JP3964069B2 - Desalination equipment - Google Patents

Desalination equipment Download PDF

Info

Publication number
JP3964069B2
JP3964069B2 JP8966099A JP8966099A JP3964069B2 JP 3964069 B2 JP3964069 B2 JP 3964069B2 JP 8966099 A JP8966099 A JP 8966099A JP 8966099 A JP8966099 A JP 8966099A JP 3964069 B2 JP3964069 B2 JP 3964069B2
Authority
JP
Japan
Prior art keywords
raw water
heat
desalination apparatus
heat exchanger
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8966099A
Other languages
Japanese (ja)
Other versions
JP2000279944A (en
Inventor
一郎 神谷
祐三 楢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8966099A priority Critical patent/JP3964069B2/en
Publication of JP2000279944A publication Critical patent/JP2000279944A/en
Application granted granted Critical
Publication of JP3964069B2 publication Critical patent/JP3964069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽エネルギーを利用し、海水、塩分等を含んだ地下水(かん水)、産業廃水等の原水から蒸留法により淡水を得る淡水化装置に関するものである。
【0002】
【従来の技術】
最近、太陽エネルギーを利用した海水の淡水化技術への関心が高まってきている。本出願人も先に太陽エネルギーを利用した「淡水化装置及びその運転方法」を開発し、特許出願(97JP97002098)をしている。該淡水化装置は、太陽エネルギーを集める集熱板を具備する太陽熱集熱器と、太陽熱集熱器で加熱された熱媒を加熱源として該熱交換器で内部に収容している原水との間で熱交換を行い該原水から水蒸気を発生させる減圧式の蒸発缶と、原水を収容する原水タンクとを具備し、太陽熱集熱器で加熱された熱媒を加熱源として蒸発缶の熱交換器に供給し、蒸発缶で発生した水蒸気を原水タンク内の凝縮器に供給して蒸留水を得るようになっている。そしてこの原水タンクは、外面を放熱部とし、内面を凝縮部とする伝熱性能の良い空気遮断体で覆われ、夜間放熱により凝縮水を回収し、蒸留水の回収効率を向上させるようになっている。
【0003】
上記淡水化装置を試作し性能確認のため、日本国内及び日射量の多い低緯度乾燥地帯(中東地区)での試験を行った。その結果、それぞれ安定して所定の能力が得られ、その単位収量(集熱面積当たり)も12.5kg/m2以上と従来から提案されていた太陽熱利用淡水化装置の性能を大きく上回っていることが確認できた。
【0004】
【発明が解決しようとする課題】
上記淡水化装置の性能確認のための実験において、得られた運転データを解析したところ、原水タンクの原水の温度上昇は設計通りであったが、凝縮能力(冷却能力)の向上が更なる蒸留性能の向上に重要であることがわかった。即ち、冷却源である原水タンクの原水の温度上昇を極力抑えることが性能向上の重要なポイントになる。
【0005】
本発明は上述の点に鑑みてなされたもので、原水タンクの原水の温度上昇を抑え、蒸留性能の向上を図ることができる淡水化装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するため請求項1に記載の発明は、太陽エネルギーを利用する淡水化装置であって、太陽エネルギーにより熱媒を加熱する太陽熱集熱器と、熱交換器を具備し太陽熱集熱器で加熱された熱媒を加熱源として該熱交換器で内部に収容している原水との間で熱交換を行い該原水から水蒸気を発生させる減圧式の蒸発缶と、原水を収容した原水タンク内に配置され蒸発缶で発生した水蒸気を受入れ該原水との間で熱交換を行い蒸留水を得る凝縮器と、原水タンク内の原水を直接又は間接的に冷却する放熱器とを具備することを特徴とする。
【0007】
上記のように原水タンク内の原水を冷却する放熱器を具備することにより、該原水タンク内の原水の温度上昇が抑制され、蒸留性能が向上する。
【0008】
また、請求項2に記載の発明は、請求項1に記載の淡水化装置において、原水を間接的に冷却する放熱器は原水タンク内に配置された熱交換器と外部放熱器を具備し、該熱交換器と外部放熱器を媒体通路で接続し、媒体の蒸発・凝縮を繰り返し原水を冷却するサーモサイフォン型の放熱器であることを特徴とする。
【0009】
上記のように放熱器を媒体の蒸発・凝縮を繰り返し原水を冷却するサーモサイフォン型とすることにより、放熱のために特別な動力を必要とすることなく、原水の有する熱を放出することができる。
【0010】
また、請求項3に記載の発明は、請求項2に記載の淡水化装置において、熱交換器と放熱器の間で蒸発・凝縮を繰り返す媒体は水であることを特徴とする。
【0011】
上記のように、(サーモサイフォンを利用した)外部放熱器を設けることにより、外部放熱器及び該外部放熱器と原水タンク内に配置された熱交換器とを結ぶ配管(海水等の塩水と接触しない場合)に耐蝕の材料を使用することなく、安価な材料を使用して価格の低減を図ることができるだけでなく、外部放熱器の材質を制約無く選定でき、効率のよい、銅やアルミニウム等の熱伝導性のよい材質を選定でき放熱効率の良い外部放熱器を構成することができる。ここで、海水に接する部分の材質を考慮したヒートパイプを用いても勿論良い。
【0012】
また、請求項4に記載の発明は、請求項1乃至3のいずれか1つに記載の淡水化装置において、原水タンクは淡水化装置内外の日陰部又は原水タンクへの入熱が少ない場所に配置したことを特徴とする。
【0013】
また、請求項5に記載の発明は、請求項1乃至3のいずれか1つに記載の淡水化装置において、放熱器又は外部放熱器は淡水化装置内外の日陰部又は放熱に最適な場所に設置することを特徴とする。
【0014】
上記のように、原水タンク及び放熱器を太陽光が直接当たらない日陰、入熱の少ない場所及び放熱に最適な場所に配置したので、原水タンク内の原水の温度上昇が抑えられると共に、放熱器の放熱効率が向上するから、更に原水の温度上昇を抑えることができる。
【0015】
又、上記のように放熱器又は外部放熱器を淡水化装置の内外の日陰部又は放熱に最適な場所で夜間の天空放熱等を利用して効率良く放熱できる場所に設置するので、原水タンク内の原水の効率良い冷却が可能となる。
【0016】
また、請求項6に記載の発明は、請求項1乃至5のいずれか1つに記載の淡水化装置において、原水タンクと放熱器との間を結ぶ原水通路又は熱交換器と外部放熱器との間を結ぶ媒体通路に開閉弁を設け、原水タンク内の原水温度が外気温度よりも低い場合、該開閉弁を閉じることを特徴とする。
【0017】
上記のように原水タンクと放熱器との間を結ぶ原水通路又は熱交換器と外部放熱器との間を結ぶ媒体通路に開閉弁を設け、原水タンク内の原水温度が外気温度よりも低い場合、該開閉弁を閉じることにより、日中の気温上昇による外部からの原水タンクの原水への熱進入を防ぐことができる。
【0018】
また、請求項7に記載の発明は、太陽エネルギーを利用する淡水化装置であって、太陽エネルギーにより熱媒を加熱する太陽熱集熱器と、熱交換器を具備し太陽熱集熱器で加熱された熱媒を加熱源として該熱交換器で内部に収容している原水との間で熱交換を行い該原水から水蒸気を発生させる減圧式の蒸発缶と、該蒸発缶で発生した水蒸気を凝縮して蒸留水を得る凝縮器と、原水を収容した原水タンク内に配置され蒸発缶内の熱交換器を通った熱媒を通すことにより該原水との間で熱交換を行う熱交換器を具備し、夜間に原水タンク内の熱交換器を通して原水で加熱された熱媒の熱を太陽熱集熱器の集熱板を通して外部に放熱することを特徴とする。
【0019】
上記のように夜間に太陽熱集熱器の集熱板を通して、原水タンク内の原水の熱が放熱されることにより、日昼昇温した原水の熱を夜間に集熱板を通して効率良く放熱することができる。
【0020】
また、請求項8に記載の発明は、請求項7に記載の淡水化装置において、蒸発缶の熱交換器をバイパスさせるバイパス手段を設け、夜間に原水タンク内の熱交換器を通して原水で加熱された熱媒を太陽熱集熱器の集熱板に送ることを特徴とする。
【0021】
上記のようにバイパス手段を設けて、夜間に原水タンク内の熱交換器を通して原水で加熱された熱媒を蒸発缶の熱交換器をバイパスさせて太陽熱集熱器の集熱板に送るようにしたので、夜間の太陽熱集熱器の集熱板を通して行われる放熱は、日中の集熱サイクルとは完全な逆サイクルとなり、原水タンク内の原水の温度を効果的に下げることができる。
【0022】
また、請求項9に記載の発明は、請求項7又は請求項8に記載の淡水化装置において、原水タンク内の原水を直接又は間接的に冷却する放熱器を設けたことを特徴とする。
【0023】
上記のように請求項7又は請求項8に記載の淡水化装置に原水を直接又は間接的に冷却する放熱器を設けたことにより、原水タンク内の原水の温度を更に効果的に下げることができる。
【0024】
また、請求項10に記載の発明は、太陽エネルギーを利用した淡水化装置であって、太陽エネルギーにより熱媒を加熱する太陽熱集熱器と、熱交換器を具備し太陽熱集熱器で加熱された熱媒を加熱源として該熱交換器で内部に収容している原水との間で熱交換を行い該原水から水蒸気を発生させる減圧式の蒸発缶と、該蒸発缶で発生した水蒸気を凝縮する凝縮器を具備し、該凝縮器は小容量のタンク内に収容され、該タンク内に前記水蒸気の凝縮に必要な所定流量の原水を冷却水として供給すると共に加温された同量の原水を排出することを特徴する。
【0025】
上記のように、蒸発缶で発生した水蒸気を凝縮する凝縮器を小容量のタンク内に収容し、タンク内に水蒸気の凝縮に必要な所定流量の原水を冷却水として供給すると共に、加温された同量の原水を排出するので、少ない供給原水流量で原水タンク内の原水の温度を運転中略一定に保つことができる。
【0026】
また、請求項11に記載の発明は、請求項10に記載の淡水化装置において、凝縮器と小容量のタンクの組合せを熱交換器とすることを特徴とする。
【0027】
上記のように凝縮器と小容量のタンクの組合せを例えば、シェル・チューブ型熱交換器又はプレート型等の熱交換器とすることにより、より少ない供給原水流量で原水の温度を運転中略一定に保つことができる。
【0028】
また、請求項12に記載の発明は、請求項1乃至11のいずれか1つに記載の淡水化装置において、蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水を別途設けた貯留タンクに貯留し、該貯留した原水を蒸発缶に蒸発用の原水として供給する手段を設けたことを特徴とする
【0029】
蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水は水温が高いから、この原水を蒸発用の原水として蒸発缶に供給することにより、凝縮器で加温された原水を有効に利用できるから、淡水化装置の蒸留能力が更に向上する。
【0030】
また、請求項13に記載の発明は、請求項1乃至12のいずれか1つに記載の淡水化装置において、水深の浅く上部が開口した水槽を具備し、該水槽の開口部を透光性のカバーで覆った構成のベースン型の太陽熱蒸留器を設け、該太陽熱蒸留器の水槽に蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水を貯留し、蒸留水を得るように構成したことを特徴とする。
【0031】
上記のようにベースン型の太陽熱蒸留器を設け、該太陽熱蒸留器の水槽に凝縮器で加熱された原水を貯留して、蒸留水を得るように構成することにより、装置全体として蒸留能力が更に向上する。
【0032】
また、請求項14に記載の発明は、請求項1乃至13のいずれか1つに記載の淡水化装置において、水深の浅い広い面積を有するプールを設け、該プールに前記蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水及び/又は前記太陽熱蒸留器の水槽から排出される原水を貯留し、該原水から太陽熱を利用して食塩他、原水(例えば、海水)中の有用な塩類を回収することを特徴とする。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態例を図面に基づいて説明する。図1は請求項1に記載の発明に係る淡水化装置の構成例を示す図である。本淡水化装置は太陽熱集熱器10、蒸発缶20及び放熱器40を具備する構成である。
【0034】
太陽熱集熱器10は太陽エネルギー11を集め熱媒13を加熱する集熱板12を具備する。蒸発缶20は缶胴21を具備し、該缶胴21内には原水Q1が収容されている。更に、缶胴21内には原水Q1の中に浸漬するように熱交換器22が配置されている。31は内部に原水Q2を収容する原水タンクであり、該原水タンク31の開口部は空気遮蔽体34で覆われ、更に上面は太陽光を透過する空気遮蔽体34’で覆われている。また、原水タンク31内には原水Q2の中に浸漬するように凝縮器32が配置されている。なお、凝縮器32は原水タンク31の底部に配置されている。
【0035】
上記構成の淡水化装置において、太陽熱集熱器10の集熱板12で集められた太陽エネルギー11は熱媒13を加熱し、該熱媒を気化する。該気化された熱媒13は熱交換器22へ流れ込み、該熱交換器22で原水Q1との間で熱交換を行い凝縮され、液体状の熱媒となって集熱板12に戻る。
