JPS58500080A - Heat exchanger plate with deformation resistant uniform corrugations - Google Patents

Heat exchanger plate with deformation resistant uniform corrugations

Info

Publication number
JPS58500080A
JPS58500080A JP56502135A JP50213581A JPS58500080A JP S58500080 A JPS58500080 A JP S58500080A JP 56502135 A JP56502135 A JP 56502135A JP 50213581 A JP50213581 A JP 50213581A JP S58500080 A JPS58500080 A JP S58500080A
Authority
JP
Japan
Prior art keywords
heat exchanger
exchanger plate
forming
flow path
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56502135A
Other languages
Japanese (ja)
Inventor
ヴイダル−メザ・ゴンザロ・ダリオ
Original Assignee
キヤタピラ− トラクタ− コンパニ−
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤタピラ− トラクタ− コンパニ− filed Critical キヤタピラ− トラクタ− コンパニ−
Publication of JPS58500080A publication Critical patent/JPS58500080A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/02Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form by pressing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/108Particular pattern of flow of the heat exchange media with combined cross flow and parallel flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はガスタービン復熱室又は他の型式の1次表面熱交換器に使用するための 低コスト、変形抵抗性の熱伝達板に関する。本発明は又延性金属シートから効率 的且つ容易に熱伝達板を形成するための金属加工方法及び特に1次表面熱交換器 の熱伝達板として使うために設計された均一ひだの波状パターンを金属シートに 形成するための装置に関する。[Detailed description of the invention] The present invention is suitable for use in gas turbine recuperators or other types of primary surface heat exchangers. The present invention relates to a low cost, deformation resistant heat transfer plate. The present invention also provides efficient construction from ductile metal sheets. Metal processing method for purposefully and easily forming heat transfer plates and especially primary surface heat exchangers A metal sheet with a wavy pattern of uniform corrugations designed for use as a heat transfer plate for The present invention relates to an apparatus for forming.

背景技術 エネルギー コストの上昇は、殆どあらゆる型式の燃料消費エンジン、原動装置 又は工業プロセスが有用な仕事に変換可能な回収可能な熱のいくらかを放出して いるので、低コストでしかも有効な熱交換器に対する要求を有意に増している。Background technology Rising energy costs will affect almost all types of fuel-consuming engines and power plants. or industrial processes release some of the recoverable heat that can be converted into useful work. This has significantly increased the demand for low cost yet effective heat exchangers.

しかし、そのような熱交換器のコストは過去にはある用途での熱交換器の広範囲 な使用を思い止まらせている。良く知られている型式の低コスト熱交換器の1つ は熱供与及び熱受容流体を各板の対向する側に熱交換関係に流すように配列され た複数の堆積した板を使用する。そのような1次表面熱交換器の効率は堆積され た板の全表面積の1次関数であり且つ熱交換流体を分離する板の壁厚の逆関数で あることは昔から知られている。However, the cost of such heat exchangers has decreased in the past due to the wide range of heat exchangers in certain applications. It discourages its use. One of the well-known types of low-cost heat exchangers are arranged to flow heat donor and heat acceptor fluids in heat exchange relationship on opposite sides of each plate. Use multiple stacked plates. The efficiency of such a primary surface heat exchanger is deposited is a linear function of the total surface area of the plate and an inverse function of the wall thickness of the plate separating the heat exchange fluid. One thing has been known for a long time.

それで、このような熱交換器板を形成するための手法の1つは比較的厚さの薄い 延性金属シートに多数の波又はひだを作ることを含む。堆積したとき板が入れ組 むのを防ぐため、この波形ひだに平面図で波状(又は曲線〕構成を与えられてい る。このようVcs成されたとき、1つの板のひだの頂点は隣接する板の頂点と 少くともいくつかの接触点を形成する。この型式の波形熱交換器板の例はr−ン ン(Dawson )外への米国特許第5,759.525号に図示されている 。Therefore, one approach to forming such heat exchanger plates is to use relatively thin It involves creating a number of corrugations or corrugations in a ductile metal sheet. When the pile is piled up, the board is inserted. In order to prevent this corrugation from occurring, the corrugated folds are given a wavy (or curved) configuration in plan. Ru. When Vcs is made in this way, the apex of the fold of one plate is the apex of the adjacent plate. Form at least some contact points. An example of this type of corrugated heat exchanger plate is r- No. 5,759.525 to Dawson et al. .

金属板厚の減少及びひだ密度の増力(JKよる、米国特許第5,759.525 号に図示した型式の波形ひだの熱伝達効率を増す試みは必ずしも成功はしていな い。波形ひだの構造的開栓はひだを形成する金属の厚さが減少すると減じ、且つ そのような弱化がひた密度の増加と結合するとき、流路が制限され又は妨害され る機会は劇的に増加する。特に、弱い壁の高密度のひだは製造工程の間に機械的 変形を受けやすく且又不均一温度が誘起する膨張及び収縮から変形及び/又はつ ぶれを受けやすい。Reducing metal plate thickness and increasing fold density (J.K., U.S. Pat. No. 5,759.525) Attempts to increase the heat transfer efficiency of corrugated pleats of the type illustrated in this issue have not always been successful. stomach. The structural opening of the corrugated pleats decreases as the thickness of the metal forming the pleats decreases, and When such weakening is combined with an increase in bulk density, the flow path is restricted or obstructed. The opportunity to do so increases dramatically. In particular, dense folds in weak walls are mechanically It is susceptible to deformation and/or deformation and/or shrinkage from non-uniform temperature induced expansion and contraction. Easy to shake.

米国特許第3,892,119号VC於いて、効率低下なしのコスト節減が、米 国特許第5,759,525号に示されているような板からなる熱交換器の製造 に於いて各板のひだの高さ及び数?増すことによって与えられた熱交換容量に要 する板の数を減することで実現できることが記されている。しかし、各ひだの高 さの増加は望まぬ機械的又は温度誘起ひだ種変形の問題を更に悪化し、そして、 現任まで、ひだ付板を使う1次表面航交換器の使用によって達成できる効率に実 用上の限界を置いている。In U.S. Patent No. 3,892,119 VC, cost savings without loss of efficiency Manufacture of a heat exchanger consisting of plates as shown in National Patent No. 5,759,525 What is the height and number of pleats on each board? The heat exchange capacity required by increasing It is stated that this can be achieved by reducing the number of boards used. However, the height of each pleat The increase in stiffness further exacerbates the problem of undesired mechanical or temperature-induced crimp deformation, and Until now, there has been no real progress in the efficiencies achievable through the use of primary surface exchangers using pleated plates. There are limits to its use.

本発明は熱交換器に使用するための低コストで構造的に剛性のある熱伝達板で、 上述の先行技術の欠点を克服するように設計された板に向けられている。特に、 本発明の熱交換器板はこの板の対向する側に流体流路を形成するためのひだの波 形パターンを備え、各ひだの側壁は各流体流路の長さ全体にわたって一定の勾配 を有する。この勾配の均一性はこの熱交換器板に大きな構造的剛性と綜合的均一 性を与える。更に、流体流路を形成する壁の機械的又は温度誘起変形による流体 流路の制限及び/又は妨害は効率及び先行技術のひだ付熱交換器板の低コスト製 造の利点を犠牲にすることなくこの配列によって減することができる。The present invention is a low cost, structurally rigid heat transfer plate for use in heat exchangers, It is directed to a board designed to overcome the drawbacks of the prior art mentioned above. especially, The heat exchanger plate of the present invention has corrugations on opposite sides of the plate to form fluid flow passages. shaped pattern, the sidewalls of each pleat have a constant slope along the length of each fluid channel has. This gradient uniformity gives the heat exchanger plate great structural rigidity and overall uniformity. Give sex. Additionally, fluid flow due to mechanical or temperature-induced deformation of the walls forming the fluid flow path. Restrictions and/or obstructions in the flow path are made possible by the efficiency and low cost of prior art pleated heat exchanger plates. can be reduced by this arrangement without sacrificing the structural advantages.

本発明は、更に非常に剛性があり均一な特性?もった熱交換器板を形成するため の方法及び装置を提供する。この方法は熱交換器板の対向する側に2組の曲線流 体流路を形成する一連の波形ひだな作るため延性熱伝導材料のノートを連続的に 曲げる工程を含み、こ\でこの曲げ工程は各ひだの側壁の勾配が対応する流路の 全長に泪って一定であるようにする方法で制御される。The present invention also has very rigid and uniform properties. To form a heated heat exchanger plate Provided are methods and devices for. This method uses two sets of curved flows on opposite sides of the heat exchanger plate. Continuously note the ductile heat-conducting material to create a series of corrugated folds to form body flow channels. It involves a bending step, where the slope of the sidewall of each pleat is the same as that of the corresponding channel. It is controlled in such a way that it remains constant over its entire length.

