JPS58501312A - Continuous seawater desalination method - Google Patents
Continuous seawater desalination methodInfo
- Publication number
- JPS58501312A JPS58501312A JP57502642A JP50264282A JPS58501312A JP S58501312 A JPS58501312 A JP S58501312A JP 57502642 A JP57502642 A JP 57502642A JP 50264282 A JP50264282 A JP 50264282A JP S58501312 A JPS58501312 A JP S58501312A
- Authority
- JP
- Japan
- Prior art keywords
- seawater
- heat
- desalination method
- seawater desalination
- solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/14—Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/138—Water desalination using renewable energy
- Y02A20/142—Solar thermal; Photovoltaics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
- Y02A20/208—Off-grid powered water treatment
- Y02A20/212—Solar-powered wastewater sewage treatment, e.g. spray evaporation
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 発明の名称二連続海水脱塩方去 本発明は太陽エネルギを利用し海水から真水を得るため濃縮する昼間及び夜間運 転する連続海水脱塩方法に関するものである。[Detailed description of the invention] Name of the invention Double continuous seawater desalination method The present invention utilizes solar energy to concentrate daytime and nighttime transportation to obtain fresh water from seawater. This paper relates to a continuous seawater desalination method.
塩をとるため平らで開いた太陽タンクで太陽エネルギを用いることは知られてい る。又飲料水を生産するため海水から太陽で脱塩する方法も開発されており試験 ずみである。これらに対しては一般に透明材料で覆った太陽タンク若くは減圧蒸 発と組合(はせた太陽熱収集器を押入しその際同時に副産物と1.て塩を得るこ とも出来る。このような装置では新鮮な海水を減圧蒸発器に導入しその際・ぐイ ブを通して反対方向に蒸気で予熱する。蒸気は凝縮して飲料水となり装置から取 り出されている。予熱した海水は太陽熱循環器の熱交換器中で加熱され減圧蒸発 器中に戻される。これによって残った塩水は水中に戻されるか又は塩製品に利用 される。すべて従来の太陽技術方式は連転運転に必要となるエネルギ蓄積のだめ 経済運転と技術上の観点から重大な問題を残している。確かに太陽タンク自身が 熱蓄積として役立っているがしかし容量対表面積の比率がよくなく熱損失が大き くなっている。It is known to use solar energy in flat open solar tanks to extract salt. Ru. A method of solar desalination from seawater to produce drinking water has also been developed and tested. It is Zumi. For these, solar tanks covered with transparent materials or vacuum evaporation are generally used. (1. Obtaining salt as a by-product at the same time by pushing in a solar heat collector) I can also do it. In such a device, fresh seawater is introduced into a vacuum evaporator and the preheat with steam in the opposite direction through the tube. The steam condenses into potable water and is removed from the equipment. has been released. Preheated seawater is heated in the heat exchanger of the solar thermal circulator and evaporated under reduced pressure. It is returned to the container. The remaining brine is either returned to the water or used for salt products. be done. All conventional solar technology methods require energy storage for continuous operation. Significant problems remain from an economic and technical point of view. Certainly the solar tank itself It serves as a heat storage, but the ratio of capacity to surface area is poor and heat loss is large. It has become.
温水貯蔵器としての断熱容器は本質的に投資費用が大きくなり太陽熱による海水 脱塩の経済運転は望めない。又こXでは執損失は避けられない。Insulated containers as hot water storage devices inherently have higher investment costs and are more expensive than sea water due to solar heating. Desalination cannot be expected to operate economically. Also, in this case, loss of power is unavoidable.
本発明の目的は従来の装置の欠点を除去して連続運転を可能とする方法を開発す ることである。The purpose of the present invention is to develop a method that eliminates the drawbacks of conventional equipment and enables continuous operation. Is Rukoto.
これらの目的は冒頭に′述べたような方法で解決し得ることが分った。太陽照射 の充分な時には化学熱として蓄積し太陽熱輻射が不充分若くはない場合には外部 熱源を用いて再たび放熱しこれらの化学熱蓄積の蓄積若くは放熱の際自由となっ た熱を海水の濃縮のために用いる。本発明の方法による実施例の利点は特許請求 の範囲の従属第2項乃至第4項に説明しである。It has been found that these objectives can be achieved by the method described at the beginning. solar irradiation When there is sufficient solar radiation, it accumulates as chemical heat, and when solar radiation is not sufficiently young, it accumulates as external heat. Heat is dissipated again using a heat source, and these chemical heat accumulations accumulate or become free during heat dissipation. The generated heat is used to condense seawater. Advantages of embodiments of the method of the invention are claimed in the claims. This is explained in subparagraphs 2 to 4 of the scope of .