【0036】
上記熱交換器22で熱媒13により加熱された原水Q1から水蒸気23が発生する。なお、缶胴21内は図示しない真空ポンプ等で減圧されており、水蒸気23の発生は盛んに行われる。該水蒸気23は配管24を通って原水タンク31内に配置された凝縮器32に流れ込む。凝縮器32では水蒸気23と原水Q2の間で熱交換が行われ水蒸気は凝縮し蒸留水Wとして回収されると共に、原水Q2は加温される。
【0037】
原水Q2が加温され水温が上昇すると凝縮器32の凝縮機能が衰えるので、ここでは放熱器40を設け、該放熱器40に原水タンク31内の原水Q2を循環させて原水Q2が有する熱を外部に放出する。また、空気遮蔽体34’を透過した太陽エネルギー11は原水Q2の上層部を加熱し、水蒸気33を発生する。該水蒸気33は空気遮蔽体34’の裏面で凝縮して蒸留水となって該空気遮蔽体34’の裏面を伝わって流下し、捕集樋35に集められ、蒸留水Wとして回収される。該捕集樋35による蒸留水Wの回収は空気遮蔽体34’の表面からの熱放散の多い夜間にも行われる。
【0038】
上記のように原水タンク31内の原水Q2を冷却する放熱器40を設けることにより、原水Q2の有する熱は温度上昇が抑制され、凝縮器32の凝縮能力低下は抑制される。特に夜間は上記空気遮蔽体34’の表面からの熱放散と放熱器40からの熱放出により、原水Q2はより効果的に冷却され、本淡水化装置の昼間の蒸留回収性能に貢献する。なお、原水タンク31の原水Q2の上層は水温が高いから、この水温の高い上層の原水Q2を蒸発用の原水Q1として蒸発缶20に供給することにより、蒸発缶20で蒸発は効率良く行われる。
【0039】
また、上記例では、蒸発缶20を1段としたが、図6に示すように2段以上複数段としてもよく、この場合最終段の蒸発缶20−3の蒸留水を凝縮器32に導くようにする。
【0040】
図2は請求項2に記載の発明に係る淡水化装置の構成例を示す図である。同図において、図1と同一符号を付した部分は同一又は相当部分を示す(以下、他の図面においても同様とする)。本淡水化装置が図1の淡水化装置と異なる点は、放熱器が原水タンク31内に配置された熱交換器41と原水タンク31外に配置された外部放熱器42を具備し、該熱交換器41と外部放熱器42を媒体通路43で接続し、媒体の蒸発・凝縮を繰り返し原水Q2を冷却するサーモサイフォン型の放熱器である点であり、他は図1の淡水化装置と同一である。
【0041】
上記のように放熱器を熱交換器41と外部放熱器42を媒体通路43で接続し、媒体の蒸発・凝縮を繰り返して原水を冷却するサーモサイフォン型の放熱器とすることにより、放熱のために特別な動力を必要とすることなく、原水Q2の有する熱を放出することができる。
【0042】
請求項3に記載の発明に係る淡水化装置は、その構成は図2に示す淡水化装置と同一であるが、媒体通路43を通る媒体を水とする。上記のように、(サーモサイホンを利用した)外部放熱器を設けることにより、外部放熱器42と媒体通路43の配管(海水等の塩水と接触しない場合)に耐蝕の材料を使用することなく、安価に材料を使用して価格の低減を図ることができる。更に外部放熱器42の材質を制約無く選定でき、効率のよい、銅やアルミニウム等の熱伝導性のよい材質を選定でき放熱効率の良い外部放熱器42を構成することができる。なお、該外部放熱器42としてヒートパイプを用いてもよいことは勿論である。
【0043】
図3は請求項4に記載の発明に係る淡水化装置の構成例を示す図である。本淡水化装置は上部に太陽熱集熱器10の集熱板12及び太陽電池50が配置されている。蒸発缶20、原水タンク31及び放熱器40は太陽エネルギー(太陽光)11が直接当たらない日陰等(集熱板12及び太陽電池50によって生じる日陰等)の場所、即ち、原水タンク31は外部からの入熱の少ない場所に、放熱器40は放熱に適した場所に配置する。なお、太陽電池50は、得られる電力で本淡水化装置が必要とする電力を賄うようにすることが望ましい。
【0044】
上記のように、原水タンク31及び放熱器40を太陽光が直接当たらない日陰等の入熱の少ない場所や放熱に適した場所に配置することにより、原水タンク31内の原水Q2の温度上昇が抑えられると共に、放熱器40の放熱効率が向上する。なお、図1及び図2に示す構成の淡水化装置においても、原水タンク31、放熱器40や外部放熱器42を日陰や入熱の少ない場所や放熱に適した場所に配置することにより、原水Q2の温度上昇が抑えられると共に、放熱器40の放熱効率を向上させることができることは当然である。
【0045】
図4は請求項5に記載の発明に係る淡水化装置の構成例を示す図である。放熱器の外部放熱器42を当該淡水化装置の内外の日陰部又は放熱に最適な場所に設置する。このように、外部放熱器42を淡水化装置の内外で、例えば夜間の天空放熱等で効率良く放熱できる場所に設置することにより、原水タンク31内の原水Q2の効率良い冷却をすることができる。なお、図1に示すように、原水タンク31内の原水Q2を直接循環させる形式の放熱器40も当該淡水化装置の内外の日陰部又は放熱に最適な場所に設定することにより、例えば夜間の天空放熱等を利用して原水タンク31内の原水Q2の効率良い冷却をすることができる。
【0046】
図5は請求項6に記載の発明に係る淡水化装置の構成例を示す図である。本淡水化装置は、放熱器の熱交換器41と外部放熱器42とを結ぶ媒体通路43に開閉弁44を設け、夜間は該開閉弁44を開いて原水タンク31内の原水Q2の熱を外部放熱器42を通して放熱し、日中外気温度が上昇し、原水タンク31内の原水Q2の温度が外気温度よりも低くなると、該開閉弁44を閉じるようにする。
【0047】
上記のように熱交換器41と外部放熱器42とを結ぶ媒体通路43に開閉弁44を設け、原水タンク31内の原水温度が外気温度よりも低い場合、該開閉弁44を閉じることにより、日中の気温上昇による外部からの原水タンク31の原水Q2への熱進入を防ぐことができる。開閉弁44の開閉は自動的に行うことも容易である。例えば原水Q2の水温を測定するセンサと外気温度を測定するセンサを設け、原水Q2の水温が外気温度より高い場合は開閉弁44を開き、原水Q2の水温が外気温度より低い場合は開閉弁44を閉じるように自動的に制御すればよい。
【0048】
なお、図1に示すように、原水タンク31内の原水Q2を直接循環させる形式の放熱器40でも原水の循環経路に開閉弁を設け、原水タンク31内の原水温度が外気温度よりも低い場合、該開閉弁44を閉じることにより、日中の気温上昇による外部からの原水タンク31の原水Q2への熱進入を防ぐことができる。
【0049】
図6は請求項7に記載の発明に係る淡水化装置の構成を示す図である。本淡水化装置は、複数台(図では3台)の蒸発缶20−1、20−2、20−3が配置され、第1の蒸発缶20−1で発生した水蒸気23は第2の蒸発缶20−2に配置された熱交換器22に流れ込み凝縮され蒸留水Wとして回収されると共に、第2の蒸発缶20−2で発生した水蒸気23は第3の蒸発缶20−3に配置された熱交換器22に流れ込み凝縮され蒸留水Wとして回収されるようになっている。
【0050】
上記構成の淡水化装置において、昼間で太陽が照っている時は、太陽熱集熱器10の集熱板12で加熱された熱媒13は第1の蒸発缶20−1の熱交換器22を通り原水Q1を加熱し、更に原水タンク31の上層部(原水Q2の水面近く)に配置した熱交換器37を通って太陽熱集熱器10の集熱板12に戻るようになっている。
【0051】
また、上記構成の淡水化装置において、太陽熱集熱器10の集熱板12は夜間に放熱機能を有するから、この夜間放熱機能を利用して原水タンク31内の放熱を行う。即ち、昼間の蒸留水Wを回収するサイクルでは熱媒13は、太陽熱集熱器10の集熱板12→第1の蒸発缶20−1の熱交換器22→原水タンク31の熱交換器37→集熱板12と流れるが、夜間はこれとは逆に矢印Aに示すように、原水タンク31の熱交換器37→第1の蒸発缶20−1の熱交換器22→集熱板12→熱交換器37と流れ、原水Q2が保有する熱を放熱する。
【0052】
ここで、熱交換器37には集熱板12の夜間放熱量と原水タンク31の原水Q2の必要冷却熱量とを勘案して必要伝熱面積を持たせることにより、夜間に原水Q2を必要冷却熱量だけ冷却させることができる。
【0053】
図7は請求項8に記載の発明に係る淡水化装置の構成例を示す図である。本淡水化装置が図6に示す淡水化装置と異なる点は、第1の蒸発缶20−1の熱交換器22をバイパスするための切替弁25、26を具備するバイパスライン27を設けた点である。そして夜間は該切替弁25、26を切り替え、熱媒13を熱交換器22をバイパスして矢印Aに示すように流すことにより、昼間の蒸留水回収サイクル(集熱サイクル)とは確実に逆のサイクルとして、太陽熱集熱器10の集熱板12の天空への夜間放熱により原水Q2の水温を効果的に下げることができる。
【0054】
図8は請求項9に記載の発明に係る淡水化装置の構成例を示す図である。本淡水化装置は、図7に示す構成の淡水化装置に原水タンク31の原水Q2を冷却するため、原水タンク31内に熱交換器41を配置すると共に、該原水タンク31外に外部放熱器42を設け、該熱交換器41と外部放熱器42を開閉弁と媒体通路で接続した構成である。
【0055】
上記のように、熱交換器41と外部放熱器42を設け、原水タンク31内の原水Q2を放熱により冷却することにより、更に効果的に原水Q2の水温を下げることができる。なお、この例では熱交換器41と外部放熱器42を設け、媒体を介して間接的に原水Q2を冷却するようにしているが、図1に示すように原水Q2を放熱器40に流し、放熱により原水Q2を直接的に冷却するように構成してもよい。
【0056】
図9は請求項10に記載の発明に係る淡水化装置の構成例を示す図である。本淡水化装置は、太陽エネルギーにより熱媒13を加熱する太陽熱集熱器10と、減圧式の蒸発缶20と、小容量の原水タンク31に収容された凝縮器32とを具備する。また、小容量の原水タンク31内には装置運転中ポンプ51により水蒸気の凝縮に必要な所定流量の原水を冷却水として供給し、同流量の原水を流出している。
【0057】
上記構成の淡水化装置において、太陽熱集熱器10の集熱板12で加熱された熱媒13は蒸発缶20の熱交換器22に流れ込み、原水Q1を加熱して、集熱板12に戻る。また、蒸発缶20で発生した水蒸気23は原水タンク31内に配置された凝縮器32で凝縮され、蒸留水Wとして回収される。凝縮器32の周りを流れる原水Q3の出口温度は入口温度より、例えば5℃以上高くならない流量の原水Q3を日中の運転時間に流すようにする。原水Q3を冷却源として使用するため、入口(供給)温度は低めに保たれており、冷却源温度も装置運転中は略一定に保つことができる。
【0058】
また、このような太陽エネルギーを利用した淡水化装置では太陽が登っている時だけの運転であり、熱量も太陽の日射量が地平面で単位面積当たり1kw/m2以下と非常に低いため、よって冷却源の流量も非常に少なくて良い。このことは冷却源の供給をポンプ51で行ったとしても小型で電力消費量が少なくて済む。従って、小容量の太陽電池を設置し、その発電電力で賄うことができる。
【0059】
図10は請求項11に記載の発明に係る淡水化装置の構成を示す図である。本淡水化装置が図9の淡水化装置と異なる点は、図9の原水タンク31及び凝縮器32の組合せに換えて熱交換器29を用いた点である。そして太陽熱集熱器10の集熱板12で加熱された熱媒13は蒸発缶20の熱交換器22に供給され、排出される熱媒13を集熱板12に戻す。
【0060】
熱交換器29としてシェル・チューブ型熱交換器を用いた場合、蒸発缶20内で発生した原水からの水蒸気はシェル・チューブ型熱交換器29のチューブ内に供給され、ポンプ51によりチューブ内に供給される原水Q3と熱交換され、凝縮水Wとなり回収される。このように蒸発缶20内で原水Q1から発生した水蒸気を凝縮させる凝縮器として熱交換器29を用い、例えばシェル・チューブ型熱交換器を用いた場合そのチューブ内に冷却源である原水Q3を供給し、シェル側を水蒸気とその凝縮側にすることにより、チューブ内の流速を確保でき伝熱性能の向上が図れると同時にシェル側材質に耐海水性でなく汎用のステンレス材等が使用ができ、価格の低減も図れる。
【0061】
なお、上記例では原水タンク31及び凝縮器32の組合せに換えてシェル・チューブ型熱交換器29を用いたが、シェル・チューブ型熱交換器に限定されるものではなく、例えばプレート型の熱交換器でもよく、熱交換器の種類は限定されるものではない。
【0062】
また、図9及び図10に示す淡水化装置において、原水タンク31及び熱交換器29から排出される原水Q4の流量は少ないが、その温度は入口温度より高いから、この排出される原水Q4を図11に示すように別途設けたタンク52に貯留し、この貯留した原水Q4を蒸発用の原水として蒸発缶20に供給することにより、装置として効率のよい蒸留能力、即ち蒸留水の回収が可能となる。これが請求項12に記載の発明に係る淡水化装置の構成例である。
【0063】
なお、上記例では、タンク52には図9及び図10に示す淡水化装置の原水タンク31及び熱交換器29からの加熱された原水を貯留するように構成したが、これに限定されるものではなく、図1乃至図8に示す淡水化装置において、蒸発缶20で発生した蒸気を凝縮する凝縮器32で加熱された原水を貯留し、ここから各蒸発缶20に供給するようにしてもよい。
【0064】
また、図12に示すように、水深の浅く上部が開口した水槽61を具備し、該水槽61の開口部を透光性のカバー62で覆った構成のベースン型の太陽熱蒸留器60を設け、該水槽61に図9及び図10の原水タンク31や蒸発缶20や熱交換器29から排出された原水Q4を貯留し、該貯留した原水Q4から蒸発した水蒸気をカバー62の裏面で凝結させ、捕集樋63で捕集して蒸留水Wを回収するように構成することもできる。これが請求項13に記載の発明に係る淡水化装置の構成例である。このようにベースン型の太陽熱蒸留器60を設けることにより、装置全体として蒸留能力が更に向上する。
【0065】