本発明の更に他の目的は均一な勾配のひだケもつ熱交換器板を形成するための、 複数の共同する流路形成刃を含み少くとも1つの刃が平面図で曲線構成且つ均一 な厚さを有する装置を提供することである。この刃は各々不均一断面積をもつ第 2及び第6流路形成刃の間を相対往復運動するように配置されている。この第1 刃と第2及び第6刃の各々との間の間隙はこの装置によって形成された板のひだ に一定の勾配を保証するため刃の作動長さ全体にわたって均一である。Still another object of the invention is to form a heat exchanger plate with uniformly sloped pleats. including a plurality of cooperating channel-forming blades, with at least one blade having a curved configuration and uniformity in plan view; It is an object of the present invention to provide a device having a thickness of The blades each have a non-uniform cross-sectional area. The second and sixth flow path forming blades are arranged to move relative to each other in a reciprocating manner. This first The gap between the blade and each of the second and sixth blades is the fold of the plate formed by this device. uniform over the entire working length of the blade to ensure a constant slope.

本発明の更に特別の目的は、片側に1組の供与流体流路をそして他の側に供与流 体流路の間に1組の受容流体流路を形成するための波形ひだを含み、各供与流体 流路の断面積が受容流体流路の間の隙間を一定ならしめる方法で変化する、熱交 換器板を提供することである。A more particular object of the invention is to provide a set of donor fluid channels on one side and a donor fluid flow path on the other side. including corrugated corrugations to form a set of receiving fluid channels between each donor fluid channel. A heat exchanger in which the cross-sectional area of the flow channels is varied in such a way that the gap between the receiving fluid channels is constant. The purpose of the present invention is to provide a switching board.

本発明の更に特定の目的は上述の型式の均一な断面をもった受容流体流路を形成 する波形ひだt含み、各ひだが平面図で曲線周期関数を定め且つ一定勾配の側壁 によって%徴づけられた熱交換器板を提供することである。各側壁は複数の波長 部に細分することができ、その波長部は、平面図で、側壁の一方の1jll]に 第1円弧面?そして側壁の反対側に第2円弧面を含む。第1及び第2円弧面の両 方は岡じ曲率中・L−を有する。側壁の各波長部の残りの部分は平面図で第6円 弧面及び第4円弧面を含み、この第6及び第4円弧面は側壁の第1及び第2円弧 部の曲率中心とは反対の側に一致した曲率中心を有する。A more particular object of the invention is to form a receiving fluid channel of the type described above with a uniform cross section. Each fold defines a curvilinear periodic function in plan and has a side wall of constant slope. The purpose of the present invention is to provide a heat exchanger plate characterized by %. Each sidewall has multiple wavelengths The wavelength section can be subdivided into sections, and the wavelength section is located on one of the side walls in plan view. First arc surface? A second arcuate surface is included on the opposite side of the side wall. Both the first and second arc surfaces The other side has an Okaji curvature of medium L-. The remaining portion of each wavelength section of the side wall is the 6th circle in the plan view. and a fourth arc surface, the sixth and fourth arc surfaces being the first and second arc surfaces of the side wall. The center of curvature coincides with the opposite side of the center of curvature of the part.

本発明の付加的目的、利点及び特徴は添付の図面と共に以下の発明の好ましい実 施例の詳細な説明を参照するときより容易に明白になろう。Additional objects, advantages and features of the invention will be described below with reference to the accompanying drawings. It will become more readily apparent when referring to the detailed description of the embodiments.

図面の簡単な説明 第1図は本発明に従って設計された複数の熱交換器板が1次型熱交換器に使われ たときの分解斜視図である。Brief description of the drawing Figure 1 shows a plurality of heat exchanger plates designed according to the present invention used in a primary heat exchanger. FIG.

第2図は変形抵抗性の均一波形ひだな有する熱交換器板を形成するための、本発 明に従って設計された装置の断面図である。Figure 2 shows the present invention for forming a heat exchanger plate with deformation-resistant uniform corrugated corrugations. 1 is a cross-sectional view of a device designed according to the invention.

第6図は第2図に示した装置の断面図で、装置の溶分がひだ形成作業の用意に開 位置に動かされている。FIG. 6 is a cross-sectional view of the apparatus shown in FIG. being moved into position.

第4図は先行技術のひだ付は装置の破断斜視図である; 第5図は第4図に示した先行技術のひだ付は装置を第2図に示す位置に動かした ときの、第2図の線5−5による断面図である; 第6図は第5図のひだ形成装置の線6−6による部分断面図である: 第7図は第5図のひだ形成装置の線7−7による部分断面図である。FIG. 4 is a cutaway perspective view of a prior art shirring device; Figure 5 shows the prior art shirring shown in Figure 4 with the device moved to the position shown in Figure 2. 2 is a cross-sectional view taken along line 5-5 of FIG. 2; FIG. 6 is a partial cross-sectional view of the plication device of FIG. 5 taken along line 6--6: FIG. 7 is a partial cross-sectional view of the pleating device of FIG. 5 taken along line 7--7.

第8図は本発明に従って設計されたびだ形成装置の分解、破断、斜視図である: 第9図は第8図に示したひだ形成装置を第2図に示す位置に動かしたときの、線 5−5VCよる断面図である; 第10図は第9図のひだ形成装置の線I O−I Oによる部分断面図である。FIG. 8 is an exploded, cutaway, perspective view of a rib forming device designed in accordance with the present invention: Figure 9 shows the lines when the pleat forming device shown in Figure 8 is moved to the position shown in Figure 2. It is a cross-sectional view according to 5-5VC; FIG. 10 is a partial cross-sectional view of the pleating device of FIG. 9 taken along line IO-IO.

第11図は第9図の装置の線11−11による部分断面図である。FIG. 11 is a partial cross-sectional view of the apparatus of FIG. 9 taken along line 11--11.

本発明実施のための最良の態様 さて第1図を参照すると、本発明に従って設計された複数の熱交換器板2,4, 6.8が、堆積板型熱交換器を形成するために使われるように、分解部品配列斜 視図で示されている。この一般的型式の熱交換器は米国特許第6,759,32 6号により十分に開示され且つ議論されているが、こXではその開示を参考まで に組入れる。この特許により十分に説明されているように、各熱交換器板は各ひ だの山又は波頂?隣接する熱交換器板に形成されたひだの山と接触させることに よって各板の重なり合いを防ぐように設計された平面図で波状パターンを有する 複数の波状ひだ12を含む。BEST MODE FOR CARRYING OUT THE INVENTION Referring now to FIG. 1, a plurality of heat exchanger plates 2, 4, 6.8 is used to form a stacked plate heat exchanger. Shown in perspective. This general type of heat exchanger is described in U.S. Pat. No. 6,759,32. Although it is fully disclosed and discussed in No. 6, this disclosure is used as a reference here. Incorporate into. As fully explained by this patent, each heat exchanger plate Dano mountain or wave crest? In contact with the folds formed on the adjacent heat exchanger plate. thus having a wavy pattern in plan view designed to prevent each plate from overlapping It includes a plurality of wavy pleats 12.

各ひだの側壁は熱交換器板の間な尤れる熱伝達流体によって実際に接触される全 表面積を増すために瞬接するひだ間の空間を複数の流体流路に細分する。The sidewalls of each pleat are the entire area actually contacted by the heat transfer fluid between the heat exchanger plates. To increase the surface area, the space between the folds in instant contact is subdivided into multiple fluid flow channels.

米国特許第3.759,523号により十分に説明されているように、線棒14 は熱交侯流体の流れを航交換器の間に向は且つそれらの間の熱伝達をさせながら 流体の混合を防止するため連続する熱交換器板の間の選択された外周位置に配置 されている。入口部15及び出口部16は熱交換流体を板間の空間に向けること を援助するため各熱交換器板の対向する側:C取付けられている。Wire rod 14, as more fully described by U.S. Pat. No. 3,759,523. The heat exchanger directs the flow of fluid between the exchangers and causes heat transfer between them. Placed at selected circumferential locations between successive heat exchanger plates to prevent fluid mixing has been done. Inlet section 15 and outlet section 16 direct the heat exchange fluid into the space between the plates. C is attached to the opposite side of each heat exchanger plate to assist in the

この明細書のため、“供与流体°という用語は熱交換器内で熱エネルギーを引き 渡すことのできる流体を指し、気体又は液体のどちらを含んでもよい。゛受容流 体゛という用語は、熱交換器の中に導入されたとき、供与流体から熱エネルギー を受けることのできるどんな流体、気体又は液体をも指す。第1図に於いて、熱 交換器板2及び4は各板が互に隣襞し°C配置されたとき受容流体流れ室を形成 するように設計されている。For the purposes of this specification, the term “donor fluid” is used to draw thermal energy within a heat exchanger. Refers to a fluid that can be transferred, and may include either gas or liquid.゛Receptive flow The term ``body'' refers to the transfer of thermal energy from a donor fluid when introduced into a heat exchanger. Refers to any fluid, gas, or liquid that can absorb. In Figure 1, heat Exchanger plates 2 and 4 form a receiving fluid flow chamber when each plate is placed next to each other in a folded position. is designed to.