本発明による化学熱蓄積としては連続的若くは不連続に動作する吸着熱ポンプ特 に吸収熱ポンプを用いる。外部熱源には海水を用いることが出来る。海水の濃縮 は減圧蒸発装置中で行なわれる。The chemical heat storage according to the present invention is characterized by an adsorption heat pump that operates continuously or discontinuously. using an absorption heat pump. Seawater can be used as an external heat source. Seawater concentration is carried out in a vacuum evaporator.
本発明により達成し得る利点は本質的に連続若くは不連続操作による吸着熱ポン プの利用にありこれによって化学エネルギが高いエネルギ密度で本質的にエネル ギ損失なしに蓄積可能となる点にある。このだめ太陽エネルギを夜間運転若くは 雲期間中にも利用出来る。このことは太陽エネルギ処理の際必換によりその分離 蓄積と発熱吸収が可能となる。吸着熱ポンプの熱力学サイクルプロセスか処理技 術によシ太陽加熱の脱塩プロセスと利点のある方法で結合したものである。その 際太陽エネルギが離脱に用いられ熱ポンプから得られる蓄積熱が脱塩プロセスを 保持し、太i4熱が供給されない時に・は作用物質り処理結合でより自由となる 吸収熱を当てることが出来る。The advantages that can be achieved with the present invention are essentially those of an adsorption heat pump with continuous or discontinuous operation. This makes chemical energy essentially energy-efficient at high energy densities. The point is that it can be stored without energy loss. This is a waste of solar energy for young people driving at night. It can also be used during cloudy periods. This means that when processing solar energy it is necessary to separate the Accumulation and heat absorption become possible. Adsorption heat pump thermodynamic cycle process or treatment technique It is advantageously combined with the desalination process of solar heating. the Solar energy is used to desorb and the stored heat obtained from the heat pump drives the desalination process. When the heat is not supplied, the active substance becomes more free in the process of binding. Can absorb heat.
これによって脱塩の日並処理量が同じ場合には従来の/ステムと比較して太陽装 置の減圧蒸発装置及び海から(海への)輸送装置のシステム規模が本質的に小さ くなる。As a result, when the daily throughput of desalination is the same, solar system The system size of the vacuum evaporator and sea-to-sea transport equipment is inherently small. It becomes.
更に本装置は本質的に利用効率が高・Ao又#1.ポンプ(熱蓄積−解放)に必 要とする熱ポンプ蒸発の加熱温度の水漁が低いので海水、環境空気及び(若くは )まだ温かい放出塩水を用いることが出来る。そのため用いる熱ポンプの効率が 本質的に従来の太陽システムで得られる熱量より多い熱量を脱塩プロセスに供給 することが出来る。Furthermore, this device inherently has high utilization efficiency.Ao or #1. Required for pump (heat accumulation-release) Since the heating temperature of heat pump evaporation is low, seawater, environmental air and (for young people) ) Still warm discharge brine can be used. Therefore, the efficiency of the heat pump used is Provides essentially more heat to the desalination process than can be obtained with traditional solar systems You can.
これによって上に説明したように装置を甚だしく小型にすることが出来る。その 際熱蓄積/熱ポンプ装置を太陽循環器と減圧蒸発装置のサブシステムと設備技術 上で結合することは複離でない。何故ならば装置の大部分を昼間運転と同様に夜 間運転にも用い得るためである。This allows the device to be significantly more compact, as explained above. the Subsystems and equipment technology for solar circulators, vacuum evaporators, solar circulators, heat storage/heat pump equipment, etc. Combining above is not disjunctive. This is because most of the equipment is operated at night as well as during the day. This is because it can also be used for intermittent operation.
本発明を添附した図面を参照しながら詳細に説明しよう。添附図面は 第1図 本発明の方法による昼間運転中の脱塩装置第2図 第1図に示した装置 の夜間運転を簡単に原理的に示している。The present invention will now be described in detail with reference to the accompanying drawings. The attached drawings are Figure 1: Desalination equipment in daytime operation according to the method of the present invention Figure 2: The equipment shown in Figure 1 This provides a simple principle of night driving.
