-15 in weight percent PbO45~55 Zn0 8-12 AJzOs 2-5 B20s25~30 Contains ingredients in the range of The die glass is in weight percent GeOx 2~10 Si(h O~3 Pb0 62~72 PbF20~5 Bs+Os 9~12 A120g 3-6 ZnOO~5 VgOs O, 5~2 CdOQ~5 T i 02 4-8 10. The device of claim 9, comprising ingredients in the range of .
JP57502545A 1981-09-01 1982-07-26 Method for bonding semiconductor devices and semiconductor die to ceramic bases Granted JPS58501372A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29843581A 1981-09-01 1981-09-01
US298435 1981-09-01

Publications (2)

Publication Number Publication Date
JPS58501372A true JPS58501372A (en) 1983-08-18
JPH0340939B2 JPH0340939B2 (en) 1991-06-20

Family

ID=23150501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57502545A Granted JPS58501372A (en) 1981-09-01 1982-07-26 Method for bonding semiconductor devices and semiconductor die to ceramic bases

Country Status (3)

Country Link
EP (1) EP0086812A4 (en)
JP (1) JPS58501372A (en)
WO (1) WO1983000949A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224001A (en) * 1989-11-29 1993-06-29 Matsushita Electric Industrial Co., Ltd. Magnetic head
JP2015038507A (en) * 2008-12-05 2015-02-26 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensors and methods for fabricating magnetic field sensors
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10230006B2 (en) 2012-03-20 2019-03-12 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an electromagnetic suppressor
US11828819B2 (en) 2012-03-20 2023-11-28 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929516A (en) * 1985-03-14 1990-05-29 Olin Corporation Semiconductor die attach system
GB8818957D0 (en) * 1988-08-10 1988-09-14 Marconi Electronic Devices Semiconductor devices
DE4132947C2 (en) * 1991-10-04 1998-11-26 Export Contor Ausenhandelsgese Electronic circuitry
JP7394642B2 (en) 2020-01-31 2023-12-08 哲生 畑中 Electrocardiogram analysis system
IT202100021056A1 (en) * 2021-08-04 2023-02-04 B Max S R L ANTI-CUT COUPLED MATERIAL AND PRODUCTS THUS OBTAINED

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL66619C (en) * 1943-04-06
US3489845A (en) * 1965-12-22 1970-01-13 Texas Instruments Inc Ceramic-glass header for a semiconductor device
US3413187A (en) * 1966-03-31 1968-11-26 Bell Telephone Labor Inc Glass bonding medium for ultrasonic devices
US3405224A (en) * 1966-04-20 1968-10-08 Nippon Electric Co Sealed enclosure for electronic device
US3586522A (en) * 1967-06-01 1971-06-22 Du Pont Glass-ceramics containing baal2si208 crystalline phase
US3568012A (en) * 1968-11-05 1971-03-02 Westinghouse Electric Corp A microminiature circuit device employing a low thermal expansion binder
US3900330A (en) * 1973-03-22 1975-08-19 Nippon Electric Glass Co Zno-b' 2'o' 3'-sio' 2 'glass coating compositions containing ta' 2'o' 5 'and a semiconductor device coated with the same
US3964920A (en) * 1973-10-26 1976-06-22 Motorola, Inc. Solder glass composition and method of using same for encapsulating devices
US4073657A (en) * 1976-07-16 1978-02-14 Motorola, Inc. Glass for semiconductors
US4142203A (en) * 1976-12-20 1979-02-27 Avx Corporation Method of assembling a hermetically sealed semiconductor unit
CA1165336A (en) * 1980-07-31 1984-04-10 Robert A. Rita Non-crystallizing sealing glass composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224001A (en) * 1989-11-29 1993-06-29 Matsushita Electric Industrial Co., Ltd. Magnetic head
JP2015038507A (en) * 2008-12-05 2015-02-26 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensors and methods for fabricating magnetic field sensors
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10230006B2 (en) 2012-03-20 2019-03-12 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an electromagnetic suppressor
US10916665B2 (en) 2012-03-20 2021-02-09 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil
US11444209B2 (en) 2012-03-20 2022-09-13 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil enclosed with a semiconductor die by a mold material
US11677032B2 (en) 2012-03-20 2023-06-13 Allegro Microsystems, Llc Sensor integrated circuit with integrated coil and element in central region of mold material
US11828819B2 (en) 2012-03-20 2023-11-28 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US11961920B2 (en) 2012-03-20 2024-04-16 Allegro Microsystems, Llc Integrated circuit package with magnet having a channel
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet

Also Published As

Publication number Publication date
EP0086812A4 (en) 1985-06-10
WO1983000949A1 (en) 1983-03-17
EP0086812A1 (en) 1983-08-31
JPH0340939B2 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
JPS58501372A (en) Method for bonding semiconductor devices and semiconductor die to ceramic bases
JPH08502468A (en) Low temperature glass with improved thermal stress properties and method of use thereof
US3964920A (en) Solder glass composition and method of using same for encapsulating devices
US5013697A (en) Sealing glass compositions
EP0404564A1 (en) Low temperature glass composition, paste and method of use
JPH06322350A (en) Conductive adhesive, its production and method for bonding semiconductor chip
US4592794A (en) Glass bonding method
GB2229388A (en) A soldering paste for fixing semiconductors to ceramic supports.
KR900000624B1 (en) Sealing glass composition with lead calcium titanic acid tefiller
JP2767276B2 (en) Sealing material
US4515898A (en) Glass bonding means and method
US4800421A (en) Glass bonding means and method
WO2016043095A1 (en) Heat-dissipating structure and semiconductor module using same
US4963187A (en) Metallizing paste for circuit board having low thermal expansion coefficient
JPH05175254A (en) Low melting point bonding composition
US4904415A (en) Oxide glasses having low glass transformation temperatures
CA1250602A (en) Sealing glass composite
JP3125971B2 (en) Low temperature sealing composition
JPH06151662A (en) Highly heat radiating integrated circuit package
US4816216A (en) Interdiffusion resistant Fe--Ni alloys having improved glass sealing
JP2921717B2 (en) Semiconductor device and manufacturing method thereof
JPH02302337A (en) Sealing material
US4962068A (en) Oxide glasses having low glass transformation temperatures
JPH0945725A (en) Semiconductor device manufacturing method
KR900006013B1 (en) Silver-filled glass