この受容流体流れ室の中に、複数の受容流体流路18が板2及び4からこの受容 流体流れ室の中に突出するひだ12の瞬接する側壁によって形成される。同様に 、板4及び6の間の空間は供与流体流れ室を形成するように設計され、この室の 中に開くひだ12の間の領域は複数の供与流体流路20を形成する。第1図の特 定の実施例に於いては線棒14並びに入口及び出口部15及び16は供与流体を 堆積した板によって形成された交互空間内の矢印22によって図示されたC形流 路に泪って流すように配列さ11、−万受容流体は残りの交互空間内の矢印24 によって図示された逆(”zfターンに流される。A plurality of receiving fluid channels 18 are provided within the receiving fluid flow chamber from plates 2 and 4. It is formed by the abutting side walls of the corrugations 12 projecting into the fluid flow chamber. similarly , the space between plates 4 and 6 is designed to form a donor fluid flow chamber; The regions between the open corrugations 12 form a plurality of donor fluid flow passages 20 . Features in Figure 1 In certain embodiments, the wire rod 14 and the inlet and outlet sections 15 and 16 carry the donor fluid. C-shaped flow illustrated by arrows 22 in the alternating spaces formed by the deposited plates 11 - 10,000 receiving fluids are arranged to flow in the remaining alternating spaces with arrows 24 The reverse illustrated by (“swept into a zf turn.

本発明の特有の利点をより十分に理解するために、米国特許第3,892,11 9号に開示されたような既に知られたひだ付熱交換器板について先づ議論する。To more fully appreciate the unique advantages of the present invention, please refer to U.S. Patent No. 3,892,11. We will first discuss already known pleated heat exchanger plates such as those disclosed in No. 9.

この特許に於いては、はソ平坦な、比較的薄い変形可能な板金をひだ付熱交換器 板に形成するための方法及び装置が開示されている。この特許によれば、シート 材が2対の対向する形穴部材に取げけられた揺動ひだ形成刃の間を進むとき順次 単独折り曲げ形成工程がその上に行われる。この4つの形成部材の各々の正確な 目的及び順次運動は本発明の理解vc決定的ではないので、本発明が向けられて いる型式のひだ付熱交換器板を形成するために使われる4つの形成部材の各々の 運動及び目的のより完全な説明のために米国特許第5.892,119号を参照 する。この発明のためには上部供与流体流路形成刃が下部受容流体流路形成刃に 関して相対揺動運動するように取付けられているということ注記すれば十分であ る。これらの刃はこれらの刃がひだの付いていない延性シート材を受けるため分 離される第1位置とこの延性シート材が各波路形成刃の間の間隙空間でひだの側 壁を形成するように変形されている第2位置の間を動くように設計されている。In this patent, a heat exchanger is made of flat, relatively thin deformable sheet metal. A method and apparatus for forming a plate is disclosed. According to this patent, the sheet Sequentially, as the material advances between two pairs of oscillating pleating blades installed on the opposing shaped members, A single fold forming step is then performed thereon. The exact location of each of these four forming members Since purpose and sequential motion are not critical to understanding the invention, the invention is directed to of each of the four forming members used to form a type of pleated heat exchanger plate. See U.S. Pat. No. 5,892,119 for a more complete description of motion and purpose. do. For this invention, the upper donor fluid channel forming blade is connected to the lower receiving fluid channel forming blade. It suffices to note that the Ru. These blades are separated because these blades accept non-pleated ductile sheet material. The ductile sheet material is separated from the corrugated side in the interstitial space between each wave-forming blade. It is designed to move between a second position in which it is deformed to form a wall.

第2図は本発明の方法及び装置の両方と同僚先行技術のそれも使うことのできる ひだ付は装置の政略断面図である。wiて、2対の相対的に動き得る形成装置2 6.28.30及び32が図示されている。第1形成装置26及び第2形成装置 28は各々同じ供与流体流路形成刃34及び36をそれぞれ支持する。第3形成 装置30(ま入って来る延性/−ト材37?適正に位置づけ且つ各ひだの1つの 側壁38を形成するため刃34と共働するように位置づけられている。第4形成 装置32は第2図に示すように刃34と36の間の空間に入るようにされた受容 流体流路形成刃40を支持し、それによって刃34と40の1間の隙間空間で第 2側壁42を且つ刃40と36の間の隙間空間で第6側壁44を形成させる。Figure 2 shows that both the method and apparatus of the present invention and that of the colleague prior art can also be used. The shirring is a schematic cross-section of the device. wi, two pairs of relatively movable forming devices 2 6.28.30 and 32 are shown. First forming device 26 and second forming device 28 each support identical donor fluid channeling blades 34 and 36, respectively. Third formation Apparatus 30 (incoming ductile material 37) properly positioned and one of each pleat It is positioned to cooperate with blade 34 to form sidewall 38 . 4th formation Device 32 has a receptacle adapted to enter the space between blades 34 and 36 as shown in FIG. supports the fluid flow path forming blade 40, thereby forming a first A sixth side wall 44 is formed between the second side wall 42 and the gap space between the blades 40 and 36.

第3図は、米国特許第5,892,119号に非常に詳細に述べているように形 成装置26から32までの全てによって連続ひだを作る準備に延性シート材37 が平面図でひだ波形の波長に等しい距離だけ変位できるようにするため第1及び 第2形成装置26及び28が上方に変位された第2図の装置を示す。Figure 3 is shaped as described in great detail in U.S. Pat. The ductile sheet material 37 is prepared for continuous pleating by all of the forming devices 26 to 32. The first and second Figure 2 shows the apparatus of Figure 2 with the second forming devices 26 and 28 displaced upwardly.

さて第4図を参照すると、米国特許第5,892,119号の装置に使用された 型式の先行技術の流路形成刃の斜視図が示され、それは1対の供与流体流路形成 刃34′及び36′並びに受容流体流路形成刃40′ケ含む。Referring now to FIG. 4, the device used in the device of U.S. Pat. A perspective view of a prior art channeling blade of the type is shown, which includes a pair of donor fluid channeling blades. Includes blades 34' and 36' and receiving fluid channel forming blade 40'.

第4図の先行技術の刃は均一な厚さを有する。この型式の波路形成刃を備えたと き、第2図の装置は延性ノート材37に、f規則頑斜の側壁を有するひだを形成 し、従って911!壁が外部の機械的力又は温度が引き起す収縮及び膨張によっ て容易にゆがめられる不安定な構造を造る。これをより十分に理解するために、 第2図の装置の線5−5による断面図でこの装置がもし第4図の先行技術の刃を 備えたとしたら見えるであろうように図示した第5図を参照する。特に、第5図 は一定厚さくdl)l¥有する供与流体流路形成刃34′及び36′並びに各々 周期関数を形成する軌道に配列された交互する円弧から成る1対の曲線側壁を示 す。この受容流体流路形成刃40′も又一定の厚さくd2)で作られ且つ刃34 ′及び36′の表面によって規定される周期関数と同じ位相及び波長を有する周 期関数を規定する連続円弧で断面が各々作られた側壁を備える。流路形成刃が一 定の厚さを有する限り、平面図での刃の間の間l!I!空間は、刃表面によって 形成される曲線パターンの形状又は構成にか\わらず、一定ではあり得ない。た とえ各回の表面が横に変位された同じ正弦波で作られても、刃表面間の間隙空間 はその間隙を間隙空間の中心軸に直角方向に測るときまだ変わるだろう。この出 願のために、2つの曲線の間の中心軸は曲線の1つVC沿う各点でその線に垂直 な線に沿って測った2曲線間の中間に位置する全ての点の軌跡と定義する。明ら かに、この定義は連続的中心軸が存仕するためにこの2つの曲線には如何なる不 連続もないことを予断している。The prior art blade of FIG. 4 has a uniform thickness. Equipped with this type of wave path forming blade 2, the apparatus of FIG. So, 911! The walls are subject to contraction and expansion caused by external mechanical forces or temperature. create unstable structures that can be easily distorted. To understand this more fully, A cross-sectional view taken along line 5--5 of the device of FIG. Please refer to FIG. 5, which is illustrated as it would appear if it were provided. In particular, Figure 5 the donor fluid channel forming blades 34' and 36' each having a constant thickness dl)l Shows a pair of curved sidewalls consisting of alternating circular arcs arranged in orbits forming a periodic function. vinegar. This receiving fluid flow path forming blade 40' is also made with a constant thickness d2) and the blade 34 A period with the same phase and wavelength as the periodic function defined by the surfaces of ' and 36'. It has side walls each having a cross section formed by a continuous arc defining a period function. One channel forming blade The distance l between the blades in plan view as long as they have a constant thickness! I! The space is determined by the blade surface. Regardless of the shape or configuration of the curved pattern formed, it cannot be constant. Ta Even if each time the surface is made of the same sine wave displaced laterally, the gap space between the blade surfaces will still vary when the gap is measured perpendicular to the central axis of the interstitial space. This out For purposes of application, the central axis between two curves is perpendicular to that line at each point along one of the curves, VC. is defined as the locus of all points located midway between two curves measured along a line. joy However, this definition does not imply any imbalance between these two curves due to the existence of a continuous central axis. I predict that there will be no continuity.