なお、上記例では、タンク52には図9及び図10に示す淡水化装置の原水タンク31及び熱交換器29からの加熱された原水を貯留するように構成したが、これに限定されるものではなく、図1乃至図8に示す淡水化装置の蒸発缶20で発生した蒸気を凝縮する凝縮器32で加熱された原水を水槽61に貯留するようにしてもよい。
【0066】
また、図13に示すように、水深の浅い広い面積を有するプール70を設け、該プール70に図9及び図10の原水タンク31や蒸発缶20や熱交換器29、図12のベースン型の太陽熱蒸留器60から排出された原水Q4、更には図1乃至図8に示す淡水化装置の蒸発缶20で発生した蒸気を凝縮する凝縮器32で加熱された原水を貯留し、太陽エネルギーで該貯留した原水Q4から水蒸気71を蒸発させることにより、該プール70に食塩72を析出させることができる。
【0067】
これにより、蒸留水の回収の他に、濃縮した原水(例えば海水)から食塩他、原水中に含まれる有用な塩類を回収することができる。これが請求項14に記載する発明に係る淡水化装置の構成例である。
【0068】
【発明の効果】
以上説明したように各請求項に記載の発明によれば、下記のような優れた効果がえられる。
【0069】
請求項1に記載の発明によれば、原水タンク内の原水を冷却する放熱器を具備するので、原水タンク内の原水の温度上昇が抑制され、蒸留性能が向上する。
【0070】
請求項2に記載の発明によれば、放熱器を原水タンク内に配置された熱交換器と外部放熱器を媒体通路で接続し、媒体の蒸発・凝縮を繰り返し原水を冷却するサーモサイフォン型の放熱器とするので、放熱のために特別な動力を必要とすることなく、原水の有する熱を放出することができる。
【0071】
請求項3に記載の発明によれば、熱交換器と放熱器の間で蒸発・凝縮を繰り返す媒体は水であるので、外部放熱器と原水タンク内に配置された熱交換器とを結ぶ配管(海水等の塩水と接触しない部分)に耐蝕の材料を使用することなく、安価な材料を使用して価格の低減を図ることができるだけでなく、外部放熱器の材質を制約無く選定でき、効率のよい、銅やアルミニウム等の熱伝導性のよい材質を選定でき放熱効率の良い外部放熱器を構成することができる。
【0072】
請求項4に記載の発明によれば、原水タンク及び放熱器は太陽光が直接当たらない日陰や入熱の少ない場所や放熱に適する場所に配置したので、原水タンク内の原水の温度上昇が抑えられると共に、放熱器の放熱効率が向上するから、更に原水の温度上昇を抑えることができる。
【0073】
請求項5に記載の発明によれば、放熱器や外部放熱器を淡水化装置の内外の日陰部又は放熱に最適な場所で夜間の天空放熱等を利用して効率良く放熱できる場所に設置するので、原水タンク内の原水の効率良い冷却が可能となる。
【0074】
請求項6に記載の発明によれば、原水タンクと放熱器との間を結ぶ原水通路又は熱交換器と外部放熱器との間を結ぶ媒体通路に開閉弁を設け、原水タンク内の原水温度が外気温度よりも低い場合、該開閉弁を閉じるので、日中の気温上昇により逆に外部からの原水タンクの原水への熱進入を防ぐことができる。
【0075】
請求項7に記載の発明によれば、夜間に原水タンク内の熱交換器を通して原水で加熱された熱媒の熱は太陽熱集熱器の集熱板を通して外部に放熱できるようになっているので、日中昇温した原水の熱を夜間に集熱板を通して効率良く放熱することができる。
【0076】
請求項8に記載の発明によれば、夜間に原水タンク内の熱交換器を通して原水で加熱された熱媒を蒸発缶の熱交換器をバイパスさせて太陽熱集熱器の集熱板に送るようにバイパス手段を設けるので、夜間の太陽熱集熱器の集熱板を通して行われる放熱は、日中の集熱サイクルとは完全な逆サイクルとなり、原水タンク内の原水の温度を効果的に下げることができる。
【0077】
請求項9に記載の発明によれば、原水タンク内の原水を直接又は間接的に冷却する放熱器を設けたので、原水タンク内の原水の温度を更に効果的に下げることができる。
【0078】
請求項10に記載の発明によれば、蒸発缶からの水蒸気を凝縮させる凝縮器は小容量のタンク内に収容され、該タンク内に水蒸気の凝縮に必要な所定流量の原水を冷却水として供給すると共に加温された同量の原水を排出するので、少ない供給原水流量で原水タンク内の原水の温度を運転中略一定に保つことができる。
【0079】
請求項11に記載の発明によれば、蒸発缶で発生した水蒸気を凝縮する凝縮器を熱交換器とするので、より少ない供給原水流量で原水タンク内の原水の温度を運転中略一定に保つことができる。
【0080】
請求項12に記載の発明によれば、蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水を別途設けた貯留タンクに貯留し、該貯留した原水を蒸発缶に蒸発用の原水として供給する手段を設けたので、凝縮器で加温された原水を有効に利用できるから、淡水化装置の蒸留性能が更に向上する。
【0081】
請求項13に記載の発明によれば、ベースン型の太陽熱蒸留器を設け、該太陽熱蒸留器の水槽に蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水を貯留し、蒸留水を得るように構成したので、装置全体として蒸留性能が更に向上する。
【0082】
請求項14に記載の発明によれば、水深の浅い広い面積を有するプールを設け、該プールに蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水及び/又は太陽熱蒸留器の水槽から排出される原水を貯留するので、該原水を太陽熱を利用して原水蒸発して食塩他、海水中の有用な塩類を回収することもできる。
【図面の簡単な説明】
【図1】請求項1に記載の発明に係る淡水化装置の構成例を示す図である。
【図2】請求項2に記載の発明に係る淡水化装置の構成例を示す図である。
【図3】請求項4に記載の発明に係る淡水化装置の構成例を示す図である。
【図4】請求項5に記載の発明に係る淡水化装置の構成例を示す図である。
【図5】請求項6に記載の発明に係る淡水化装置の構成例を示す図である。
【図6】請求項7に記載の発明に係る淡水化装置の構成例を示す図である。
【図7】請求項8に記載の発明に係る淡水化装置の構成例を示す図である。
【図8】請求項9に記載の発明に係る淡水化装置の構成例を示す図である。
【図9】請求項10に記載の発明に係る淡水化装置の構成例を示す図である。
【図10】請求項11に記載の発明に係る淡水化装置の構成例を示す図である。
【図11】請求項12に記載の発明に係る淡水化装置の構成例を示す図である。
【図12】請求項13に記載の発明に係る淡水化装置の構成例を示す図である。
【図13】請求項14に記載の発明に係る淡水化装置の構成例を示す図である。
【符号の説明】
10 太陽熱集熱器
11 太陽エネルギー
12 集熱板
13 熱媒
20 蒸発缶
20−1 蒸発缶
20−2 蒸発缶
20−3 蒸発缶
21 缶胴
22 熱交換器
23 水蒸気
24 配管
25 切替弁
26 切替弁
27 バイパスライン
29 熱交換器
31 原水タンク
32 凝縮器
33 水蒸気
34 空気遮蔽体
34’ 空気遮蔽体
35 捕集樋
37 熱交換器
40 放熱器
41 熱交換器
42 外部放熱器
43 媒体通路
44 開閉弁
50 太陽電池
51 ポンプ
52 タンク
60 太陽熱蒸留器
61 水槽
62 カバー
63 捕集樋
70 プール
71 水蒸気
72 食塩
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desalination apparatus that uses solar energy to obtain fresh water by distillation from raw water such as groundwater (brine water) containing seawater, salinity, and industrial wastewater.
[0002]
[Prior art]
Recently, interest in seawater desalination technology using solar energy has increased. The present applicant has also developed a “desalination apparatus and its operating method” using solar energy and has filed a patent application (97JP97002098). The desalination apparatus includes a solar heat collector having a heat collecting plate for collecting solar energy, and raw water accommodated in the heat exchanger as a heat source heated by the solar heat collector. A vacuum evaporator that exchanges heat between the raw water and generates steam from the raw water, and a raw water tank that stores the raw water, and heat exchange of the evaporator using a heat medium heated by a solar heat collector as a heating source The water vapor generated in the evaporator is supplied to a condenser in the raw water tank to obtain distilled water. And this raw water tank is covered with an air shield with good heat transfer performance with the outer surface as a heat radiating part and the inner surface as a condensing part, and collects condensed water by night heat radiation and improves the recovery efficiency of distilled water ing.
[0003]
In order to confirm the performance of the above desalination equipment, we conducted tests in Japan and in low-latitude dry areas (the Middle East area) where there is a large amount of solar radiation. As a result, a predetermined capacity can be obtained stably, and the unit yield (per heat collection area) is also 12.5 kg / m. 2 From the above, it was confirmed that the performance of the solar thermal desalination device that had been proposed in the past was greatly exceeded.
[0004]
[Problems to be solved by the invention]
In the experiment for confirming the performance of the above desalination equipment, the obtained operation data was analyzed. The temperature rise of the raw water in the raw water tank was as designed, but the condensation capacity (cooling capacity) was further improved. It was found to be important for improving performance. That is, it is an important point of performance improvement to suppress the temperature rise of the raw water in the raw water tank as a cooling source as much as possible.
[0005]