昼間若くは夜間運転に関連した装置の部分を図面中に太い線で示した。用いた化 学熱蓄積は簡単のため固体/ガス反応を用いた不連続吸着熱ポンプとしである。Parts of the equipment related to daytime and nighttime driving are indicated by thick lines in the drawing. used For the sake of simplicity, scientific heat storage is carried out as a discontinuous adsorption heat pump using a solid/gas reaction.
熱ポンプは吸熱放熱器11蒸発疑縮器2と遮断し得る結合導管3より成立ってい る。昼間運転中は第1図に示したように太陽熱吸収循環器4により吸熱放熱器を 加熱する。その時弁5は閉じ弁6は開いている。放熱する物質は開いた弁3を通 って蒸発凝縮器2の中に入りそこで凝縮して予備加熱した海水を脱塩のため加熱 する。その時弁8と9を閉じ一方弁10と11を開ける。蒸発凝縮器2を通って 加熱された海水を減圧蒸発器12に導く。その時弁13を開は弁14を閉じる。The heat pump consists of an endothermic heat sink 11, an evaporator condenser 2, and a connection conduit 3 that can be shut off. Ru. During daytime operation, as shown in Figure 1, the solar heat absorption circulator 4 operates as a heat absorber and heat sink. Heat. At that time, valve 5 is closed and valve 6 is open. The heat dissipating substance passes through the open valve 3. The water enters the evaporative condenser 2, where it condenses and heats the preheated seawater for desalination. do. At that time, valves 8 and 9 are closed while valves 10 and 11 are opened. through evaporative condenser 2 The heated seawater is led to a reduced pressure evaporator 12. At that time, valve 13 is opened and valve 14 is closed.
多酸の蒸発の後飲料水】5と残りの塩水16を装置からとり出す。このように装 置を利用した後放出操作をして弁3を閉じる。これによって反応交換で自由とな った吸収熱を損失なしに蓄積出来るのでこれによって反応相手を分離して蓄積出 来るっ第2図による夜間運転では反応交換によって蓄積された吸収熱を脱塩のた め用いることが出来る。このため吸着熱ポンプの蒸発凝縮器2の熱を一時的な成 分の蒸発のため供給しなくてはならない。これらの熱は海水の弁8による副流、 周囲空気及び(若くは)放流する残りの塩水16からとり出すことが出来る。こ れに対し例示した方式では海水を選びこれらを蒸発凝縮器2を通した後fP13 を閉じであるので弁14を通して放出する。その際弁11も閉じておく。After evaporation of the polyacid, the potable water 5 and the remaining brine 16 are removed from the apparatus. Dressed like this After utilizing the position, perform the discharge operation and close the valve 3. This frees up reaction exchange. Since the absorbed heat can be accumulated without loss, the reaction partner can be separated and accumulated. In the night operation shown in Figure 2, the absorbed heat accumulated through reaction exchange is used for desalination. It can be used for Therefore, the heat of the evaporation condenser 2 of the adsorption heat pump is temporarily generated. must be supplied for evaporation. These heats are absorbed by the side flow of the seawater valve 8. It can be extracted from the ambient air and (potentially) from the remaining brine 16 that is discharged. child In contrast, in the method illustrated, seawater is selected and after passing through the evaporator condenser 2, fP13 is discharged through valve 14 since it is closed. At this time, the valve 11 is also closed.
すると一時的な成分は蒸発凝縮器2から弁3を通して吸熱のため吸熱放熱器1を 流れる。ここで自由となった吸収熱は弁6を閉じであるので循1弁5と熱交換器 17と海水を予備加熱する吸熱放熱器1を1山して流れ、ついで熱交換器17の 方へ弁9と10を通り最後に減圧蒸発器12に戻る。昼間運転の時のようでそこ から飲料水5と残りの塩水16を取り出す。Then, the temporary component passes from the evaporator condenser 2 to the endothermic heat radiator 1 to absorb heat through the valve 3. flows. The absorbed heat released here closes valve 6, so it is circulated through valve 1 and heat exchanger. 17 and the endothermic heat radiator 1 that preheats the seawater, and then flows through the heat exchanger 17. It passes through valves 9 and 10 and finally returns to the vacuum evaporator 12. It was like when I was driving during the day. Drinking water 5 and remaining salt water 16 are taken out.