ひだの高さが一定で刃表面間の隙間がoT変であるとき、ひだの側壁の傾斜は平 面図で隙間の中心軸に垂直な平面で測ったとき可変でなければならないことは明 らかである。側壁傾斜のそのような変動はひだの横剛性に犬きぐ影響し且つそれ らをある領域で密閉させ、それによってひだ付熱交換器板で作られた熱交換器の 全流路面積を制限する。これをよりはっきりと理解するために、気体状供与流体 の流れに対する全有効断面積は、熱交換工程では通常高温度の供与流体が大量に 利用できるので、受容流体の流れの有効断面積より通常大きくされることに注意 すべきである。それ故、供与流体流路と受容流体流路の数は等しくなければなら ないという与えられた要件に、各供与流体流路しま断面積で受容流体流路の各々 より犬きぐなければならないということが続く。第5図に示すように、刃40′ の各波長部(W)は半径(r□)及び(R2)で一致した曲率中心(C1)を有 する円弧を描く側壁をもった第1部で構成されている。刃40′のこの波長部の 残りの部分は同様に曲率半径(r’1)及び(r’2)で刃の反対側に位置する 一致した曲率中心(C2)を有する刃面を与えるように形成されている。もしこ の刃がr□二r′、且つr2二r′2であるように対称に作られているならば、 供与流体形成流路刃34′及び36′の各波長部は同様に曲率半径(R1)及び (R3)で一致した曲率中心(C3) ′?:有する円弧を形成する面を含む。When the height of the pleat is constant and the gap between the blade surfaces is oT, the slope of the side wall of the pleat is flat. It is clear that it must be variable when measured in a plane perpendicular to the central axis of the gap in the plan view. It is clear. Such variations in sidewall slope can have a drastic effect on the lateral stiffness of the folds and of the heat exchanger made with pleated heat exchanger plates. Limit total flow area. To understand this more clearly, let's look at the gaseous donor fluid The total effective cross-sectional area for the flow of Note that the effective cross-sectional area of the receiving fluid flow is usually larger than the available Should. Therefore, the number of donor fluid channels and receiving fluid channels must be equal. Given the requirement that each donor fluid channel not have a cross-sectional area, each of the receiving fluid channels It continues that I have to pick up dogs more and more. As shown in FIG. Each wavelength section (W) has a center of curvature (C1) that coincides with radius (r□) and (R2). It consists of a first part with side walls that draw an arc. This wavelength section of the blade 40' The remaining parts are similarly located on opposite sides of the blade with radii of curvature (r'1) and (r'2) It is shaped to provide a blade surface with a coincident center of curvature (C2). Moshiko If the blades of are made symmetrically such that r□2r' and r22r'2, Each wavelength section of donor fluid forming channel blades 34' and 36' similarly has a radius of curvature (R1) and a radius of curvature (R1). Center of curvature (C3) that coincides with (R3) ′? :Includes a surface that forms an arc.

刃34′及び36′の谷波長部の第2部は対応する曲率半径(R’、)及び(R ’2)、並ひに曲率中心(C3)とは刃34′及び36′の反対側に位置する一 致した曲率中心(C4)を有する。これらの刃は通常対称に作られているので、 R□=R′1且つR3”−F(’2である。The second portion of the trough wavelength section of blades 34' and 36' has corresponding radii of curvature (R', ) and (R '2), and the center of curvature (C3) is the point located on the opposite side of the blades 34' and 36'. It has a matching center of curvature (C4). These blades are usually made symmetrically, so R□=R'1 and R3''-F('2).

刃によって定められる波形は対称であるので、刃面の曲率中心も又対称で且つ各 波の両振vA(H)プラスr2’−r1に等しい量だけ位置を変えている。この 関係はこの熱交換器板の建設及び再生を容易にする。第5図を参照することによ って理解できるように、刃の間の隙間は最大1’M)から最小(m)まで変わる 。この最小隙間(m)は通常板材の厚さプラスこのひだつけ装置の刃の引抜を容 易にするために許される小さな量よりわずかたけ犬きく作られる。この配列は板 の単位長さ当りに可能な最大数のひだを可能にする。Since the waveform defined by the blade is symmetrical, the center of curvature of the blade surface is also symmetrical and The position is changed by an amount equal to the wave amplitude vA(H) plus r2'-r1. this The connection facilitates the construction and refurbishment of this heat exchanger board. By referring to Figure 5. As you can understand, the gap between the blades varies from maximum (1'M) to minimum (m). . This minimum clearance (m) is usually the thickness of the board plus the pull-out of the crimper blade. To make it easier, it is made slightly louder than the small amount allowed. This array is a board allows for the maximum number of pleats possible per unit length.

このように離されたとき、各流路形成刃1間の最小隙間の領域に作られた側壁の 勾配ははy垂直な勾配を有するだろう。このように作られた側壁は横剛性が非常 に小さくそれがひだの移動及び流体流路の制御されない妨害を生ずる。供与流体 流路を形成する側壁のある移動は、これらの流路が相当大きな断面積な有するの で、許容されるかもしれない。しかし、受容流体流路の各々を形成する側壁の移 動はそれらの断面積が小さいために高度に有害であることがある。When separated in this way, the side walls made in the area of the minimum gap between each flow path forming blade 1 The slope will have a slope perpendicular to y. The side walls made in this way have very high lateral rigidity. To a small degree, it results in movement of the folds and uncontrolled obstruction of the fluid flow path. donor fluid Some movement of the sidewalls forming the channels is due to the fact that these channels have a fairly large cross-sectional area. And it might be allowed. However, the displacement of the sidewalls forming each of the receiving fluid channels motions can be highly harmful due to their small cross-sectional area.

側壁勾配変化の不利益は第6図により図式的に示され、その第6図は各ひだ形成 刃間の最小隙間の点に位置する第5図の@6−6vcよる部分断面図である。特 −に、線6−6は刃34′の中心軸に直角f:、角にLろ断面1ろ を示し、従って第6図の線(C2)は両側壁38及び42の勾配を表す。明らか なように、これらの側壁の勾配はひだつけされている畝交換器板の平面に殆んど 直角である。The disadvantages of sidewall slope changes are illustrated diagrammatically by Figure 6, which shows each pleat formation. FIG. 6 is a partial cross-sectional view taken at 6-6vc of FIG. 5 located at the point of minimum gap between the blades; Special -, the line 6-6 is perpendicular to the central axis of the blade 34'; , and line (C2) in FIG. 6 therefore represents the slope of the side walls 38 and 42. clear As such, the slope of these sidewalls is almost in line with the plane of the ridge exchanger plate being pleated. It is a right angle.

第6図の構成と対照ケなすのは第5図に示す組立体によって形成されている熱交 換器板の部分の線7−7による第7図の断面図である。%に、@(C2)で表さ れる側壁38の勾配及び側壁420線(C3)によって表される更に他の勾配に 注意されたい。もう容易にわかるように、第5図の組立体によって形成された各 ひだの縦の広がりに沿ったひだ側壁38及び42のこの変化する勾配は刃面1@ の啄間の変動から生ずる。In contrast to the configuration shown in Figure 6 is a heat exchanger formed by the assembly shown in Figure 5. 8 is a cross-sectional view of FIG. 7 taken along line 7-7 of a portion of the switch plate; FIG. %, represented by @(C2) to the slope of the sidewall 38 and the further slope represented by the sidewall 420 line (C3). Please be careful. As can be readily seen, each of the structures formed by the assembly of FIG. This varying slope of the pleat sidewalls 38 and 42 along the longitudinal extent of the pleats arises from fluctuations in time.

さて次に第8図を参照すると、そこには本発明の熱交換器板形成装置の斜視図が 示されている。第8図にはっきりと図示されているように、供与流体流路形成刃 34“及び36Uは第4図に示す先行技術の対応する刃に代わっている。第4図 と第8図の比較によって明らかなように、刃34“及び36″は不均一な断面構 成をもっている。修整された刃34″及び3「の正確な機能を理解するために、 第9図を参照する。この第9図は第2図に示す形成組立体によって位置づけられ たときの鞠5−5による第81A7c示した装置の断面図である。Now, referring to FIG. 8, there is a perspective view of the heat exchanger plate forming apparatus of the present invention. It is shown. As clearly illustrated in FIG. 34" and 36U replace the corresponding prior art blades shown in FIG. 4. FIG. As is clear from a comparison between FIG. 8 and FIG. Has a lot of success. To understand the exact function of modified blades 34″ and 3″, See FIG. 9. This FIG. 9 is positioned by the forming assembly shown in FIG. It is a sectional view of the device shown in No. 81A7c by Mari 5-5.

さて特VC第9図を参照すると、供与流体流路形成刃34″及び36“は最小( Pl)から最大(R2)の6刃の縦のムかりに宿った実質刃厚変動を有するもの として図示されている。これと対照をなして、受容流体流路形成刃40″は、平 面図に於けるこの刃の中心・軸を直角に通過する面の方向に、この中心軸の縦の 全長に沿って計るとき均一な厚さを備えている。供与流体流路の幅に於ける変動 は受容流体流路の狭い断面幅と比べたそのような流路の実質的幅の観点から有意 により受け入れられる。そのような受容流体流路の断面幅に於ける如何なる変動 も供与流体流路の断面積に於ける変動よりひだ付板から作られた絶交換器の効率 的作動に対して明らかにより有害であろう。しかし、より重要なの(ま刃4σ′ 並びに刃34″及び36″の各々の面の間の均一な間隙は各流路の中心軸を1h 角に通過する面で計ったとき一定の均一な勾配をもつひだ側壁を形成する結果と なるという事実である。Now, referring to FIG. One with substantial blade thickness variation in the vertical tension of 6 blades from Pl) to maximum (R2) Illustrated as. In contrast, the receiving fluid channel forming blade 40'' is flat. In the direction of the plane that passes through the center and axis of this blade at right angles in the plan view, the vertical direction of this central axis is It has a uniform thickness when measured along its entire length. Variation in donor fluid channel width is significant in terms of the effective width of such channels compared to the narrow cross-sectional width of receiving fluid channels. accepted by. Any variation in the cross-sectional width of such receiving fluid channels Also, due to variations in the cross-sectional area of the donor fluid flow path, the efficiency of an absolute exchanger made from a pleated plate is It would be clearly more detrimental to physical operation. However, the more important and the uniform gap between each surface of the blades 34'' and 36'' is 1 h from the central axis of each flow path. The result is the formation of pleated sidewalls with a constant uniform slope when measured on the plane passing through the corner. The fact is that it will happen.