This invention is made | formed in view of the above-mentioned point, and it aims at providing the desalination apparatus which can suppress the temperature rise of the raw | natural water of a raw | natural water tank, and can aim at the improvement of distillation performance.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention described in claim 1 is a desalination apparatus that uses solar energy, and includes a solar heat collector that heats a heat medium with solar energy, and a heat exchanger. A decompression evaporator that generates heat from the raw water by exchanging heat with the raw water housed in the heat exchanger as a heating source heated by the vessel, and raw water containing the raw water A condenser that is disposed in the tank and receives steam generated in the evaporator and exchanges heat with the raw water to obtain distilled water, and a radiator that directly or indirectly cools the raw water in the raw water tank. It is characterized by that.
[0007]
By providing the radiator that cools the raw water in the raw water tank as described above, the temperature rise of the raw water in the raw water tank is suppressed, and the distillation performance is improved.
[0008]
The invention described in claim 2 is the desalination apparatus according to claim 1, wherein the radiator for indirectly cooling the raw water comprises a heat exchanger and an external radiator arranged in the raw water tank, It is a thermosiphon type radiator that connects the heat exchanger and an external radiator through a medium passage and cools raw water by repeating evaporation and condensation of the medium.
[0009]
By using a thermosiphon type that cools raw water by repeatedly evaporating and condensing the medium as described above, the heat of the raw water can be released without requiring special power for heat dissipation. .
[0010]
The invention described in claim 3 is the desalination apparatus according to claim 2, wherein the medium that repeats evaporation and condensation between the heat exchanger and the radiator is water.
[0011]
As described above, by providing an external radiator (using a thermosiphon), the external radiator and a pipe connecting the external radiator and the heat exchanger disposed in the raw water tank (contact with salt water such as seawater) If not, you can reduce the price by using inexpensive materials without using corrosion-resistant materials, and you can select the material of the external heatsink without any restrictions, and efficient copper, aluminum, etc. Therefore, it is possible to select a material having good heat conductivity and to configure an external heat radiator with good heat radiation efficiency. Here, it is of course possible to use a heat pipe that takes into account the material of the portion in contact with seawater.
[0012]
The invention described in claim 4 is the desalination apparatus according to any one of claims 1 to 3, wherein the raw water tank is located in a shaded part inside or outside the desalination apparatus or in a place where heat input to the raw water tank is small. It is arranged.
[0013]
Further, the invention according to claim 5 is the desalination apparatus according to any one of claims 1 to 3, wherein the radiator or the external radiator is located in a shaded part inside or outside the desalination apparatus or a place optimal for heat dissipation. It is characterized by installing.
[0014]
As mentioned above, the raw water tank and radiator are placed in the shade where sunlight is not directly hit, the place with little heat input and the optimal place for heat radiation, so the temperature rise of the raw water in the raw water tank can be suppressed and the radiator Therefore, the temperature rise of the raw water can be further suppressed.
[0015]
In addition, as described above, the radiator or external radiator is installed in a shaded area inside or outside the desalination unit or in a place where heat can be efficiently radiated using night sky heat radiation, etc. The raw water can be efficiently cooled.
[0016]
The invention described in claim 6 is the desalination apparatus according to any one of claims 1 to 5, wherein the raw water passage or the heat exchanger connecting the raw water tank and the radiator and the external radiator are provided. An opening / closing valve is provided in the medium passage connecting the two, and when the raw water temperature in the raw water tank is lower than the outside air temperature, the opening / closing valve is closed.
[0017]
When an open / close valve is provided in the raw water passage connecting the raw water tank and the radiator or the medium passage connecting the heat exchanger and the external radiator as described above, and the raw water temperature in the raw water tank is lower than the outside air temperature By closing the on-off valve, it is possible to prevent heat from entering the raw water in the raw water tank from the outside due to an increase in daytime temperature.
[0018]
The invention described in claim 7 is a desalination apparatus that uses solar energy, and includes a solar heat collector that heats a heat medium with solar energy and a heat exchanger, and is heated by the solar heat collector. The depressurization evaporator that generates heat vapor from the raw water by exchanging heat with the raw water contained in the heat exchanger using the heated heat medium as a heating source, and condensing the water vapor generated in the evaporator A condenser for obtaining distilled water, and a heat exchanger for exchanging heat with the raw water by passing a heat medium disposed in the raw water tank containing the raw water and passing through the heat exchanger in the evaporator. The heat medium heated by the raw water through the heat exchanger in the raw water tank at night is radiated to the outside through the heat collecting plate of the solar heat collector.
[0019]
As mentioned above, the heat of the raw water in the raw water tank is radiated through the heat collecting plate of the solar heat collector at night, so that the heat of the raw water heated up day and day can be efficiently radiated through the heat collecting plate at night. Can do.
[0020]
The invention described in claim 8 is the desalination apparatus according to claim 7, wherein a bypass means for bypassing the heat exchanger of the evaporator is provided, and is heated with raw water through the heat exchanger in the raw water tank at night. The heated heat medium is sent to a heat collecting plate of a solar heat collector.