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE31328687DK | 1981-08-20 | ||
DE19813132868 DE3132868A1 (en) | 1981-08-20 | 1981-08-20 | "PROCESS FOR CONTINUOUS SEAWATER DESALINATION" |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58501312A true JPS58501312A (en) | 1983-08-11 |
Family
ID=6139687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57502642A Pending JPS58501312A (en) | 1981-08-20 | 1982-08-18 | Continuous seawater desalination method |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0086216A1 (en) |
JP (1) | JPS58501312A (en) |
DE (1) | DE3132868A1 (en) |
WO (1) | WO1983000683A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2105977B1 (en) * | 1995-09-27 | 1998-06-01 | Perales Corrales Jesus | IMPROVEMENTS INTRODUCED IN WATER DESALINATION FACILITIES. |
WO2016001369A1 (en) * | 2014-07-04 | 2016-01-07 | Aalborg Csp A/S | System of a desalination plant driven by a solar power plant |
DE102017010897B4 (en) * | 2017-11-24 | 2023-11-02 | Vladimir Pedanov | Process for thermal seawater desalination |
CN110272083A (en) * | 2018-03-13 | 2019-09-24 | 吴良柏 | Novel solar seawater desalination and water purification system |
CN108529707B (en) * | 2018-05-16 | 2023-12-12 | 南京常荣环境科技有限公司 | Combined test device and method for concentrating and flash-evaporating wastewater by using hot air |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2645265A1 (en) * | 1976-10-07 | 1978-04-13 | Krupp Gmbh | Solar energy used for sea water desalination - using absorber heat pump with storage tanks for evaporator |
-
1981
- 1981-08-20 DE DE19813132868 patent/DE3132868A1/en not_active Withdrawn
-
1982
- 1982-08-18 EP EP82902640A patent/EP0086216A1/en not_active Withdrawn
- 1982-08-18 WO PCT/EP1982/000176 patent/WO1983000683A1/en not_active Application Discontinuation
- 1982-08-18 JP JP57502642A patent/JPS58501312A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0086216A1 (en) | 1983-08-24 |
WO1983000683A1 (en) | 1983-03-03 |
DE3132868A1 (en) | 1983-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alnaimat et al. | A review of recent advances in humidification and dehumidification desalination technologies using solar energy | |
TW431890B (en) | Borage seed oil as an anti-irritant in compositions containing hydroxy acids or retinoids | |
Bouchekima et al. | Performance study of the capillary film solar distiller | |
US8613839B2 (en) | Water distillation method and apparatus | |
Bouguecha et al. | Small scale desalination pilots powered by renewable energy sources: case studies | |
US10183872B2 (en) | Counter circulating liquid processing system by repeatedly re-using thermal energy | |
US20080148744A1 (en) | Water generation from air utilizing solar energy and adsorption refrigeration unit | |
WO1997048646A1 (en) | Desalination apparatus and method of operating the same | |
US20090151368A1 (en) | Method and apparatus for extracting water from atmospheric air and utilizing the same | |
ATA41797A (en) | METHOD OF WATER EVAPORATION BY EVAPORATION FROM SOLAR ENERGY | |
JPS56124483A (en) | Desalinating apparatus for sea water | |
JP3964069B2 (en) | Desalination equipment | |
Zala et al. | Present status of solar still: a critical review | |
CN106915792B (en) | Wind-solar complementary seawater desalination device | |
JPS58501312A (en) | Continuous seawater desalination method | |
WO2009157875A1 (en) | Apparatus and method for improved desalination | |
US20090255797A1 (en) | Apparatus for desalinization utilizingtemperature gradient/condensation and method thereof | |
CN1329309C (en) | Desalinization method by stepwise circulation of non-explosive evaporation and condensation | |
CN216377553U (en) | Solar seawater desalination and transparent radiation condenser combined all-day fresh water collection system based on CPC heat collection | |
CN203625073U (en) | Seawater desalination system | |
CN217264922U (en) | Device for efficient seawater desalination by utilizing solar energy | |
Stefano et al. | Setting up of a cost-effective continuous desalination plant based on coupling solar and geothermal energy | |
CN109354096B (en) | Fresnel lens solar carburetor method seawater desalination device | |
CN104478025A (en) | Power-consumption-free solar middle-temperature and high-temperature pressure steam boiling and distillation system | |
GB2063444A (en) | Absorption Type Heat Pumps |