各受容流路に於ける均一な断面と曲線平面図構成をもつ全てのひだの側壁の方向 に於ける均一な勾配の両刀を達成することは各回34″、36”及び4「′の非 常に注意深い設計を要する。さて次に刃34“、 36″及び40“の各々の波 及(W)部を参照するとそこには熱交換型板全体にわたって一定の勾配をもつひ だ側壁と結合された均一な断面積の受容流路を形成するために要する一般的ケー スが図示されている。特に、(Wl)及び(W2)と印された紛の間に広がる刃 34″、 36”及び4σ′の波長部(W)は刃4σ′の谷側壁の曲率半径がそ れぞれ(Sl)及び(C2)で示される第1円弧部に各々分けることができる。Sidewall orientation of all pleats with uniform cross-section and curved plan configuration in each receiving channel. Achieving a uniform slope of both blades at each time requires 34″, 36″ and 4″ non- Always requires careful design. Next, each wave of blades 34", 36" and 40" Referring to part (W), there is a string with a constant slope throughout the heat exchange template. Typical cases required to form a receiving channel of uniform cross-sectional area connected to the sidewalls. are shown. In particular, the blade spread between the holes marked (Wl) and (W2) The wavelength portions (W) of 34″, 36″ and 4σ′ are the radius of curvature of the valley side wall of blade 4σ′. It can be divided into first circular arc portions indicated by (Sl) and (C2), respectively.

刃40″の対応する面に向いた刃34″及び36″の隣接する面はそれぞれ(S 3)及び(84)に示される矢印で図示されている。Adjacent surfaces of blades 34'' and 36'' facing the corresponding surfaces of blade 40'' are each (S 3) and (84).

第9図に示すように、(S□)から(S4)の矢印によって識別される円弧の各 々の曲率中心は点(SC)で一致する。同様に、刃34″、 36”及び40″ の各々の残りの側面は、曲率中心(SC)と刃4「′の反対の側に位置する一致 した曲率中心(yc)を有する、矢印(Y□)、(Y2)、(Y3)及び(Y、 )が接触する円弧を平面図で形成する。As shown in Figure 9, each of the arcs identified by the arrows (S□) to (S4) Their centers of curvature coincide at a point (SC). Similarly, blades 34'', 36'' and 40'' The remaining sides of each of arrows (Y□), (Y2), (Y3) and (Y, ) form an arc that touches in plan view.

矢印(Yl)及び(Sl)が接触する円弧は刃4σ′の片側の全波長を完成する 。同様に、矢印(Y2)及び(S2)は刃4σ′の反対側の波長を完成する。刃 4「に隣接する刃34″の表面の全波長は矢印(Y4)及び(S4)の接触する 円弧によって形成される。最後に、刃4σ′に隣接する刃36″の側の全波長は 矢印(Y3)及び(S3)が接触する円弧によって形成される。この配列によっ て、刃34”。The arc where the arrows (Yl) and (Sl) touch completes the entire wavelength on one side of the blade 4σ' . Similarly, arrows (Y2) and (S2) complete opposite wavelengths of blade 4σ'. blade The entire wavelength of the surface of the blade 34'' adjacent to 4'' is in contact with the arrows (Y4) and (S4). formed by a circular arc. Finally, the total wavelength on the side of blade 36″ adjacent to blade 4σ′ is It is formed by the circular arc where the arrows (Y3) and (S3) touch. This array The blade is 34".

36″及び4σ′の間の間隙は均一である。しかし、熱交換器板の反対側から見 たとき波は対称である必要はないので各刃表面の第1及び第2円弧が等しい半径 をもつことは必要ない。更に、各回の縦の広がりに沿う波長(W)は同じである 必要はなく、刃の各々の連続する波長部(W)の振幅が等しい必要もない。Sl −S、によって識別される矢印が接触する円弧の各々の曲率中心の一致を単に維 持すること及び同様に矢印Y1− Y、が接触する円弧の各々の曲率中心の一致 を維持することによって、刃4「′によって形成される受容流体流路の断面積は それらの縦長さ全体にわたって一定のま\であろう。同時にこの熱交換器板肉で ひだを形成する側壁の全ての勾配は各ひだの全縦方向広がりにわたって均一に一 定であり且つ等しいま\であろう。側壁42及び44は同様に半径(Sl)から (S4)及び(Yl)から(Y4)に対応する曲率半径をもった同心円弧部を有 する波長部(W)を含む。そのような半径の各々は刃表面の対応する側壁面から の間隔に等しい量だけ対応する半径より小さいか又は大きい。The gap between 36" and 4σ' is uniform. However, when viewed from the opposite side of the heat exchanger plate, When the waves do not need to be symmetrical, the first and second arcs of each blade surface have equal radius. It is not necessary to have . Furthermore, the wavelength (W) along the vertical spread each time is the same. It is not necessary, nor is it necessary that the amplitudes of each successive wavelength section (W) of the blade be equal. Sl - simply maintain the coincidence of the centers of curvature of each of the arcs touched by the arrow identified by holding and similarly the coincidence of the centers of curvature of each of the arcs touched by the arrows Y1-Y. By maintaining , the cross-sectional area of the receiving fluid flow path formed by blade 4' is They will remain constant throughout their length. At the same time, with this heat exchanger plate The slopes of all the sidewalls forming the pleats are uniform throughout the entire longitudinal extent of each pleat. It will be constant and equal. The side walls 42 and 44 are similarly spaced from the radius (Sl). It has a concentric arc portion with a radius of curvature corresponding to (S4) and (Yl) to (Y4). It includes the wavelength part (W). Each such radius is measured from the corresponding sidewall surface of the blade surface. less than or greater than the corresponding radius by an amount equal to the spacing of .

さて第10図に向かうと、刃34″、 36”及び4「′の部分断面図が第9図 の線1−10−10によって切断されたものとして図示され、そこでは側壁38 .42及び44の勾配は線46.48及び50によって図示されている。第10 図に見られるように、線46.48及び50はひだ付熱交換器板の外針画面によ って形成される面に対して等角を形成する。Turning now to Figure 10, Figure 9 shows a partial cross-sectional view of blades 34'', 36'' and 4''. 1-10-10, where side wall 38 .. The slopes of 42 and 44 are illustrated by lines 46, 48 and 50. 10th As seen in the figure, lines 46, 48 and 50 are drawn by the outer needle screen of the pleated heat exchanger plate. form a conformal angle to the plane formed by.

第11図は同様に第9図の線11−11による刃34“、36“及び4Ilr′ の部分断面図を示す。第11図の断面図は、刃34″の厚さが最少である第1Q K示す断面図の位置に比べて刃34″の最大幅の点で切断されていることに注意 されたい。刃34“の断面幅のこの変動にか\わらず、線52.54及び56に よって表される側壁38.42及び44の勾配は第9図の対応する線46.48 及び50の勾配と等しい。FIG. 11 similarly shows blades 34", 36" and 4Ilr' according to line 11-11 of FIG. A partial cross-sectional view is shown. The cross-sectional view in FIG. 11 shows the 1st Q. Note that the cut is made at the maximum width point of the blade 34'' compared to the position in the cross-sectional view shown in K. I want to be Despite this variation in the cross-sectional width of the blade 34'', lines 52, 54 and 56 The slopes of the side walls 38.42 and 44 thus represented are the corresponding lines 46.48 in FIG. and a slope of 50.

第8−11図に示すひだ付熱交換器板形成方法及び装置は、受容流体流路が均− 且つ一定の断面積を含み、一方各流体流路を形成するひだの側壁の勾配が各流体 流路の全縦方向広がりにわたって一定である熱交換器板を提供できることはもう 十分明白であるべきである。5この配列によって、高効率で、コンパクトで剛性 のある熱交換器が第2,8及び9図に示す装置及び方法によって形成される型式 の複数のひだ付熱交換器板を堆積することによって形成することができる。The pleated heat exchanger plate forming method and apparatus shown in FIG. and includes a constant cross-sectional area, while the slope of the side walls of the folds forming each fluid flow path It is no longer possible to provide a heat exchanger plate that is constant over the entire longitudinal extent of the flow path. It should be clear enough. 5 This arrangement provides high efficiency, compactness, and rigidity. A type of heat exchanger formed by the apparatus and method shown in Figures 2, 8 and 9 can be formed by depositing a plurality of pleated heat exchanger plates.