[0021]
By providing the bypass means as described above, the heat medium heated with raw water through the heat exchanger in the raw water tank at night is sent to the heat collecting plate of the solar heat collector by bypassing the heat exchanger of the evaporator. Therefore, the heat radiation performed through the heat collecting plate of the solar collector at night becomes a completely reverse cycle with respect to the daytime heat collecting cycle, and the temperature of the raw water in the raw water tank can be effectively lowered.
[0022]
The invention described in claim 9 is characterized in that, in the desalination apparatus according to claim 7 or claim 8, a radiator for cooling the raw water in the raw water tank directly or indirectly is provided.
[0023]
As described above, by providing the desalination apparatus according to claim 7 or claim 8 with a radiator that directly or indirectly cools raw water, the temperature of the raw water in the raw water tank can be further effectively lowered. it can.
[0024]
The invention described in claim 10 is a desalination apparatus using solar energy, comprising a solar heat collector that heats a heat medium with solar energy, and a heat exchanger, and is heated by the solar heat collector. The depressurization evaporator that generates heat vapor from the raw water by exchanging heat with the raw water contained in the heat exchanger using the heated heat medium as a heating source, and condensing the water vapor generated in the evaporator The condenser is housed in a small-capacity tank, and supplies the raw water at a predetermined flow rate necessary for condensing the water vapor as cooling water into the tank and heats the same amount of raw water. It is characterized by discharging.
[0025]
As described above, a condenser for condensing water vapor generated in the evaporator is housed in a small-capacity tank, and a predetermined flow rate of raw water necessary for water vapor condensation is supplied into the tank as cooling water and heated. Since the same amount of raw water is discharged, the temperature of the raw water in the raw water tank can be kept substantially constant during operation with a small flow rate of the raw water supply.
[0026]
The invention described in claim 11 is the desalination apparatus according to claim 10, characterized in that a combination of a condenser and a small capacity tank is used as a heat exchanger.
[0027]
By combining a condenser and a small capacity tank as described above, for example, a shell-and-tube heat exchanger or a plate-type heat exchanger, the temperature of the raw water can be made substantially constant during operation with a smaller supply raw water flow rate. Can keep.
[0028]
Further, the invention according to claim 12 is the desalination apparatus according to any one of claims 1 to 11, wherein the raw water heated by the condenser for condensing the water vapor generated in the evaporator is separately provided. A means for storing in the tank and supplying the stored raw water to the evaporator as raw water for evaporation is provided.
[0029]
The raw water heated by the condenser that condenses the water vapor generated in the evaporator has a high water temperature. By supplying this raw water to the evaporator as the raw water for evaporation, the raw water heated by the condenser is used effectively. Therefore, the distillation capacity of the desalination apparatus is further improved.
[0030]
The invention described in claim 13 is the desalination apparatus according to any one of claims 1 to 12, further comprising a water tank having a shallow water depth and an open top, and the opening of the water tank is made translucent. A basin type solar distiller covered with a cover is provided, and raw water heated by a condenser for condensing water vapor generated in an evaporator is stored in a water tank of the solar distiller to obtain distilled water. It is characterized by that.
[0031]
By providing a basin type solar distiller as described above and storing the raw water heated by the condenser in the water tank of the solar distiller to obtain distilled water, the distillation capacity of the entire apparatus is further increased. improves.
[0032]
The invention described in claim 14 is the desalination apparatus according to any one of claims 1 to 13, wherein a pool having a large area with a shallow water depth is provided, and the water vapor generated in the evaporator is provided in the pool. The raw water heated by the condenser which condenses the water and / or the raw water discharged from the tank of the solar heat distiller is stored, and the salt from the raw water using the solar heat, useful salts in the raw water (for example, seawater) It is characterized by collect | recovering.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration example of a desalination apparatus according to the first aspect of the present invention. The desalination apparatus includes a solar heat collector 10, an evaporator 20, and a radiator 40.
[0034]
The solar heat collector 10 includes a heat collecting plate 12 that collects solar energy 11 and heats the heat medium 13. The evaporating can 20 has a can body 21 in which the raw water Q 1 Is housed. Furthermore, in the can body 21, raw water Q 1 The heat exchanger 22 is arranged so as to be immersed in the inside. 31 is raw water Q inside 2 The opening of the raw water tank 31 is covered with an air shield 34, and the upper surface is covered with an air shield 34 ′ that transmits sunlight. The raw water tank 31 has a raw water Q 2 A condenser 32 is arranged so as to be immersed therein. The condenser 32 is disposed at the bottom of the raw water tank 31.
[0035]
In the desalination apparatus having the above configuration, the solar energy 11 collected by the heat collecting plate 12 of the solar heat collector 10 heats the heat medium 13 and vaporizes the heat medium. The vaporized heat medium 13 flows into the heat exchanger 22 where the raw water Q 1 The heat exchange is performed between the heat collecting plate 12 and the heat collecting plate 12.
[0036]
Raw water Q heated by the heat medium 13 in the heat exchanger 22 1 Steam 23 is generated from the water. The inside of the can body 21 is depressurized by a vacuum pump or the like (not shown), and the generation of the water vapor 23 is actively performed. The water vapor 23 flows through a pipe 24 into a condenser 32 disposed in the raw water tank 31. In the condenser 32, the water vapor 23 and the raw water Q 2 The water is exchanged between the steam and water vapor is condensed and recovered as distilled water W. 2 Is warmed.
[0037]
Raw water Q 2 When the water temperature rises and the water temperature rises, the condensing function of the condenser 32 declines. Therefore, a radiator 40 is provided here, and the raw water Q in the raw water tank 31 is provided in the radiator 40. 2 Circulate the raw water Q 2 Dissipates the heat of the outside. Moreover, the solar energy 11 which permeate | transmitted air shield 34 'is raw water Q 2 The upper layer part is heated to generate water vapor 33. The water vapor 33 condenses on the back surface of the air shield 34 ′ to form distilled water, flows down through the back surface of the air shield 34 ′, is collected in a collection tank 35, and is recovered as distilled water W. The recovery of the distilled water W by the collection tank 35 is also performed at night when there is a lot of heat dissipation from the surface of the air shield 34 '.
[0038]
Raw water Q in the raw water tank 31 as described above 2 By providing a radiator 40 that cools the raw water Q 2 As for the heat which has, temperature rise is suppressed and the condensing capability fall of the condenser 32 is suppressed. Especially at night, the raw water Q is radiated by heat dissipation from the surface of the air shield 34 ′ and heat release from the radiator 40. 2 Is more effectively cooled and contributes to the daytime distillation recovery performance of the desalination unit. Raw water Q of raw water tank 31 2 The upper layer has a high water temperature, so the upper raw water Q 2 Raw water Q for evaporation 1 As a result, the evaporation can be efficiently performed in the evaporator 20.
[0039]
In the above example, the evaporator 20 has one stage, but it may have two or more stages as shown in FIG. 6. In this case, the distilled water of the final stage evaporator 20-3 is led to the condenser 32. Like that.
[0040]
FIG. 2 is a view showing a configuration example of a desalination apparatus according to the invention described in claim 2. In the same figure, the part which attached | subjected the same code | symbol as FIG. 1 shows the same or equivalent part (Hereinafter, it is the same also in other drawings.). This desalination apparatus differs from the desalination apparatus of FIG. 1 in that a radiator is provided with a heat exchanger 41 disposed in the raw water tank 31 and an external radiator 42 disposed outside the raw water tank 31, and the heat The exchanger 41 and the external radiator 42 are connected by a medium passage 43 and the raw water Q is repeatedly evaporated and condensed. 2 1 is the same as that of the desalination apparatus of FIG.
[0041]
As described above, by connecting the heat exchanger 41 and the external radiator 42 through the medium passage 43 as described above, a thermosiphon type radiator that cools raw water by repeatedly evaporating and condensing the medium is used for heat dissipation. Raw water Q without requiring special power 2 The heat possessed by can be released.
[0042]
The desalination apparatus according to the invention described in claim 3 has the same configuration as the desalination apparatus shown in FIG. 2, but uses a medium passing through the medium passage 43 as water. As described above, by providing an external radiator (using a thermosiphon), without using a corrosion-resistant material for the piping of the external radiator 42 and the medium passage 43 (when not in contact with salt water such as seawater), The price can be reduced by using materials at low cost. Furthermore, the material of the external radiator 42 can be selected without restriction, and an efficient external radiator 42 with good heat dissipation efficiency can be configured by selecting an efficient material with good thermal conductivity such as copper or aluminum. Of course, a heat pipe may be used as the external radiator 42.
[0043]
FIG. 3 is a diagram showing a configuration example of a desalination apparatus according to the invention as set forth in claim 4. In this desalination apparatus, the heat collecting plate 12 and the solar cell 50 of the solar heat collector 10 are arranged on the upper part. The evaporator 20, the raw water tank 31 and the radiator 40 are located in a shade or the like where the solar energy (sunlight) 11 is not directly applied (the shade generated by the heat collecting plate 12 and the solar cell 50), that is, the raw water tank 31 is externally provided. The radiator 40 is arranged in a place suitable for heat radiation in a place where there is little heat input. In addition, it is desirable for the solar cell 50 to cover the electric power which this desalination apparatus requires with the electric power obtained.
[0044]
As described above, by arranging the raw water tank 31 and the radiator 40 in a place with little heat input such as shade where sunlight does not directly hit or a place suitable for heat radiation, the raw water Q in the raw water tank 31 is disposed. 2 Is suppressed, and the heat dissipation efficiency of the radiator 40 is improved. In the desalination apparatus having the configuration shown in FIGS. 1 and 2, the raw water tank 31, the radiator 40, and the external radiator 42 are disposed in the shade, a place with little heat input, or a place suitable for heat radiation. Q 2 As a matter of course, the temperature rise of the radiator 40 can be suppressed and the heat dissipation efficiency of the radiator 40 can be improved.
[0045]
FIG. 4 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 5. An external radiator 42 of the radiator is installed in a shaded part inside or outside the desalination apparatus or a place optimal for heat radiation. In this way, by installing the external radiator 42 inside and outside the desalination apparatus, for example, in a place where heat can be efficiently radiated by, for example, night sky heat radiation, the raw water Q in the raw water tank 31 is obtained. 2 Can be cooled efficiently. In addition, as shown in FIG. 1, the raw water Q in the raw water tank 31 2 The radiator 40 of the type that directly circulates the raw water Q in the raw water tank 31 by using, for example, night sky heat radiation or the like, is set in the shaded area inside or outside the desalination apparatus or in an optimum place for heat radiation. 2 Can be cooled efficiently.