産業上の適用性 こ\に開示した方法及び装置によって作られた熱交換器、並びに本発明に従って 設計された熱交換器板は、1つの流体から第2の流体への熱伝達が望まれるとこ ろの非常に多くの用途に使用することができる。例えば、ガスタービンからの排 気ガスは、燃焼器に通じそれからタービンに至る圧縮された吸入空気を加熱する ための供与流体を形成し、それによってこの吸入空気は上述の受容流体となるこ とができる。代って、本発明によって作られ且つ上述のひだ付板を含む熱交換器 は、蒸気発生装置であるボイラーに使うことができ、そこでは燃料燃焼からの熱 ガスが供与流体を形成し一方受容流体は戻り水又は補光水でそれから蒸気が熱交 換器の中で発生させられる。更に他の用途は受容流体が内燃機関の冷却水であり 供与流体が系油であるところの本発明に従って作られた熱交換器の使用を含む。Industrial applicability Heat exchangers made by the method and apparatus disclosed herein and in accordance with the present invention The designed heat exchanger plate is suitable for use where heat transfer from one fluid to a second fluid is desired. It can be used for a huge number of purposes. For example, exhaust gas from gas turbines The gas heats the compressed intake air that passes through the combustor and then to the turbine. This intake air forms a donor fluid for the I can do it. Alternatively, a heat exchanger made according to the invention and comprising a pleated plate as described above can be used in boilers, which are steam generators, where the heat from fuel combustion is The gas forms the donor fluid while the receiving fluid is return water or supplementary water from which the steam heat exchanges. Generated in a converter. In still other applications, the receiving fluid is cooling water for internal combustion engines. Including the use of a heat exchanger made in accordance with the present invention where the donor fluid is a base oil.

付加的用途は熱処理炉及び熱?1つの流体から他に伝達することが望まれるとこ ろ他の産業上の用途に使われる主題の型式の熱交換器の使用を含む。Additional uses include heat treatment furnaces and heat? Where it is desired to transfer from one fluid to another Includes the use of heat exchangers of the subject type used in filtration and other industrial applications.

本発明の他の局面、目的及び利益は図面、明細書、及び添付の請求の範囲の研究 から得ることができる。Other aspects, objects, and advantages of the invention may be found in the drawings, specification, and appended claims. can be obtained from.

FIG 4. F/θ8゜ 国際調査報告FIG 4. F/θ8゜ international search report

Claims (1)

【特許請求の範囲】 1 熱交換器板(2,4,6,8)であってこの熱交換器を貫流する供与受容流 体間に障壁を形成するため及び供与流体から受容流体にこの板を通って熱伝達さ せイ)ように配列された流体流路(18,20)を形成するためのもので、膜板 (2,4,6,8)が膜板の一方の側に一組の供与流体流路(20)をそしてこ の供与流体流路(20)?はさんで膜板の他の側に一組の受答流体流路(1B) a’影形成る波状のひだ(12)?含み、各流路(18,20)がひだ(12) の側壁(38,42,44)によって平面図で対向する側で境界づけられ且つ平 面図で連続する曲線路に6って板周辺上の別々の点間に延ひる中心軸を有する熱 交換器板に於いて、谷膜板(12)の各該側壁(3B、42゜44)の勾配が、 対応する流路(18,20)の中心軸に垂直な面で測ったとき、流路(18,2 0)の全長に旧って一定であることを特徴とする熱交換器板。 2 請求の範囲第1項記載の熱交換器板(2,4゜6.8)に於いて、谷該側壁 (38,42,44)の勾配かび側壁(38,42,44)の池の全ての勾配に 等しい、%交侯器板。 3 請求の範囲第2項記載の熱交換器板(2,4゜6.8)に於いて、連路(1 8,20)の該組の1つ内の全ての流路(18,20)が各流路(18、20) て一定の断面m?有する熱交換器板。 4、 請求の範囲第6項記載の熱交換器板(2,4゜6、.8)Ic於いて、各 流路(18,20)の断面積が該−脂肉の全ての他の流路(18,20)の断面 積に等しい熱交換器板。 5、請求の範囲第4項記載の熱交換器板(2,4゜6.8)に於いて、流路(1 8,20)の他の脂肉の各流路(18,20)の断面積がその長さVC?t=i って可変である熱交換器板。 6、 請求の範囲第5項記載の熱交換器板(2,4゜6.8)に於いて、該−脂 肉の該流路(18,20)が該池の組内の流路(18,20)の断面積より小さ い断面積を有する熱交換器板。 Z 請求の範囲第6項記載の熱交換器板(2,4゜6.8)に於いて、該−組の 流路(18)が該受容流体流路を含む熱交換器板。 8 請求の範囲第7項記載の熱交換器板(2,4゜6.8)に於いて、該中心軸 が周、tA関数を有する曲線路を定める熱交換器板。 9 請求の範囲第8項記載の熱交換器板(2,4゜6.8)に於いて、該周a関 数の波長が一定である熱交換器板。 10 請求の範囲@9項記載の熱交換器板(2,4゜6.8)vc於いて、該− 組の中の該流路の谷中心軸の該周期関数の部幅が一定である航交換器板。 11 請求の範囲第1項記載の熱交換器板(2,4。 6.8)に於いて、該供与及び受容流体が気体である熱交換器板。 12 請求の範囲第1項記載の熱交換器板に於いて、該流体の1つが気体であり 且つ該流体の池が液体である熱交換器板。 1ろ 請求の範囲第10項記載の熱交換器板(2,4゜6.8)に於いて、各側 壁(38,42,44)が複数の波長部(W)に分けることができ、各波長部が 、平面図で受答流体流路側に第1円弧(Yよ)及び受容流体流路側に第2円弧( Y2)を形成しこの第1及び第2円弧が側壁(3B、42.44)の一方の側に 第1一致曲率中心(YC)を有する第1N分を含み、且つ側壁(38,42,4 4)の各波長部(W)が、平面図で受容流体流路側に第6円弧(S2)及び受容 流体流路側に第4円弧(Sユ)を形成しこの第5及び第4円弧が該側壁の該第1 一致曲率中心と反対−〇に第2一致曲率中心(SC) Y有する残りの部分ケ含 む熱交換器板。 14 熱交換器を貫流する供与及び受答流体間の障壁として使用するための熱変 換器板(2,4,6,8)を形成するため及び供与流体から受容流体にこの板( 2,4,6,8)w通して熱伝達させるように配列さ才tた板(2,4,6,8 )内の流体流路(18゜・ 20 ) i′形、或するための方法であって、該 方法が(1)、延性熱伝導性材料のシー)(37)を曲げ、この延性熱伝導性材 料のシーh(37)から作られた一対の側壁(3B、42.44)によって平面 図で対向する側で境界づけられる供与流体流路(2o)′?含み且つ平・ 面図 で連続する曲線路に沿ってシート周辺上の別々の点間に延びる中心軸を有する波 状のひだ(12)を形成する工程、(2)、シー)(37)の供与流体流路(2 o)に隣接する部分を曲げ、シー)(37)の供与流体流路(20)と反対側に 受容流体流路(18)を形成しその受容流体流路(18)がその内の1つを該供 与流体流路と共有する一対の側壁(3B、42.44)によって境界づけられ且 つ平面図で連続する曲線路に沿ってシート周辺上の別々の点間に延びる中心軸? 有する工程、並びに、(3)、工程(1)及び(2)を繰り返しシート(37) の一方の側に一組の供与流体流路(2o)を、そしてシート(37)の反対側に 一組の受容流体流路を形成し、各流路(18,20)が隣接する流路(18゜2 0)と共通側壁(38,42,44)′f共有する工程を含む方法に於いて、各 流路(18,20)の各側壁(38,42,44)の勾配を、対応する流路(1 8゜20)の中心軸に垂直な面で該軸に沿った点で測ったとき、流路(18,2 0)の全長に沿って一定であるようにする方法で曲げ工程(1)及び(2)を制 御することを含む改良。 156請求の範囲第14項記載の熱交換器板(2,4゜6.8)形成方法に於い て、工程(1)及び(2)が、形成された各側壁(38,42,44)の勾配が 池の全ての側’!(38,42,44)の勾配に等しいようにシー) (37) を曲げる工程を含む方法。 16 延性熱伝導性材料のシート(37)に波状ひだ(12)を形成するための ひた形成装置(26,28゜30.32.34“、 36″、 40”)を含む 熱交換器板(2,4,6,8)形成用装置であって、該ひだ形成g置(26,2 8,30,32,34“、36“、 4 [r’)がシート(37)の一方の側 に供与流体流路(20)ケ形成するための第1流路形成装置(26,28。 34“、 36” )及びシー)(37)の反対側に受容流体流路(18)を形 成するための第2流路形成装置(30゜32.40″)を含み、各供与流体流路 (20)がひだ(12)のl1lli壁(38,42,44)によって平面図で 対向する側で境界づけられ且つ平面図で連続する曲線路に沿ってシート周辺上の 別々の点間に延ひる中心軸を有し、各受容流体流路(18)がひだ(12)のi ll[(38,42,44)によって平面図で対向する側で境界づけられ且つ平 面図で連続する曲線路に沿ってシート周辺上の別々の点曲に延びる中心軸ヲ有す る装置に於いて、第1及び第2流路形成装!(26゜28.30.32.34″ 、36″、40″)が各該ひだ(12)の谷側壁(38,42,44)の勾配を 、対応する流体流路(18,20)の中心軸に垂直な面で測ったとき、流路(1 8,20)の全長に沼って一定にするように形づくられ且つ配置されていること ?特徴とする装置。 1Z 請求の範囲第16項記載の装置に於いて、該第1流路形成装置(26,2 8,34”、36”)が各供与流体流路(20)の所望の平面図構成に対応する 平面図構成をもつ作動部を有する第1刃(34” 、 3σ′)?含み、そして 該第2流路形成装置(30、32、40″)が各受容流体流路(18)の所望の 平面図構成に対応する平面図構成をもつ作動部を有する第2刃(40”)を含み 、核力(34“、 36”、 40″)の1つがその縦長さに沿って変化する断 面厚さを有する装置。 18 請求の範囲第17項記載の装置に於いて、該第2刃(40)が均一な断面 厚さケ有する装置。 19 請求の範囲第18項記載の装置に於いて、該第1及び第2刃を相互に関し て刃(34″、 36″、 4σ′)がひだのない延性シー) (37)?受け るため分離される第1位置と延性シー)(37)が該第1刃(34“。 36“)と第2刃(4σ′)の間の間隙空間内でひだの側壁(38,42,44 )v形成するため囲げられる第2位置間を往復運動させるための取付装置(26 ゜28.30.32)を更に含み、該間1!ljl空間が平面図で該第1及び第 2刃(34” 、 36″、 40η)間を通る中心線に垂直な方向で測って均 一な厚さ?有する装置。 20、請求の範囲第19項記載の装置に於いて、各該第1及び第2刃(34″、  36”、 4 rf′) カ平面1[−一定振幅及び一定波長を有する周期関 数によって定められる曲線路に従う中心軸を含む装置。 21、請求の範囲第19項記載の装置に於いて、該間隙空間が複数の波長部(W )に分けることができ、各波長部は該第1及び第2刃(34“、36″、4() “)のljI接面の対応する波長部によって定められ、該第1刃面(34″、3 6”)の各波長部の第1部分は平面図で該間隙空間の一方の側に第1曲率中心を 有する第1円弧を含み、且つ該第2刃面(34“、36″、4σ′)の各波長部 の第1部分は平面図で該第1曲率中心(C1)と一致した曲率中心(C工)を有 する第2円弧を含み、そして該第1刃面(34”、36′、40“)の各波長部 (W)の残りの部分は平面図で該間隙空間の該第1曲率中心(C1)と反対の側 に第2曲率中心(C2)を有する第5円弧を含ミ、且ツ該M2刃面(34“、3 6”、4σ′)ノ各波長部(W)の残りの部分は平面図で該第2曲率中心(C2 )と一致した曲率中心を有する第4円弧を含む装置。 22、シートを横切って狭い溝状波に変形可能なシー)(37)から熱交換器板 (2,4,6,8)を形成する方法であって、 その長さに活ってはy均一な厚さを有する波状の曲りくねった輪郭の第1形成刃 (4σ′)?シート(37)の−万の側に対し配置する工程;並びに第2及び第 6形成刃(34”、 36′)をシート(37)の他の側に対し11刃(4U’ >Vc関して予め選ばれたまたがる方法で連続的に繰返して動かす工程を含み、 該第2及び第6形成刃(34“、3「)の各々が波状の曲りくねった輪郭及び波 の側壁(38,42,44)にシー)(37)な横切ってはソ均一て勾配をつけ るに十分なその長さに清った可変厚さを有する方法。[Claims] 1 Heat exchanger plates (2, 4, 6, 8) with donor and acceptor flows flowing through this heat exchanger to form a barrier between the bodies and allow heat to be transferred through this plate from the donor fluid to the receiving fluid. This is for forming fluid flow channels (18, 20) arranged as shown in FIG. (2,4,6,8) has a set of donor fluid channels (20) on one side of the membrane plate and this donor fluid flow path (20)? A set of receiving fluid channels (1B) on the other side of the membrane plate a’ Shadow-forming wavy folds (12)? each channel (18, 20) has a pleat (12) bounded on opposite sides in plan by side walls (38, 42, 44) of and flat; Heat with a central axis extending between separate points on the plate periphery in a continuous curved path in plan view In the exchanger plate, the slope of each side wall (3B, 42°44) of the valley membrane plate (12) is When measured in a plane perpendicular to the central axis of the corresponding channel (18, 20), the channel (18, 20) 0) A heat exchanger plate characterized in that it is constant over its entire length. 2. In the heat exchanger plate (2.4°6.8) according to claim 1, the side wall of the valley The slope of (38, 42, 44) The slope of the mold side wall (38, 42, 44) of the pond Equal, % intersection device board. 3. In the heat exchanger plate (2,4°6.8) according to claim 2, the connecting passage (1 All channels (18, 20) in one of the sets of channels (18, 20) Is it a constant cross section m? Heat exchanger plate with. 4. In the heat exchanger plate (2,4°6,.8) Ic according to claim 6, each The cross-sectional area of the channel (18, 20) is - the cross-section of all other channels (18, 20) of the fatty meat. heat exchanger plates equal to the product. 5. In the heat exchanger plate (2,4°6.8) according to claim 4, the flow path (1 8, 20) is the cross-sectional area of each flow path (18, 20) of the other fat meat the length VC? t=i A variable heat exchanger plate. 6. In the heat exchanger plate (2.4°6.8) according to claim 5, the - fat The flow path (18, 20) of the meat is smaller than the cross-sectional area of the flow path (18, 20) in the set of ponds. heat exchanger plate with a large cross-sectional area. Z In the heat exchanger plate (2,4°6.8) according to claim 6, the set of A heat exchanger plate in which the flow path (18) includes the receiving fluid flow path. 8. In the heat exchanger plate (2.4°6.8) according to claim 7, the central axis A heat exchanger plate defining a curved path having a circumference and a function of tA. 9. In the heat exchanger plate (2,4°6.8) according to claim 8, the peripheral a A heat exchanger plate with a constant number of wavelengths. 10 In the heat exchanger plate (2,4°6.8)vc according to claim @9, the - A space exchanger plate in which the width of the periodic function of the valley center axis of the flow path in the set is constant. 11. Heat exchanger plate (2, 4) according to claim 1. In 6.8) the heat exchanger plate wherein the donor and receiving fluids are gases. 12. In the heat exchanger plate according to claim 1, one of the fluids is a gas. and a heat exchanger plate in which the fluid pond is a liquid. 1. In the heat exchanger plate (2.4°6.8) according to claim 10, each side The walls (38, 42, 44) can be divided into multiple wavelength sections (W), and each wavelength section , in the plan view, there is a first circular arc (Y) on the receiving fluid flow path side and a second circular arc (Y) on the receiving fluid flow path side. Y2), and these first and second arcs are on one side of the side wall (3B, 42.44). including a first N portion having a first coincident center of curvature (YC) and sidewalls (38, 42, 4 4), each wavelength section (W) has a sixth circular arc (S2) and a receiving fluid channel on the receiving fluid flow path side in the plan view. A fourth circular arc (Syu) is formed on the fluid flow path side, and the fifth and fourth circular arcs form the first circular arc on the side wall. Contains the remaining part with second coincident curvature center (SC) Y opposite to the coincident curvature center - 〇 heat exchanger plate. 14 Heat exchanger for use as a barrier between donor and receiving fluids flowing through the heat exchanger This plate (2, 4, 6, 8) is used to form the exchanger plate (2, 4, 6, 8), 2, 4, 6, 8) Arranged to transfer heat through the plates (2, 4, 6, 8) ) in a fluid flow path (18°・20 ) i′ shape, the method for The method (1) bends a sheet of ductile thermally conductive material (37), and A plane is formed by a pair of side walls (3B, 42.44) made from material seams h (37). Donor fluid channel (2o)' bounded on opposite sides in the figure? Included and flat/plan view A wave with a central axis extending between separate points on the sheet periphery along a continuous curved path at (2) forming the pleats (12) in the form of a sheath (37); Bend the part adjacent to o) to the side opposite to the donor fluid flow path (20) of the see) (37). forming a receiving fluid channel (18), the receiving fluid channel (18) supplying one of the receiving fluid channels (18); bounded by a pair of side walls (3B, 42.44) in common with the feeding fluid flow path and A central axis extending between separate points on the sheet periphery along a continuous curved path in plan view? and (3), a sheet (37) that repeats steps (1) and (2). a set of donor fluid channels (2o) on one side of the and on the opposite side of the seat (37). forming a set of receiving fluid channels, each channel (18, 20) having an adjacent channel (18°2 0) and a common side wall (38, 42, 44)'f. The slope of each side wall (38, 42, 44) of the channel (18, 20) is set to the corresponding channel (1 8°20) when measured at a point along the central axis of the flow path (18, 20). The bending steps (1) and (2) are controlled in such a way that the bending steps (1) and (2) are constant along the entire length of Improvements including control. 156 In the method for forming a heat exchanger plate (2.4°6.8) according to claim 14 Steps (1) and (2) are performed so that the slope of each side wall (38, 42, 44) formed is All sides of the pond’! (37) A method including the step of bending. 16 For forming wavy pleats (12) in a sheet of ductile thermally conductive material (37) Includes slit forming device (26, 28° 30.32.34", 36", 40") Apparatus for forming heat exchanger plates (2, 4, 6, 8), said pleat forming position (26, 2) 8, 30, 32, 34", 36", 4 [r') on one side of the sheet (37) a first channel forming device (26, 28) for forming a supply fluid channel (20); A receiving fluid flow path (18) is formed on the opposite side of the a second channel forming device (30°32.40″) for forming each donor fluid channel. (20) in plan by the l1lli walls (38, 42, 44) of the folds (12) on the sheet periphery along a curved path bounded on opposite sides and continuous in plan. each receiving fluid channel (18) has a central axis extending between separate points; ll [bounded on opposite sides in plan by (38, 42, 44) and flat It has a central axis that extends to separate points on the sheet periphery along a continuous curved path in plan view. In the apparatus, the first and second flow path forming devices! (26°28.30.32.34″ , 36'', 40'') is the slope of the valley side wall (38, 42, 44) of each said pleat (12). , when measured in a plane perpendicular to the central axis of the corresponding fluid flow path (18, 20), the flow path (1 8, 20) Shaped and arranged so as to have a constant distribution over the entire length of ? Featured device. 1Z In the device according to claim 16, the first flow path forming device (26, 2 8, 34", 36") correspond to the desired top view configuration of each donor fluid flow path (20). a first blade (34", 3σ') having an actuating portion having a top view configuration, and The second channel forming devices (30, 32, 40'') define the desired position of each receiving fluid channel (18). a second blade (40”) having an actuating portion with a top view configuration corresponding to the top view configuration; , one of the nuclear forces (34", 36", 40") varies along its longitudinal length. Device with surface thickness. 18. The device according to claim 17, wherein the second blade (40) has a uniform cross section. Equipment with thickness. 19. In the device according to claim 18, the first and second blades are arranged with respect to each other. (37)? received A first position and a ductile seam (37) are separated for the first blade (34"). 36") and the second blade (4σ'), the side walls of the pleat (38, 42, 44 ) an attachment device (26 further including ゜28.30.32), during which time 1! The ljl space is the first and the first in the plan view. Measure in the direction perpendicular to the center line passing between the two blades (34", 36", 40η) and measure evenly. Is it the same thickness? equipment with 20. In the device according to claim 19, each of the first and second blades (34'', 36", 4 rf') plane 1 [-periodic function with constant amplitude and constant wavelength device that includes a central axis that follows a curved path defined by a number. 21. In the device according to claim 19, the gap space has a plurality of wavelength regions (W ), and each wavelength section has the first and second blades (34", 36", 4() ), and the first blade surface (34″, 3 6”) with the first center of curvature on one side of the gap space in plan view. and each wavelength portion of the second blade surface (34", 36", 4σ') The first part of has a center of curvature (C) that coincides with the first center of curvature (C1) in a plan view. and each wavelength portion of the first blade surface (34'', 36', 40'') The remaining part of (W) is the side opposite to the first center of curvature (C1) of the gap space in the plan view. includes a fifth circular arc having a second center of curvature (C2), and the M2 blade surface (34", 3 6'', 4σ') The remaining portion of each wavelength section (W) is located at the second center of curvature (C2 ), the device includes a fourth arc having a center of curvature coincident with ). 22. Heat exchanger plate from sheet (37) deformable into narrow grooved waves across the sheet A method for forming (2, 4, 6, 8), The first forming blade has a wavy and curved profile with a uniform thickness due to its length. (4σ′)? a step of placing the sheet (37) against the -10,000 side; and a second and second 6 forming blades (34”, 36’) to the other side of the sheet (37) and 11 forming blades (4U’) >Continuously and repeatedly moving in a preselected straddling manner with respect to Vc; Each of the second and sixth forming blades (34", 3") has a wavy curvy profile and a wavy shape. The side walls (38, 42, 44) are sloped uniformly across (37). method having a clear variable thickness over its length sufficient to
JP56502135A 1981-02-18 1981-02-18 Heat exchanger plate with deformation resistant uniform corrugations Pending JPS58500080A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1981/000208 WO1982002940A1 (en) 1981-02-18 1981-02-18 Heat exchanger plate having distortion resistant uniform pleats

Publications (1)

Publication Number Publication Date
JPS58500080A true JPS58500080A (en) 1983-01-13

Family

ID=22161100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56502135A Pending JPS58500080A (en) 1981-02-18 1981-02-18 Heat exchanger plate with deformation resistant uniform corrugations

Country Status (5)

Country Link
EP (1) EP0072797B1 (en)
JP (1) JPS58500080A (en)
CA (1) CA1152977A (en)
DE (1) DE3166239D1 (en)
WO (1) WO1982002940A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081834A (en) * 1990-05-29 1992-01-21 Solar Turbines Incorporated Circular heat exchanger having uniform cross-sectional area throughout the passages therein
FR2836077B1 (en) 2002-02-21 2004-07-09 Const Aero Navales TOOLS FOR FORMING CORRUGATED HEAT EXCHANGE SURFACES FOR A HEAT EXCHANGER, BY COLD BENDING OF A STRIP AND METHOD FOR PRODUCING THE FORMING PROFILES OF SUCH A TOOL
US7147050B2 (en) 2003-10-28 2006-12-12 Capstone Turbine Corporation Recuperator construction for a gas turbine engine
US7065873B2 (en) 2003-10-28 2006-06-27 Capstone Turbine Corporation Recuperator assembly and procedures

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB189702543A (en) * 1897-01-30 1897-12-18 Isaac Braithwaite Improvements in Drying Rooms or Closets for Drying Linen or other Textile Goods or Clothing.
FR695346A (en) * 1929-05-18 1930-12-13 Manufacturing process for corrugated sheets with exactly matching corrugations
DE528487C (en) * 1929-05-19 1931-06-29 Hans Syrowy Process for the production of corrugated iron with exactly matching waves
DE543337C (en) * 1929-07-23 1932-02-04 Hans Syrowy Process for the production of corrugated sheets and molded sheets
GB351984A (en) * 1930-03-25 1931-06-25 Calvert & Co Ab Improvements in air preheaters and like surface apparatus for the exchange of heat between two fluids
DE928590C (en) * 1952-09-28 1955-06-06 Holstein & Kappert Maschf Heat exchange plate
FR1476868A (en) * 1966-03-04 1967-04-14 Chausson Usines Sa Method and device for cutting to length, along an oblique, sections of corrugated strips
US3759323A (en) * 1971-11-18 1973-09-18 Caterpillar Tractor Co C-flow stacked plate heat exchanger
US3892119A (en) * 1974-03-04 1975-07-01 Caterpillar Tractor Co Forming apparatus for sheet material
US4031953A (en) * 1974-12-23 1977-06-28 Caterpillar Tractor Co. Heat exchanger system and ducting arrangement therefor
SE7509633L (en) * 1975-02-07 1976-08-09 Terence Peter Nicholson DEVICE FOR FLAT HEAT EXCHANGER
US4022050A (en) * 1975-12-04 1977-05-10 Caterpillar Tractor Co. Method of manufacturing a heat exchanger steel

Also Published As

Publication number Publication date
CA1152977A (en) 1983-08-30
EP0072797B1 (en) 1984-09-26
DE3166239D1 (en) 1984-10-31
WO1982002940A1 (en) 1982-09-02
EP0072797A1 (en) 1983-03-02
EP0072797A4 (en) 1983-07-04

Similar Documents

Publication Publication Date Title
US6470835B1 (en) Plate-type heat exchanger for exhaust gas heat recovery
EP3183524B1 (en) High effectiveness low pressure drop heat exchanger
US6389696B1 (en) Plate heat exchanger and method of making same
RU1823921C (en) Method of manufacture of heat exchanger heat exchanger and its versions
AU756460B2 (en) Furnace heat exchanger
TW201314162A (en) Heating element undulation patterns
JP7220197B2 (en) Heat exchanger
US4352393A (en) Heat exchanger having a corrugated sheet with staggered transition zones
US7044206B2 (en) Heat exchanger plate and a plate heat exchanger
KR20000047728A (en) Film fill-pack for inducement of spiraling gas flow in heat and mass transfer contact apparatus with self-spacing fill-sheets
JPS58500080A (en) Heat exchanger plate with deformation resistant uniform corrugations
US4385012A (en) Phase-contacting apparatus
CN114945789A (en) Brazed plate heat exchanger and application thereof
TW482692B (en) Exchange column structured packing bed
US4346760A (en) Heat exchanger plate having distortion resistant uniform pleats
US4470454A (en) Primary surface for compact heat exchangers
US6484798B1 (en) Furnace heat exchanger
CA1069883A (en) Compact primary surface heat exchanger
JP2005195190A (en) Multiplate heat exchanger
CN109737779A (en) Lamella heat exchanger based on round microchannel wavy surface heat exchanger plates
JP4369223B2 (en) Element for heat exchanger
US20130213616A1 (en) Heat exchanger incorporating out-of-plane features
JP2020525750A (en) Heat transfer element for rotary heat exchanger
CA1221819A (en) Heat exchanger plate having distortion resistant uniform pleats
JPS6176889A (en) Plate type heat exchanger