[0046]
FIG. 5 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 6. In this desalination apparatus, an on-off valve 44 is provided in a medium passage 43 connecting the heat exchanger 41 of the radiator and the external radiator 42, and the on-off valve 44 is opened at night to open the raw water Q in the raw water tank 31. 2 Heat is radiated through the external radiator 42, the outdoor air temperature rises during the day, and the raw water Q in the raw water tank 31 2 When the temperature becomes lower than the outside air temperature, the on-off valve 44 is closed.
[0047]
As described above, the opening / closing valve 44 is provided in the medium passage 43 connecting the heat exchanger 41 and the external radiator 42. When the raw water temperature in the raw water tank 31 is lower than the outside air temperature, the opening / closing valve 44 is closed, Raw water Q of raw water tank 31 from outside due to temperature rise during the day 2 Heat entry into the can be prevented. The on-off valve 44 can be easily opened and closed automatically. For example, raw water Q 2 A sensor for measuring the water temperature of the water and a sensor for measuring the outside air temperature are provided. 2 When the water temperature is higher than the outside air temperature, the on-off valve 44 is opened and the raw water Q 2 When the water temperature is lower than the outside air temperature, the on-off valve 44 may be automatically controlled to be closed.
[0048]
In addition, as shown in FIG. 1, the raw water Q in the raw water tank 31 2 In the radiator 40 of the type that directly circulates water, an open / close valve is provided in the raw water circulation path. When the raw water temperature in the raw water tank 31 is lower than the outside air temperature, the open / close valve 44 is closed to increase the daytime temperature Raw water Q of raw water tank 31 from outside 2 Heat entry into the can be prevented.
[0049]
FIG. 6 is a view showing a configuration of a desalination apparatus according to the invention as set forth in claim 7. In this desalination apparatus, a plurality of (three in the figure) evaporators 20-1, 20-2, 20-3 are arranged, and the water vapor 23 generated in the first evaporator 20-1 is second evaporated. It flows into the heat exchanger 22 disposed in the can 20-2, is condensed and recovered as distilled water W, and the water vapor 23 generated in the second evaporator 20-2 is disposed in the third evaporator 20-3. It flows into the heat exchanger 22 and is condensed and recovered as distilled water W.
[0050]
In the desalination apparatus having the above configuration, when the sun is shining in the daytime, the heat medium 13 heated by the heat collecting plate 12 of the solar heat collector 10 is used as the heat exchanger 22 of the first evaporator 20-1. Through the raw water Q 1 The upper part of the raw water tank 31 (raw water Q 2 It returns to the heat collecting plate 12 of the solar heat collector 10 through the heat exchanger 37 disposed near the water surface.
[0051]
Moreover, in the desalination apparatus of the said structure, since the heat collecting plate 12 of the solar-heat collector 10 has a heat dissipation function at night, it heat-radiates in the raw | natural water tank 31 using this night heat dissipation function. That is, in the cycle for collecting the distilled water W in the daytime, the heat medium 13 is converted into the heat collecting plate 12 of the solar heat collector 10 → the heat exchanger 22 of the first evaporator 20-1 → the heat exchanger 37 of the raw water tank 31. → Although it flows with the heat collecting plate 12, as indicated by an arrow A on the contrary, at night, the heat exchanger 37 of the raw water tank 31 → the heat exchanger 22 of the first evaporator 20-1 → the heat collecting plate 12 → Flow with heat exchanger 37, raw water Q 2 Dissipates the heat held by.
[0052]
Here, the heat exchanger 37 includes a night heat radiation amount of the heat collecting plate 12 and a raw water Q of the raw water tank 31. 2 Raw water Q at night by giving the necessary heat transfer area in consideration of the required amount of cooling heat 2 Can be cooled only by the required amount of cooling heat.
[0053]
FIG. 7 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 8. The point in which this desalination apparatus differs from the desalination apparatus shown in FIG. 6 is the point which provided the bypass line 27 which comprises the switching valves 25 and 26 for bypassing the heat exchanger 22 of the 1st evaporator 20-1. It is. At night, the switching valves 25 and 26 are switched, and the heat medium 13 is bypassed through the heat exchanger 22 to flow as shown by the arrow A, so that it is surely opposite to the daytime distilled water recovery cycle (heat collection cycle). As a cycle of the raw water Q by night heat radiation to the sky of the heat collecting plate 12 of the solar heat collector 10 2 The water temperature can be effectively reduced.
[0054]
FIG. 8 is a diagram showing a configuration example of a desalination apparatus according to the ninth aspect of the present invention. The desalination apparatus includes a raw water Q in the raw water tank 31 in addition to the desalination apparatus having the configuration shown in FIG. 2 A heat exchanger 41 is disposed in the raw water tank 31 and an external radiator 42 is provided outside the raw water tank 31, and the heat exchanger 41 and the external radiator 42 are connected by an on-off valve and a medium passage. This is the configuration.
[0055]
As described above, the heat exchanger 41 and the external radiator 42 are provided, and the raw water Q in the raw water tank 31 is provided. 2 The raw water Q is more effectively cooled by cooling 2 The water temperature can be lowered. In this example, a heat exchanger 41 and an external radiator 42 are provided, and the raw water Q is indirectly supplied via a medium. 2 The raw water Q as shown in FIG. 2 The raw water Q through the radiator 40 2 You may comprise so that it may cool directly.
[0056]
FIG. 9 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 10. The desalination apparatus includes a solar heat collector 10 that heats the heat medium 13 with solar energy, a vacuum evaporator 20, and a condenser 32 that is accommodated in a small-capacity raw water tank 31. Further, in the small-capacity raw water tank 31, a predetermined flow rate of raw water necessary for condensation of water vapor is supplied as cooling water by the pump 51 during operation of the apparatus, and the same flow rate of raw water is discharged.
[0057]
In the desalination apparatus having the above configuration, the heat medium 13 heated by the heat collecting plate 12 of the solar heat collector 10 flows into the heat exchanger 22 of the evaporator 20, and the raw water Q 1 Is returned to the heat collecting plate 12. Further, the water vapor 23 generated in the evaporator 20 is condensed by a condenser 32 disposed in the raw water tank 31 and recovered as distilled water W. Raw water Q flowing around the condenser 32 Three The raw water Q has a flow rate that does not exceed the inlet temperature by more than 5 ° C, for example Three To run during daytime driving hours. Raw water Q Three Is used as a cooling source, the inlet (supply) temperature is kept low, and the cooling source temperature can be kept substantially constant during operation of the apparatus.
[0058]
In addition, such a desalination apparatus using solar energy is operated only when the sun is climbing, and the amount of heat is 1 kW / m per unit area when the solar radiation is on the ground plane. 2 Therefore, the flow rate of the cooling source may be very small. This means that even if the cooling source is supplied by the pump 51, it is small and consumes less power. Therefore, a small-capacity solar cell can be installed and covered with the generated power.
[0059]
FIG. 10 is a diagram showing a configuration of a desalination apparatus according to the invention as set forth in claim 11. This desalination apparatus differs from the desalination apparatus of FIG. 9 in that a heat exchanger 29 is used instead of the combination of the raw water tank 31 and the condenser 32 of FIG. The heat medium 13 heated by the heat collecting plate 12 of the solar heat collector 10 is supplied to the heat exchanger 22 of the evaporator 20, and the discharged heat medium 13 is returned to the heat collecting plate 12.
[0060]
When a shell-and-tube type heat exchanger is used as the heat exchanger 29, water vapor from the raw water generated in the evaporator 20 is supplied into the tube of the shell-and-tube type heat exchanger 29 and is pumped into the tube by the pump 51. Raw water Q to be supplied Three The water is exchanged with heat and condensed water W is recovered. Thus, raw water Q in the evaporator 20 1 When the heat exchanger 29 is used as a condenser for condensing water vapor generated from, for example, a shell / tube type heat exchanger, the raw water Q as a cooling source is provided in the tube. Three By making the shell side water vapor and its condensation side, the flow rate in the tube can be secured and heat transfer performance can be improved.At the same time, the shell side material is not seawater resistant but general-purpose stainless steel is used. Can also reduce the price.
[0061]
In the above example, the shell-and-tube heat exchanger 29 is used in place of the combination of the raw water tank 31 and the condenser 32. However, the shell-and-tube heat exchanger 29 is not limited to the shell-and-tube heat exchanger. An exchanger may be used, and the type of heat exchanger is not limited.
[0062]
Moreover, in the desalination apparatus shown in FIG.9 and FIG.10, the raw water Q discharged | emitted from the raw water tank 31 and the heat exchanger 29 Four The flow rate of the water is small, but its temperature is higher than the inlet temperature, so this raw water Q discharged Four 11 is stored in a separately provided tank 52 as shown in FIG. Four Is supplied to the evaporator 20 as raw water for evaporation, so that an efficient distillation capacity as an apparatus, that is, recovery of distilled water becomes possible. This is a configuration example of a desalination apparatus according to the invention described in claim 12.
[0063]
In the above example, the tank 52 is configured to store the heated raw water from the raw water tank 31 and the heat exchanger 29 of the desalination apparatus shown in FIGS. 9 and 10, but is not limited thereto. Instead, in the desalination apparatus shown in FIGS. 1 to 8, the raw water heated by the condenser 32 that condenses the vapor generated in the evaporator 20 is stored and supplied to each evaporator 20 from here. Good.
[0064]
Further, as shown in FIG. 12, a water tank 61 having a shallow water depth and an open top is provided, and a basin type solar still 60 having a configuration in which the opening of the water tank 61 is covered with a translucent cover 62 is provided. Raw water Q discharged from the raw water tank 31, the evaporator 20, and the heat exchanger 29 of FIGS. 9 and 10 into the water tank 61. Four And the stored raw water Q Four It is also possible to condense the water vapor evaporated from the back surface of the cover 62 and collect the distilled water W by collecting the water vapor with the collecting rod 63. This is a configuration example of the desalination apparatus according to the invention described in claim 13. By providing the Basin type solar still 60 in this way, the distillation capacity of the entire apparatus is further improved.
[0065]
In the above example, the tank 52 is configured to store the heated raw water from the raw water tank 31 and the heat exchanger 29 of the desalination apparatus shown in FIGS. 9 and 10, but is not limited thereto. Instead, the raw water heated by the condenser 32 that condenses the steam generated in the evaporator 20 of the desalination apparatus shown in FIGS. 1 to 8 may be stored in the water tank 61.
[0066]
Further, as shown in FIG. 13, a pool 70 having a shallow area with a shallow water depth is provided, and the raw water tank 31, the evaporator 20, the heat exchanger 29 of FIGS. 9 and 10, and the Basin type of FIG. Raw water Q discharged from the solar still 60 Four Furthermore, the raw water heated by the condenser 32 that condenses the vapor generated in the evaporator 20 of the desalination apparatus shown in FIGS. 1 to 8 is stored, and the raw water Q stored by solar energy is stored. Four The salt water 72 can be deposited in the pool 70 by evaporating the water vapor 71 from the water.
[0067]
Thereby, in addition to the recovery of distilled water, it is possible to recover salt and other useful salts contained in the raw water from the concentrated raw water (for example, seawater). This is a configuration example of the desalination apparatus according to the invention described in claim 14.
[0068]
【The invention's effect】
As described above, according to the invention described in each claim, the following excellent effects can be obtained.
[0069]
According to invention of Claim 1, since the heat radiator which cools the raw | natural water in a raw | natural water tank is comprised, the temperature rise of the raw | natural water in a raw | natural water tank is suppressed and distillation performance improves.
[0070]
According to the second aspect of the present invention, a thermosiphon-type heat exchanger is connected to the heat exchanger disposed in the raw water tank and the external radiator through the medium passage, and the raw water is cooled by repeating evaporation and condensation of the medium. Since it is a radiator, the heat of raw water can be released without requiring special power for heat dissipation.
[0071]
According to the invention described in claim 3, since the medium that repeats evaporation and condensation between the heat exchanger and the radiator is water, the pipe connecting the external radiator and the heat exchanger arranged in the raw water tank It is possible not only to reduce the price by using inexpensive materials, but also to select the material of the external heatsink without any restrictions without using a corrosion-resistant material (the part that does not come into contact with salt water such as seawater), and the efficiency Therefore, it is possible to select a material with good thermal conductivity such as copper or aluminum, and to configure an external radiator with good heat dissipation efficiency.
[0072]
According to the invention described in claim 4, since the raw water tank and the radiator are arranged in the shade where the sunlight does not directly hit, a place with little heat input or a place suitable for heat radiation, the temperature rise of the raw water in the raw water tank is suppressed. In addition, since the heat dissipation efficiency of the radiator is improved, the temperature rise of the raw water can be further suppressed.
[0073]
According to the invention described in claim 5, the radiator and the external radiator are installed in the shaded part inside and outside the desalination apparatus or in a place where heat can be efficiently radiated using the sky heat radiation at night or the like. Therefore, efficient cooling of the raw water in the raw water tank becomes possible.
[0074]
According to the invention described in claim 6, the open / close valve is provided in the raw water passage connecting the raw water tank and the radiator or the medium passage connecting the heat exchanger and the external radiator, and the raw water temperature in the raw water tank is increased. When the temperature is lower than the outside air temperature, the on-off valve is closed, so that it is possible to prevent heat from entering the raw water in the raw water tank from the outside due to an increase in daytime temperature.
[0075]
According to the seventh aspect of the present invention, the heat of the heating medium heated by the raw water through the heat exchanger in the raw water tank at night can be radiated to the outside through the heat collecting plate of the solar heat collector. The heat of the raw water heated during the day can be efficiently radiated through the heat collecting plate at night.
[0076]
According to the eighth aspect of the present invention, the heat medium heated by the raw water through the heat exchanger in the raw water tank at night is sent to the heat collecting plate of the solar heat collector by bypassing the heat exchanger of the evaporator. Since the bypass means is installed in the solar heat collector at night, the heat radiation performed through the solar collector plate is completely opposite to the daytime heat collection cycle, effectively reducing the temperature of the raw water in the raw water tank. Can do.
[0077]
According to the ninth aspect of the present invention, since the radiator for directly or indirectly cooling the raw water in the raw water tank is provided, the temperature of the raw water in the raw water tank can be further effectively reduced.
[0078]
According to the invention described in claim 10, the condenser for condensing the water vapor from the evaporator is housed in a small-capacity tank, and the raw water having a predetermined flow rate necessary for condensing the water vapor is supplied as cooling water into the tank. In addition, since the same amount of heated raw water is discharged, the temperature of the raw water in the raw water tank can be kept substantially constant during operation with a small flow rate of the supplied raw water.
[0079]
According to the eleventh aspect of the present invention, since the condenser that condenses the water vapor generated in the evaporator is used as a heat exchanger, the temperature of the raw water in the raw water tank is kept substantially constant during operation with a smaller supply raw water flow rate. Can do.
[0080]
According to invention of Claim 12, the raw | natural water heated with the condenser which condenses the water vapor | steam which generate | occur | produced with the evaporator can be stored in the storage tank provided separately, and this stored raw water can be used as a raw water for evaporation to an evaporator. Since the means for supplying is provided, the raw water heated by the condenser can be used effectively, so that the distillation performance of the desalination apparatus is further improved.
[0081]
According to the invention of claim 13, a basin-type solar still is provided, and raw water heated by a condenser that condenses water vapor generated in an evaporator is stored in a water tank of the solar still, and distilled water is stored. Since it was comprised so that it might obtain, distillation performance as a whole apparatus further improves.
[0082]
According to the invention described in claim 14, a pool having a wide area with a shallow water depth is provided, and from the raw water heated by the condenser for condensing the water vapor generated in the evaporator and / or the tank of the solar distiller. Since the discharged raw water is stored, the raw water is evaporated using solar heat to recover salt and other useful salts in seawater.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration example of a desalination apparatus according to the first aspect of the present invention.
FIG. 2 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 2;
FIG. 3 is a diagram showing a configuration example of a desalination apparatus according to the invention as set forth in claim 4;
FIG. 4 is a diagram showing a configuration example of a desalination apparatus according to the invention as set forth in claim 5;
FIG. 5 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 6;
6 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 7. FIG.
FIG. 7 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 8;
FIG. 8 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 9;
FIG. 9 is a diagram showing a configuration example of a desalination apparatus according to the invention described in claim 10;
FIG. 10 is a diagram showing a configuration example of a desalination apparatus according to the invention as set forth in claim 11;
FIG. 11 is a diagram showing a configuration example of a desalination apparatus according to the invention of claim 12;
12 is a diagram showing a configuration example of a desalination apparatus according to the invention of claim 13. FIG.
FIG. 13 is a diagram showing a configuration example of a desalination apparatus according to the invention as set forth in claim 14;
[Explanation of symbols]
10 Solar collector
11 Solar energy
12 Heat collecting plate
13 Heating medium
20 Evaporator
20-1 Evaporator
20-2 Evaporator
20-3 Evaporator
21 Can body
22 Heat exchanger
23 Water vapor
24 Piping
25 Switching valve
26 Switching valve
27 Bypass line
29 Heat exchanger
31 Raw water tank
32 Condenser
33 Water vapor
34 Air shield
34 'Air shield
35 Collection Trap
37 heat exchanger
40 radiator
41 heat exchanger
42 External radiator
43 Media passage
44 On-off valve
50 solar cells
51 pump
52 tanks
60 Solar Distiller
61 Aquarium
62 Cover
63 Catching Trap
70 pool
71 water vapor
72 salt

Claims (14)

太陽エネルギーを利用する淡水化装置であって、
太陽エネルギーにより熱媒を加熱する太陽熱集熱器と、熱交換器を具備し前記太陽熱集熱器で加熱された熱媒を加熱源として該熱交換器で内部に収容している原水との間で熱交換を行い該原水から水蒸気を発生させる減圧式の蒸発缶と、原水を収容した原水タンク内に配置され前記蒸発缶で発生した水蒸気を受入れ該原水との間で熱交換を行い蒸留水を得る凝縮器と、前記原水タンク内の原水を直接又は間接的に冷却する放熱器とを具備することを特徴とする淡水化装置。
A desalination device that uses solar energy,
Between a solar heat collector that heats a heat medium by solar energy and raw water that is provided with a heat exchanger and is contained in the heat exchanger as a heat source that is heated by the solar heat collector A vacuum evaporator that generates water vapor from the raw water by exchanging heat in the raw water, and distilled water that receives water vapor generated in the evaporator disposed in the raw water tank containing the raw water and exchanges heat with the raw water A desalination apparatus comprising: a condenser for obtaining water; and a radiator for directly or indirectly cooling the raw water in the raw water tank.
請求項1に記載の淡水化装置において、
前記原水を間接的に冷却する放熱器は前記原水タンク内に配置された熱交換器と外部放熱器を具備し、該熱交換器と外部放熱器を媒体通路で接続し、媒体の蒸発・凝縮を繰り返し原水を冷却するサーモサイフォン型の放熱器であることを特徴とする淡水化装置。
The desalination apparatus according to claim 1,
The radiator that indirectly cools the raw water includes a heat exchanger and an external radiator disposed in the raw water tank, and connects the heat exchanger and the external radiator through a medium passage to evaporate / condense the medium. Is a thermosiphon radiator that cools raw water repeatedly.
請求項2に記載の淡水化装置において、
前記熱交換器と放熱器の間で蒸発・凝縮を繰り返す媒体は水であることを特徴とする淡水化装置。
The desalination apparatus according to claim 2,
The desalination apparatus according to claim 1, wherein the medium that repeats evaporation and condensation between the heat exchanger and the radiator is water.
請求項1乃至3のいずれか1つに記載の淡水化装置において、
前記原水タンクは当該淡水化装置内外の日陰部又は該原水タンクへの入熱が少ない場所に配置したことを特徴とする淡水化装置。
In the desalination apparatus as described in any one of Claims 1 thru | or 3,
2. The desalination apparatus according to claim 1, wherein the raw water tank is disposed in a shaded portion inside or outside the desalination apparatus or in a place where heat input to the raw water tank is low.
請求項1乃至3のいずれか1つに記載の淡水化装置において、前記放熱器又は前記外部放熱器は当該淡水化装置内外の日陰部又は放熱に最適な場所に設置することを特徴とする淡水化装置。The desalination apparatus as described in any one of Claims 1 thru | or 3 WHEREIN: The said heat radiator or the said external heat radiator is installed in the optimal location for the shade part inside or outside the said desalination apparatus, or heat radiation. Device. 請求項1乃至5のいずれか1つに記載の淡水化装置において、
前記原水タンクと前記放熱器との間を結ぶ原水通路又は前記熱交換器と前記外部放熱器との間を結ぶ媒体通路に開閉弁を設け、前記原水タンク内の原水温度が外気温度よりも低い場合、該開閉弁を閉じることを特徴とする淡水化装置。
In the desalination apparatus as described in any one of Claims 1 thru | or 5,
An open / close valve is provided in a raw water passage connecting the raw water tank and the radiator or a medium passage connecting the heat exchanger and the external radiator, and the raw water temperature in the raw water tank is lower than the outside air temperature. In the case, the desalination apparatus is characterized in that the on-off valve is closed.
太陽エネルギーを利用する淡水化装置であって、
太陽エネルギーにより熱媒を加熱する太陽熱集熱器と、熱交換器を具備し前記太陽熱集熱器で加熱された熱媒を加熱源として該熱交換器で内部に収容している原水との間で熱交換を行い該原水から水蒸気を発生させる減圧式の蒸発缶と、該蒸発缶で発生した水蒸気を凝縮して蒸留水を得る凝縮器と、原水を収容した原水タンク内に配置され前記蒸発缶内の熱交換器を通った熱媒を通すことにより該原水との間で熱交換を行う熱交換器を具備し、夜間に前記原水タンク内の熱交換器を通して原水で加熱された熱媒の熱を前記太陽熱集熱器の集熱板を通して外部に放熱することを特徴とする淡水化装置。
A desalination device that uses solar energy,
Between a solar heat collector that heats a heat medium by solar energy and raw water that is provided with a heat exchanger and is contained in the heat exchanger as a heat source that is heated by the solar heat collector A vacuum evaporator that generates heat from the raw water by exchanging heat, a condenser that condenses the water vapor generated in the evaporator to obtain distilled water, and the evaporator disposed in the raw water tank that contains the raw water. A heat exchanger that exchanges heat with the raw water by passing a heat medium that has passed through the heat exchanger in the can, and that is heated with raw water through the heat exchanger in the raw water tank at night The desalination apparatus is characterized in that the heat of the heat is radiated to the outside through the heat collecting plate of the solar heat collector.
請求項7に記載の淡水化装置において、
前記蒸発缶の熱交換器をバイパスさせるバイパス手段を設け、夜間に前記原水タンク内の熱交換器を通して原水で加熱された熱媒を前記太陽熱集熱器の集熱板に送ることを特徴とする淡水化装置。
The desalination apparatus according to claim 7,
A bypass means for bypassing the heat exchanger of the evaporator is provided, and a heat medium heated with raw water is sent to a heat collecting plate of the solar heat collector through a heat exchanger in the raw water tank at night. Desalination equipment.
請求項7又は請求項8に記載の淡水化装置において、
前記原水タンク内の原水を直接又は間接的に冷却する放熱器を設けたことを特徴とする淡水化装置。
In the desalination apparatus of Claim 7 or Claim 8,
A desalination apparatus comprising a radiator for directly or indirectly cooling the raw water in the raw water tank.
太陽エネルギーを利用した淡水化装置であって、
太陽エネルギーにより熱媒を加熱する太陽熱集熱器と、熱交換器を具備し前記太陽熱集熱器で加熱された熱媒を加熱源として該熱交換器で内部に収容している原水との間で熱交換を行い該原水から水蒸気を発生させる減圧式の蒸発缶と、該蒸発缶で発生した水蒸気を凝縮する凝縮器を具備し、該凝縮器は小容量のタンク内に収容され、該タンク内に前記水蒸気の凝縮に必要な所定流量の原水を冷却水として供給すると共に加温された同量の原水を排出することを特徴する淡水化装置。
A desalination device using solar energy,
Between a solar heat collector that heats a heat medium by solar energy and raw water that is provided with a heat exchanger and is housed in the heat exchanger as a heat source that is heated by the solar heat collector And a condenser for condensing the water vapor generated in the evaporator, the condenser being housed in a small-capacity tank. A desalination apparatus for supplying raw water having a predetermined flow rate necessary for condensing the water vapor as cooling water and discharging the same amount of heated raw water.
請求項10に記載の淡水化装置において、
前記凝縮器と小容量のタンクの組合せを熱交換器とすることを特徴とする淡水化装置。
In the desalination apparatus of Claim 10,
A desalination apparatus characterized in that a combination of the condenser and a small-capacity tank is used as a heat exchanger.
請求項1乃至11のいずれか1つに記載の淡水化装置において、
前記蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水を別途設けた貯留タンクに貯留し、該貯留した原水を前記蒸発缶に蒸発用の原水として供給する手段を設けたことを特徴とする淡水化装置。
In the desalination apparatus as described in any one of Claims 1 thru | or 11,
A means for storing raw water heated by a condenser for condensing water vapor generated in the evaporator in a separate storage tank and supplying the stored raw water to the evaporator as raw water for evaporation is provided. Desalination equipment.
請求項1乃至12のいずれか1つに記載の淡水化装置において、
水深の浅く上部が開口した水槽を具備し、該水槽の開口部を透光性のカバーで覆った構成のベースン型の太陽熱蒸留器を設け、該太陽熱蒸留器の水槽に前記蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水を貯留し、蒸留水を得るように構成したことを特徴とする淡水化装置。
The desalination apparatus according to any one of claims 1 to 12,
A water tank with a shallow depth and an open top is provided, and a basin type solar distiller having a structure in which the opening of the aquarium is covered with a translucent cover is provided. A desalination apparatus characterized by storing raw water heated by a condenser for condensing water vapor to obtain distilled water.
請求項1乃至13のいずれか1つに記載の淡水化装置において、
水深の浅い広い面積を有するプールを設け、該プールに前記蒸発缶で発生した水蒸気を凝縮する凝縮器で加熱された原水及び/又は前記太陽熱蒸留器の水槽から排出される原水を貯留し、該原水から太陽熱を利用して食塩他、原水中の有用な塩類を回収することを特徴とする淡水化装置。
The desalination apparatus according to any one of claims 1 to 13,
A pool having a large area with a shallow water depth is provided, and the raw water heated by the condenser for condensing the water vapor generated in the evaporator and / or the raw water discharged from the tank of the solar distiller is stored in the pool, A desalination apparatus for recovering salt and other useful salts from raw water using solar heat.
JP8966099A 1999-03-30 1999-03-30 Desalination equipment Expired - Fee Related JP3964069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8966099A JP3964069B2 (en) 1999-03-30 1999-03-30 Desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8966099A JP3964069B2 (en) 1999-03-30 1999-03-30 Desalination equipment

Publications (2)

Publication Number Publication Date
JP2000279944A JP2000279944A (en) 2000-10-10
JP3964069B2 true JP3964069B2 (en) 2007-08-22

Family

ID=13976922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8966099A Expired - Fee Related JP3964069B2 (en) 1999-03-30 1999-03-30 Desalination equipment

Country Status (1)

Country Link
JP (1) JP3964069B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278307A1 (en) * 2006-10-23 2011-11-17 Ralph Muscatell Water tank for use with a solar air conditioning system
KR20100121690A (en) 2008-03-05 2010-11-18 이베이 인크. Method and apparatus for image recognition services
US9495386B2 (en) 2008-03-05 2016-11-15 Ebay Inc. Identification of items depicted in images
KR20100102902A (en) * 2009-03-12 2010-09-27 경상대학교산학협력단 Fresh water generator and fresh water generating method using solar energy
KR101194585B1 (en) 2009-06-13 2012-10-25 전용준 Piping structure for distillating seawater
CN102472483A (en) * 2009-07-10 2012-05-23 株式会社Ihi Vapor supply device
JP5752352B2 (en) * 2009-12-04 2015-07-22 ワイティーエス・サイエンス・プロパティーズ・プライベート・リミテッド Plate type heat exchanger, desalination equipment and water purification equipment
JP4687928B1 (en) * 2009-12-11 2011-05-25 アズマソーラー株式会社 Drinking water and hot water simultaneous recovery type solar water heater
KR101179474B1 (en) * 2010-06-09 2012-09-07 김철수 Fresh Water Making Device
CN102326033B (en) * 2011-02-01 2013-09-25 东涧太阳能股份有限公司 Simultaneous drinking water/hot water recovery-type solar water-heating device
US10846766B2 (en) 2012-06-29 2020-11-24 Ebay Inc. Contextual menus based on image recognition
CN102863038A (en) * 2012-09-25 2013-01-09 耿士达 Solar energy seawater purifying device
JP5667722B1 (en) * 2014-07-31 2015-02-12 鈴木 洋一 Drinking water plant
CN106277134A (en) * 2015-07-17 2017-01-04 舟山市智海技术开发有限公司 Boats and ships solar seawater desalination TRT
WO2017202432A1 (en) 2016-05-23 2017-11-30 Hsl Energy Holding Aps An apparatus for production of steam from an aqueous liquid
KR101906576B1 (en) * 2018-03-21 2018-10-11 한국산업기술시험원 Apparatus for producting fresh water using waste heat of engine
US11303244B2 (en) * 2020-01-29 2022-04-12 Saudi Arabian Oil Company Utilization of solar systems to harvest atmospheric moisture for various applications including panel cleaning
CN111233065A (en) * 2020-02-23 2020-06-05 北京结力能源科技有限公司 Seawater desalination system based on heat storage type solar thermal collector

Also Published As

Publication number Publication date
JP2000279944A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP3964069B2 (en) Desalination equipment
JP3698730B2 (en) Desalination apparatus and operation method thereof
Kabeel et al. Solar still with condenser–A detailed review
KR100768334B1 (en) System for taking fresh water from sea water using natural energy
US8196422B2 (en) Atmospheric water collection device
US4487659A (en) Solar distillation apparatus
US6919000B2 (en) Diffusion driven desalination apparatus and process
JP5801663B2 (en) Seawater desalination equipment
Peng et al. Progress and performance of multi-stage solar still–A review
WO2012127081A1 (en) Solar desalination plant for sea water, brines or waste water and desalination method
TW200935002A (en) Method and system of heat capture for HVAC
US20090255797A1 (en) Apparatus for desalinization utilizingtemperature gradient/condensation and method thereof
JP2012245445A (en) Desalination apparatus
KR20190085400A (en) Solar evaporative desalination aparatus of sea water using heat pump
JP3358057B2 (en) Solar thermal and photovoltaic hybrid desalination equipment
CN216377553U (en) Solar seawater desalination and transparent radiation condenser combined all-day fresh water collection system based on CPC heat collection
JPH09220031A (en) Environment adjusting facility
US11117814B2 (en) Water desalinization systems
Chaibi et al. Solar thermal processes: A review of solar thermal energy technologies for water desalination
Faisal et al. Solar Still Productivity Improvement Techniques and Recent Advancements: Review Study
Gautam et al. A Review on various solar still designs
KR20000016790A (en) Desalination apparatus and method of operating the same
US11505477B2 (en) Water desalinization systems
US20240034644A1 (en) Water desalinization systems with heat collection element tracking
HU201714B (en) Process and apparatus for distilating fluids particularly desalinizing sea-water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees