JPS5849732A - Preparation of ink-holding porous material - Google Patents

Preparation of ink-holding porous material

Info

Publication number
JPS5849732A
JPS5849732A JP7533481A JP7533481A JPS5849732A JP S5849732 A JPS5849732 A JP S5849732A JP 7533481 A JP7533481 A JP 7533481A JP 7533481 A JP7533481 A JP 7533481A JP S5849732 A JPS5849732 A JP S5849732A
Authority
JP
Japan
Prior art keywords
powder
ink
structural
liquid
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7533481A
Other languages
Japanese (ja)
Other versions
JPS5939458B2 (en
Inventor
Junjiro Aoki
青木 恂次郎
Kimiyoshi Shimazaki
島崎 公義
Yoshihisa Komori
小森 慶久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujicopian Co Ltd
Original Assignee
Fuji Kagakushi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kagakushi Kogyo Co Ltd filed Critical Fuji Kagakushi Kogyo Co Ltd
Priority to JP7533481A priority Critical patent/JPS5939458B2/en
Publication of JPS5849732A publication Critical patent/JPS5849732A/en
Publication of JPS5939458B2 publication Critical patent/JPS5939458B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Impression-Transfer Materials And Handling Thereof (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain the titled tough porous material having improved abrasion resistance and dimensional stability and good elasticity and porosity, by applying a powdery or liquid bonding organic elastomeric material to the surface of a structural powdery material, and packing the material in a mold, and hot- pressing the material. CONSTITUTION:A powdery or liquid bonding organic elastomeric material is applied to the surface of a structural powdery material consisting of an inorganic powder, e.g. carbon black, silica or talc, or thermoplastic elastomeric powder, e.g. polyurethane, and the resultant material is packed in a mold and hot-pressed to mold a porous material, which is then impregnated with an ink to afford an ink holding porous material, e.g. an ink roll or ink pad. A thermoplastic resin powder, molten thermoplastic resin or rubber, liquid thermosetting resin or reactive liquid rubber may be cited as the organic elastomeric material. EFFECT:The desired porosity can be obtained, and the quantity of energy to be used can be reduced.

Description

【発明の詳細な説明】 本発明はインク保持多孔体の新規な製造法に関する。さ
らに詳しくは1本発明は強靭で耐摩耗性および寸法安電
性にすぐれ、かつ良好な弾性と空隙率とを有するインク
リール、インクパッドなどのインク保持多孔体の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing an ink-retaining porous body. More specifically, the present invention relates to a method for producing ink-retaining porous bodies such as ink reels and ink pads that are strong, have excellent abrasion resistance and dimensional stability, and have good elasticity and porosity.

従来より、インクシール、インクパッドなどのインク保
持多孔体の製造法としては、アクリ冒エシリルーブタジ
エンゴム、ポリウレタン。
Traditionally, ink-retaining porous materials such as ink seals and ink pads have been manufactured using acrylic, ethyl-butadiene rubber, and polyurethane.

ナイ冒ンなどのポリマー粉末を毫−ルド内に充填し、高
温で加熱焼結して微細孔を有する多孔体を成形し、つい
で蒙多孔体内にインタな含浸させる。いわゆる焼結法が
よく知られている。
Polymer powder, such as polymer powder, is filled into a mold, heated and sintered at high temperature to form a porous body having fine pores, and then impregnated into the porous body. The so-called sintering method is well known.

しかしながら、前述のごときぎり!−粉末を一体化する
焼結法においては、焼結に多量の熱量を必要とし、かつ
所望の空隙率をうることが開離であり、所望のインタ含
浸率でかつすぐれたインク鯵出性を有する強靭で適度な
弾性を有する多孔体を製造しえないという欠点がある。
However, just as mentioned above! - In the sintering method that integrates powders, sintering requires a large amount of heat, and achieving the desired porosity is achieved by dissociation, which achieves the desired inter-impregnation rate and excellent ink ejection properties. There is a drawback that it is not possible to produce a porous body that is strong and has appropriate elasticity.

本発明は値上の欠点を排除すべく完成されたものであっ
て、その要旨とするところは無機粉末または熱可塑性エ
ラスジマー粉末からなる構造用粉末葉材の表面に、粉末
状または液状の接合用有機弾性素材を付着せしめたのち
、毫−ルド内に充填し、加熱して多孔体を成形し、つい
でインクを含浸せしめることを特徴とするインク保持多
孔体の製造法を要旨とするものである。
The present invention was completed in order to eliminate the disadvantages in price, and its gist is to apply powdered or liquid bonding material to the surface of structural powder leaf material made of inorganic powder or thermoplastic elastomer powder. The gist of the present invention is a method for producing an ink-retaining porous body, which is characterized in that after an organic elastic material is attached, the porous body is formed by heating and impregnated with ink. .

すなわち本発明の方法は強靭で耐摩耗性および寸法安定
性にすぐれた構造用粉末素材の表面に、加熱によって軟
化もしくは硬化せられ、互いに隣り合う前記粉末素材を
強固に接合せしめる粉末状または液状の有機弾性素材を
付着せしめてなる豪合材料を加熱成形することを特徴と
するものである。
That is, the method of the present invention applies a powdered or liquid material to the surface of a structural powder material that is strong, has excellent wear resistance, and dimensional stability, and is softened or hardened by heating to firmly bond adjacent powder materials. This method is characterized by thermoforming a composite material to which an organic elastic material is attached.

前記構造用粉末素材としては無機粉末、熱可塑性エラス
トマー粉末またはそれらの混合物があけられる。
The structural powder material may be an inorganic powder, a thermoplastic elastomer powder, or a mixture thereof.

無機粉末としては、たとえばカーボンプラッタ、炭議カ
ルシウム%亜硫酸カルシウムなどの圧縮特性にすぐれた
軟質無機粉末やシリカ、ケイ酸アル1−ラム、クレーな
どの引張強さにすぐれた硬質無機粉末、さらにチタン酸
カリウム。
Inorganic powders include, for example, soft inorganic powders with excellent compression properties such as carbon platter and calcium carbonate% calcium sulfite, hard inorganic powders with excellent tensile strength such as silica, aluminum silicate, and clay, and titanium. Potassium acid.

フラストナイト、タルタ、マイカなどの引張強さおよび
圧縮特性を高めるものがあげられる。
Examples include materials that increase tensile strength and compressive properties, such as plastonite, tarta, and mica.

また熱可塑性エラストマー粉末としては、たとえばポリ
ウレタン、アクリms−シリルーブタジェンゴムなどが
あげられる。
Examples of the thermoplastic elastomer powder include polyurethane and acryl ms-silyl-butadiene rubber.

本発明における接合用有機弾性素材のうち、粉末状のも
のとしてはたとえば熱可塑性樹脂粉末があけられ、また
液状のものとしてはたとえば溶融した熱可塑性樹脂や熱
可塑性ゴ^、液状熱硬化性樹脂または反応性液状ゴムが
あげられる。
Among the organic elastic materials for bonding in the present invention, powdery ones include, for example, thermoplastic resin powder, and liquid ones include, for example, molten thermoplastic resin, thermoplastic rubber, liquid thermosetting resin, or Examples include reactive liquid rubbers.

前記熱可塑性樹脂粉末および溶融した熱可塑性樹脂とし
ては、たとえば&’)jj化ビ蟲ル、ポリエチレン、ボ
リプ冒ピレン、&リエチレンテレフタレー)、ポリブチ
レンテレフタレート。
Examples of the thermoplastic resin powder and the molten thermoplastic resin include &') vinyl chloride, polyethylene, polyethylene terephthalate, and polybutylene terephthalate.

メリアミド、lリアミド共重合体などの溶融軟化しうる
ちのがあぜられる。また熱可塑性ゴムとしては、たとえ
にポリウレタン、アク9w二シリルーブタジエンゴ五な
どがあげられる。
Melting and softening materials such as meliamide and laryamide copolymers are scorched. Further, examples of thermoplastic rubbers include polyurethane, Aku-9W Disilylubutadiengo-5, and the like.

また液状熱硬化性樹脂としては、たとえばポリウレタン
、エポキシ樹脂、不飽和ポリエステル、ジアリ′ル7タ
レート樹脂などがあけられ。
Examples of liquid thermosetting resins include polyurethane, epoxy resin, unsaturated polyester, and diaryl 7-thalerate resin.

さらに反応性液状ゴムとしては、たとえば液状ウレタン
ゴム、液状ブタジェン−スチレンゴム、液状アタリ冒ニ
トリルーブタジェンゴム、液状りwwプレンゴムなどが
あげられ葛。これらのに、主として構造用粉末素材の表
面ツート用として用いられる0  ′ つぎにこれらの各接合用弾性素材を用いる前記構造用粉
末素材の表面処II(付着)方法およびその成形法につ
いて説明する。
Furthermore, examples of the reactive liquid rubber include liquid urethane rubber, liquid butadiene-styrene rubber, liquid nitrile-butadiene rubber, and liquid prene rubber. These are mainly used for surface fitting of structural powder materials.Next, a method for surface treatment II (adhesion) of the structural powder materials using each of these bonding elastic materials and a molding method thereof will be described.

粉末状の接合用有機弾性素材である熱可塑性樹脂粉末は
構造用粉末素−〇表面上に全面的に付着するか、あるい
はいくらかの間隙をもって付着するように該粉末素材と
混合するのが好重しい。第1図は本発明における熱可塑
性樹脂粉*が構造用粉末素材に付着した状態の一例を示
す概略断面図であって、構造用粉末素材(1)に対して
微粒子状の熱可塑性樹脂粉末(2)が第1図に示される
ように互いに間隙をもって付着せられることにより、え
られ◆多孔体は空隙率をきわめて大ならしめることがで
き、さらに有機弾性素材(z)の混合量を適宜変えるこ
とにより所望の空隙率を有する多孔体がえられるという
すぐれた利点を有する。かかる構造用粉末素材(1)は
粒径が8〜180pであって、かつ球状あるいはそれに
近いもの(たとえば楕円形など)が好ましい。
The thermoplastic resin powder, which is a powdered organic elastic material for bonding, is preferably mixed with the powder material so that it adheres entirely to the surface of the structural powder material or with some gaps. Yes. FIG. 1 is a schematic cross-sectional view showing an example of a state in which the thermoplastic resin powder* of the present invention is attached to a structural powder material, in which fine particulate thermoplastic resin powder ( 2) are attached to each other with gaps as shown in Fig. 1, the resulting porous body can have an extremely large porosity, and the amount of organic elastic material (z) mixed can be changed as appropriate. This has the excellent advantage that a porous body having a desired porosity can be obtained. The structural powder material (1) preferably has a particle size of 8 to 180p and is spherical or nearly spherical (for example, elliptical).

また熱可塑性樹脂粉311! (g)の粒径は構造用粉
末素材(1)の粒径に対して1〜1程度のものであるの
0 5 が好ましい。
Also thermoplastic resin powder 311! The particle size of (g) is preferably about 1 to 10 5 with respect to the particle size of the structural powder material (1).

また熱可塑性樹脂粉末体)の構造用粉末素材(1)に対
する混合量は該粉末素材として熱可塑性エラス)!−を
用いるばあい、総量に対して25%(重量%、以下同様
)以下、なかんづく6〜15%であるのが好ましく、無
機粉末を用いるばあい、総量に対して10〜50%、な
かんプ<20〜35幡であるのが好ましい。熱可塑性樹
脂粉末(8)の混合量が前記範囲より大なるときはえら
れる多孔体が柔らかくなり、耐摩耗性および寸法安定性
などに劣ったものになり、また前記範囲より小なるとき
は構造用粉末素材(1)相互の納会強度および弾性に劣
ったものとなり好ましくない。
Also, the amount of thermoplastic resin powder) to be mixed with the structural powder material (1) is thermoplastic elastomer as the powder material! - When using an inorganic powder, it is preferably 25% (wt%, the same applies hereinafter) or less of the total amount, especially 6 to 15%, and when using an inorganic powder, it is preferably 10 to 50% of the total amount. It is preferable that P<20 to 35 Ha. If the amount of the thermoplastic resin powder (8) mixed exceeds the above range, the resulting porous body will be soft and have poor wear resistance and dimensional stability; if it is less than the above range, the structure will deteriorate. Powder material (1) is undesirable because it has poor mutual strength and elasticity.

熱可塑性樹脂粉末(2)の付着方法としては、たとえば
構造用粉末素材(1)を使用される熱可塑性樹脂粉末(
2)の融点よりわずかに低い温度に加熱し、融点近くま
で加熱された熱可塑性樹脂粉末(2)と気流下でそれら
を落下tたけ攪拌混合するなどして互いに衝突せしめ、
付着させる方法などがあげられ、る。
As a method for attaching the thermoplastic resin powder (2), for example, the thermoplastic resin powder (2) used for the structural powder material (1) may be
2) is heated to a temperature slightly lower than the melting point of the thermoplastic resin powder (2), and mixed with the thermoplastic resin powder (2) heated close to the melting point under an air flow until they fall, causing them to collide with each other.
There are several ways to attach it.

このようにして表面処理された構造用粉末素材(1)は
量−ルド内に振動子を利用する無圧充填法により均一に
充填され、熱風による加熱処理によって焼結した多孔体
が見られる。かくして本発明においては、その焼結に要
する熱量をきわめて少なくすることができるという利点
を有する。
The structural powder material (1) that has been surface-treated in this manner is uniformly filled into the mold by a pressureless filling method using a vibrator, and a porous body sintered by heat treatment with hot air can be seen. Thus, the present invention has the advantage that the amount of heat required for sintering can be extremely reduced.

なお接合用有機弾性素材として前記熱溶融性樹脂粉末に
代えて加圧溶融するポリマー粉末(たとえば7ツータス
改質イソブチレン、グツタス&質イソプレンゴムなど)
を用いてもよい。かかるブリ!−粉末は加圧によって接
着するので、加熱する必要がないという利点を有する。
Note that as an organic elastic material for bonding, a polymer powder that is melted under pressure (for example, 7-Tsu-Tsu modified isobutylene, Gut-Tsu & quality isoprene rubber, etc.) can be used in place of the heat-melt resin powder.
may also be used. It takes a yellowtail! - The powder has the advantage that it does not need to be heated, since it adheres under pressure.

一方、接合用有機弾性素材として前述のごとき液状物を
用いるばあい、゛これらの液状物は構造用粉末素材の表
面を被覆するように付着し、該粉末素材を加熱成形によ
って互いに接合せしめ、かつ弾性を付与させるものであ
って、とくに構造用粉末素材として無機粉末を用いるば
あいに好適に採用されつるものである。
On the other hand, when the above-mentioned liquid materials are used as organic elastic materials for bonding, ``these liquid materials adhere to the surface of the structural powder materials so as to cover them, and the powder materials are bonded to each other by thermoforming. It imparts elasticity and is particularly suitable for use when inorganic powder is used as the structural powder material.

かかる液状の接合用有機弾性素材は構造用粉末素材とあ
らかじめ液状の状態で混合したのち、毫−ルド内に充填
されるか、あるいは毫−ルド内に各素材を投入し・−1
混合して使用するなどの方法があけられる。接合用有機
弾性素材として熱可塑性樹脂を用いるばあい、該熱可塑
性樹脂は加熱溶融した状態で構造用粉末素材と混合され
、モールド内で冷tillIIII化される。また液状
の熱硬化性樹、脂はモールド内での加熱成形によって重
縮合し、硬化せられ、さらに厘応性液状ゴムは同様に儲
−ルド内での、加熱処理によって架橋し。
The liquid organic elastic material for bonding is mixed with the structural powder material in a liquid state in advance, and then filled into the mold, or each material is put into the mold.
Methods such as mixing and using are available. When a thermoplastic resin is used as the organic elastic material for bonding, the thermoplastic resin is mixed with the structural powder material in a heated and molten state, and then cooled and turned into a molten material in a mold. In addition, liquid thermosetting resins and resins are polycondensed and cured by heat molding in a mold, and flexible liquid rubbers are similarly crosslinked by heat treatment in a mold.

硬化せられる。Hardened.

これらの接合用有機弾性素材を構造用粉末素材に付着さ
せるには、該粉末素材の表面全体を完全に被覆するよう
にしてもよいが、たとえば第1図に示されるように間隙
をもって付着されるようにしてもよい。また完全被覆の
ばあい、接合用有機弾性素材の厚さは用い−る素材の1
1mによって適宜変更されるものであるが、該弾性素材
の配合量は、前記と同機に芯材となる構造用粉末素材が
無機粉末であるばあい総量に対して10〜50%、なか
んづ<20〜6S憾であるのが好ましく、また熱可塑性
エラスト!−粉末であるばあい総量に対して25係以玉
なかんづく5〜15%となるようにするのが好ましい。
In order to attach these bonding organic elastic materials to the structural powder material, it is possible to completely cover the entire surface of the powder material, but for example, as shown in FIG. You can do it like this. In addition, in the case of complete coverage, the thickness of the organic elastic material for bonding is 1/2 of the material used.
If the structural powder material serving as the core material is an inorganic powder, the blending amount of the elastic material may be 10 to 50% of the total amount, especially if the structural powder material serving as the core material is an inorganic powder. It is preferably <20~6S, and thermoplastic elastomer! - In the case of powder, it is preferable that the amount of the powder be 5 to 15% of the total amount.

なお構造用粉末素材と接合用有機弾性素材−との接着性
を向上させるうえで、イソプ豐ビルト9(ジiクチルホ
スフエート)チタネート、イソブνピルトリイソステア
リイルチタネートなどのチタネート系カップリング剤、
さらにシラン系カップリング剤、ジルコネート系カップ
リング剤、アル虎ニウム系カッ゛プリング剤、カルシウ
ム系カップリング剤などのカップリング剤を用いるのが
好ましい。かかるカップリング剤は無機粉末の表面接着
性を載着し、強固な接着強度を付与せしめ、さらに前記
熱可塑性樹脂粉末に混合されるときは可塑化を向上させ
、軟化温度の低下を惹起させ、さらに前記液状の有機弾
性素材に対しては粘度調整剤として作用すると共に、硬
化触媒としての機能をも有する。
In order to improve the adhesion between the structural powder material and the organic elastic material for bonding, titanate coupling agents such as Isopfyo Bilt 9 (di-ctyl phosphate) titanate and isobutyl triisostearyl titanate are used. ,
Furthermore, it is preferable to use a coupling agent such as a silane coupling agent, a zirconate coupling agent, an altriolium coupling agent, or a calcium coupling agent. Such a coupling agent improves the surface adhesion of the inorganic powder, imparts strong adhesive strength, and when mixed with the thermoplastic resin powder, improves plasticization and lowers the softening temperature, Furthermore, it acts as a viscosity modifier for the liquid organic elastic material and also functions as a curing catalyst.

本発明における構造用粉末素材の形状は球状。The shape of the structural powder material in the present invention is spherical.

−繊維状、板状(フレーク状)などの種々の形状がいず
れも好適に採用される。
- Various shapes such as fibrous shape and plate shape (flake shape) are preferably employed.

たとえば構造用粉末素材がほぼ球状であるばあい、前述
のごとき振動子による無圧充填法(たとえば平行菱形充
填法など)によってモールド内での粉末素材は第2!i
!ffで示されるように配列されるが、第1図で示され
るように熱可塑性樹脂粉末(2)が表面上に適宜な間隙
をもって配置されているばあいには第6図で示されるご
とき配列となり、その空隙率をきわめて大きくすること
ができる。ちなみに第2図で示されるごとき配列におい
ては空隙率が約25容量襲であるが、第6図で示される
ものにおい鳳はその空隙率を60〜75@’@%にまで
高めることが可能である。
For example, if the structural powder material is approximately spherical, the powder material in the mold will be filled with the second! i
! ff, but if the thermoplastic resin powder (2) is arranged on the surface with appropriate gaps as shown in Fig. 1, the arrangement as shown in Fig. 6 is obtained. Therefore, the porosity can be made extremely large. By the way, in the arrangement shown in Figure 2, the porosity is about 25%, but in the case of the arrangement shown in Figure 6, it is possible to increase the porosity to 60-75%. be.

構造用粉末素材が繊維状(たとえばチタン酸カリウム、
7テストナイFなどの単結晶繊維で、アスペクト比が1
0〜50 茸1 、径が15〜lsOμ)であるばあい
、配合すると一軸的に強度を高めることができるが、こ
れらを無配向でモールド内に充填することにより、その
空隙を大きくすることができる。また無機繊維に有機繊
維(たとえばデュポン社製のケプラー繊維などの芳香族
ボッアセト繊維、カーボン繊維、ダテファイト繊維、l
リエステル繊艙など)を混合して用いるのが強靭化を高
めるうえで好ましい。
The structural powder material is fibrous (e.g. potassium titanate,
7. Single crystal fiber such as Test Nye F with an aspect ratio of 1.
0 to 50 mushrooms and diameter of 15 to lsOμ), the strength can be increased uniaxially by blending them, but by filling them into the mold without orientation, it is possible to enlarge the voids. can. In addition, inorganic fibers include organic fibers (for example, aromatic boacetate fibers such as DuPont's Kepler fiber, carbon fibers, datephyte fibers,
It is preferable to use a mixture of ester fibers, etc., in order to increase toughness.

また板状粉末(たとえはカオリン、タルクであり1代表
的には!イカがあげられ、該!イカは巾1.4〜4Pで
厚さ40μ以下1通常2〜hpであり、そのフレークア
スペクト比が41〜100;1)であるばあいも前記繊
維状のばあいと同様に無配向あるいは一軸配向的にモー
ルド内に充填すればよい。さらにこれらの各形状を有す
る構造用粉末素材を併用することにより、空隙率を大き
くすることもできる。
In addition, plate-like powder (for example, kaolin, talc, etc. 1) A typical example is squid, which has a width of 1.4 to 4P, a thickness of 40μ or less, 1 usually 2 to hp, and its flake aspect ratio. is 41 to 100; 1), it may be filled into the mold in a non-oriented or uniaxially oriented manner, as in the case of the fibrous material. Furthermore, by using structural powder materials having each of these shapes in combination, the porosity can be increased.

本発明においては、構造用粉末素材と接合用有機弾性素
材とをモールド内に充填したのち、接合用有機弾性素材
を速やかに溶融して焼結させ、冷却して硬化させるもの
であって、処理時間を短縮させるためにあらかじめ遠赤
外線照射などにより予備加熱するのが好ましい。
In the present invention, after filling a mold with a structural powder material and an organic elastic material for bonding, the organic elastic material for bonding is rapidly melted and sintered, and then cooled and hardened. In order to shorten the time, it is preferable to preheat by irradiating far infrared rays or the like.

また加熱成形後、えられる多孔体を有機弾性素材なa解
するアルコール、アセトン、ベンゼン、キシレン、ジメ
チルホルムアミドなどの溶剤と水などの非溶剤との混合
溶液に浸漬、好ましくはこれらの溶剤の蒸気と接触させ
るなどして多孔体表面の薄膜を除去あるいは収縮させて
微細孔をあけ、均一なl−ラス化をはかるのが好ましい
。かくして見られる多孔体へのインクの含浸は通常のイ
ンクパッドおよびインクW −ルにおいて採用されるイ
ンク含浸法が好適に採用されうる。
After heat molding, the resulting porous body is immersed in a mixed solution of an organic elastic material, a solvent such as alcohol, acetone, benzene, xylene, dimethylformamide, etc., and a non-solvent such as water, preferably the vapor of these solvents. It is preferable to remove or shrink the thin film on the surface of the porous body by bringing it into contact with the porous body to form fine pores and to form a uniform l-lath. For impregnating the porous body with ink, an ink impregnation method employed in ordinary ink pads and ink W-rules can be suitably employed.

以上述べたごとく、本発明−は種々の形状をとりつる構
造用粉末素材の表面に接合用有機弾性素材を付着せしめ
、無機粉末などを用いる通常の焼結条件に比してはるか
に低い温度条件下での短時間の加熱加圧成形によって構
造用粉末素材を強固に接合したものであって、構造用粉
末素材の有する強靭さ、耐摩耗性、寸法安定性などのす
ぐれた性質を具備し、インク奮−ルま先はインタパッド
として好適な大きさの空隙を有する多孔体を簡単に製造
することができると・いうすぐれた利点を有する。
As described above, the present invention allows bonding organic elastic materials to be attached to the surface of structural powder materials having various shapes, and sintering under much lower temperature conditions than normal sintering conditions using inorganic powders. Structural powder materials are firmly bonded by short-time heat and pressure molding under the same conditions, and have the excellent properties of structural powder materials such as toughness, abrasion resistance, and dimensional stability. The ink-filled toe has the excellent advantage that a porous body having voids of a size suitable for use as an interpad can be easily manufactured.

つぎに実施例をあげて本発明の詳細な説明する。Next, the present invention will be explained in detail with reference to Examples.

実施例1 平均粒径1Sμのほぼ球状の熱可塑性ウレタンエラ゛・
スト!−粉末と平均粒径2μのほぼ球状のポリ塩化ビニ
ル粉末とを用い、これらを流動浸漬槽中でゼ9塩化ビニ
ル粉末が総量に対して10%となるように混合して熱可
塑性ウレタンエテスシマー粉末の表面にポリ塩化ビニル
粉末を付着させた。すなわち流動浸漬槽中にまず所定量
(600り)の19塩化ビニル粉末を投入し、140〜
16G’0(F)熱風下で攪拌しながら120〜150
°0に予熱した所定量の熱可塑性ウレタンエラストマー
粉末を投入し、熱風下で攪拌混合して前記59壌化ビz
ル粉末を熱可塑性ウレタンエラスト!−の表面に融着さ
せ、ついで冷却した。
Example 1 Almost spherical thermoplastic urethane elastomer with an average particle size of 1 Sμ
Strike! - Powder and almost spherical polyvinyl chloride powder with an average particle size of 2μ are mixed in a fluidized immersion bath so that the amount of polyvinyl chloride powder is 10% of the total amount to form a thermoplastic urethane eth-shimmer. Polyvinyl chloride powder was attached to the surface of the powder. That is, first, a predetermined amount (600 liters) of 19-vinyl chloride powder was put into a fluidized immersion tank, and 140~
120-150 while stirring under 16G'0 (F) hot air
A predetermined amount of thermoplastic urethane elastomer powder preheated to
Thermoplastic urethane elastomer powder! - and then cooled.

えもれた生成物を遠赤外線照射して暖めながら、振動子
による無圧充填法でモールド内に充填し、孔径20μ以
下の硬質クリ五金網で上面を被覆した@モールド内に1
70’O(1り、熟熱風5分間送−り込み、直径20■
φ、長さ40■の円柱状多孔体を成形した。成形後、多
孔体をジメチルホルムアミド80幅と水20襲との混合
液中に髪潰して表面皮膜を除去し、ゼーテス化したのち
乾燥した。ついで油性インクを含浸させてインク保持多
孔体をえた。
While warming the leaked product by irradiating it with far infrared rays, it was filled into a mold using a non-pressure filling method using a vibrator.
70'O (1, blowing mature hot air for 5 minutes, diameter 20cm
A cylindrical porous body with a diameter of 40 cm and a length of 40 cm was molded. After molding, the porous body was crushed in a mixture of 80 parts of dimethylformamide and 20 parts of water to remove the surface film, and after forming into Zetes, it was dried. Then, an ink-retaining porous body was obtained by impregnating it with oil-based ink.

実施例2 19壊化ビニル粉末の熱可塑性ウレタンエツスシマー粉
末との混合量を総量に対して6襲としたほかは実施例1
と同様にしてインク保持多孔体をえた。
Example 2 Example 1 except that the amount of 19-disintegrated vinyl powder mixed with thermoplastic urethane etsshimmer powder was 6 times the total amount.
An ink-retaining porous body was obtained in the same manner as described above.

実施例墨 平均粒径topの球状亜硫酸カルシウム粉末の表面ニx
*−τT8(ケンリッチ・ベト冒ケミカル社製のイソプ
豐ピルトリイソステア冒イルチタネーシ)を亜硫酸カル
シウム粉末の0.5憾の割合で被覆した。
Example Black surface of spherical calcium sulfite powder with average particle size top
*-τT8 (isopropylene titanate manufactured by Kenrich Beto Chemical Co.) was coated at a ratio of 0.5 parts of calcium sulfite powder.

ついで平均粒径6pのほば球状の熱可塑性ウレタンエラ
ス)!−粒粉末前記亜硫酸カルシウム粉末と総量に対し
て26%となるように実施例1と同様にして流動浸漬槽
中で混合し、亜硫酸カルシウム粉末の表面に熱可塑性中
レタンエラストマー粉末を均一に付着せしめたのち、モ
ールド内に充填し、実施例1と同様にしてインク保実施
例4 平均粒径8pの重質炭酸カルシウム粉末の表面にに!j
−TTSを重質炭酸カルシウム粉末の0.5弧の割合で
被覆した・0 えられた重質炭酸カルシウム粉末に熱可塑性ウレタンエ
ラストマー粉末を総量に対して40襲の割合で混合した
はかは実施例1と同様にしてインク保持多孔体をえた。
Next, almost spherical thermoplastic urethane elastomer with an average particle size of 6p)! - Mix the granular powder with the calcium sulfite powder in a fluidized dipping bath in the same manner as in Example 1 so that the amount is 26% based on the total amount, and the thermoplastic medium urethane elastomer powder is uniformly adhered to the surface of the calcium sulfite powder. After that, the mold was filled and the ink was stored in the same manner as in Example 1. Example 4 On the surface of heavy calcium carbonate powder with an average particle size of 8p! j
-TTS was coated with the heavy calcium carbonate powder at a ratio of 0.5 arc.0 The method was carried out in which the obtained heavy calcium carbonate powder was mixed with thermoplastic urethane elastomer powder at a ratio of 40 arcs to the total amount. An ink-retaining porous body was obtained in the same manner as in Example 1.

比較例 平均粒径6Sμのナイ田ン6粉末をモールド内に充填し
、加圧下で160ooで10分間予備加熱成形したのち
、26G’Oの熱雰囲下中で6分間焼成して見られた多
孔体を冷却乾燥し、ついで油性インクを含浸させてイン
ク保持多孔体をえた。
Comparative Example Naidan 6 powder with an average particle size of 6 Sμ was filled into a mold, preheated and molded under pressure at 160 oo for 10 minutes, and then fired for 6 minutes in a hot atmosphere of 26 G'O. The porous body was cooled and dried, and then impregnated with oil-based ink to obtain an ink-retaining porous body.

実施例1〜4および比較例でえた各インク保持多孔体の
強靭性、耐摩耗性および空隙率を調べた。その結果を第
1表に示す〇 第1表における各試験項目の試験条件は以下のとおりで
ある。
The toughness, abrasion resistance, and porosity of each ink-retaining porous body obtained in Examples 1 to 4 and Comparative Example were examined. The results are shown in Table 1. The test conditions for each test item in Table 1 are as follows.

(1)強靭性 引張強さおよび伸びは718 K 6301に記載の引
張試験法に準拠した0 また引張応力は試験片(外径44.6■φ、内径&6.
6mφ、長さ57.5M)に50弧の伸びを与えたとき
の引張荷重を測定して求めた。
(1) Toughness Tensile strength and elongation were measured according to the tensile test method described in 718 K 6301. Tensile stress was measured using a test piece (outer diameter 44.6 mm, inner diameter &6.
The tensile load was determined by measuring the tensile load when an elongation of 50 arcs was applied to the specimen (6mφ, length 57.5M).

(2)摩耗率 イギリス規格ya890iS%れム90法に準拠して摩
耗度を測定した。
(2) Wear rate The degree of wear was measured in accordance with the British standard ya890iS% Rem 90 method.

すなわちアタ田ン式摩耗試験機にて試料(厚さ10■、
巾14閣)に1−4kg (Sボンド)摩耗した割合を
求めた。
That is, the sample (thickness 10cm,
The wear rate of 1-4 kg (S bond) was determined for the width (14 cm).

(3)空隙率 空隙率は次式により求めた。(3) Porosity The porosity was determined using the following formula.

W!インクを含まない多孔体 aS多孔体構成物質の比重 第   1   表 実施例5 平均粒径5μの球状亜硫酸カルシウム粉末を高ぜん断攪
拌機中で攪拌しながら、溶融したナイ田ン66を総量に
対して20襲の割合で霧状に噴務して該亜硫酸カルシウ
ム粉末の表面を被覆し。
W! Table 1 Example 5 While stirring spherical calcium sulfite powder with an average particle size of 5 μm in a high shear stirrer, melted Naidan 66 was added to the total amount of porous body aS without ink. The surface of the calcium sulfite powder was coated by spraying it in a mist at a rate of 20 times.

ついで冷却した。Then it was cooled.

見られた被覆亜硫酸カルシウム粉末をリボンプレンダー
で打撃、振動を与え、凝集した粉末を充分にときはぐし
たのち、所定量を直径20■φ、長さ40鵬の空隙をも
つモールド内に充填し、加圧下で200°Oで5分間加
熱成形したあと、放冷して多孔体をえた。このものに油
性インクを含浸させてインター持多孔体をえた。
The resulting coated calcium sulfite powder was struck and vibrated with a ribbon blender to sufficiently loosen the agglomerated powder, and then a predetermined amount was filled into a mold with a gap of 20 mm in diameter and 40 mm in length. After heating and forming under pressure at 200° O for 5 minutes, the porous body was left to cool. This material was impregnated with oil-based ink to obtain an inter-porous material.

実施例6 平均粒径10μの球状亜硫酸カルシウム粉末を高ぜん断
攪拌機中で攪拌しながら、液状lすiレタン(常温硬化
性メリウレター樹脂aAFT 60L(国際ケセカル呼
製)10重量部に硬化剤(液状イソシアネ))3重量部
を配合した液状lリウレタン)を総量に対して15%の
割合で糸状に注下し、亜硫酸カルシウム粉末の表面を被
覆したO えられた被覆亜硫酸カルシウム粉末をりlンプレンダー
で打撃、振動を与え、凝集した粉末を充分にときほぐし
たのち、所走量を直径25−1長さ50mの空隙をもつ
モールド内に充填し、100°0で5分間加熱成形して
多孔体をえた。このものに油性インクを含浸させてイン
ク保持多孔体をえた。
Example 6 While stirring spherical calcium sulfite powder with an average particle size of 10 μm in a high shear stirrer, a curing agent (liquid The surface of the calcium sulfite powder was coated by pouring 3 parts by weight of liquid urethane) into a thread at a rate of 15% of the total amount. After sufficiently loosening the agglomerated powder by applying blows and vibrations, the amount of the powder was filled into a mold with a gap of 25-1 in diameter and 50 m in length, and heated at 100 ° 0 for 5 minutes to form a porous body. I got it. This material was impregnated with oil-based ink to obtain an ink-retaining porous material.

実施例ア 平均粒径tzpの球状亜硫酸カルシウム粉末を高ぜん断
攪拌機中で攪拌しながら、反応性液状ゴム組成物(へイ
カ−atyaw 1300X8 (ビー拳エフ番グツド
リッチeケ竜カル社製のエトリルゴA ) 143重量
部、ビスフェノール人(M延長剤)24重量部、工lキ
シ樹脂Rk 10ム(EiiWA+ミカル■製)100
重量部およびエボ午シ樹脂硬化剤Rム10B(国11カ
ル■製)100重量部を配合した組成物)を総量に対し
て10%の割合で定貴混金吐出機を用いて注入し、亜硫
酸カルシウム粉末の表面を被覆した。
Example A While stirring spherical calcium sulfite powder with an average particle diameter of tzp in a high shear stirrer, a reactive liquid rubber composition (Heika-Atyaw 1300 ) 143 parts by weight, 24 parts by weight of bisphenol (M extender), 100 μl of resin Rk (manufactured by EiiWA + Michal) 100
Inject a composition containing 100 parts by weight of the resin curing agent RM 10B (manufactured by Country 11 Cal) at a rate of 10% of the total amount using a fixed metal dispensing machine, The surface of calcium sulfite powder was coated.

えられた被覆亜硫酸カルシウム粉末を実施例5と同様に
してリボンブレンダーでときはぐし、モール、ド内に充
填して40’Oで7.5分てル化させ、さらに常温で6
0分間硬化させて多孔体をえた。
The obtained coated calcium sulfite powder was blended with a ribbon blender in the same manner as in Example 5, filled into a mold, and blended at 40'O for 7.5 minutes, and further blended at room temperature for 6 minutes.
A porous body was obtained by curing for 0 minutes.

このものに油性インクを含浸させてインク保持多孔体を
えた。
This material was impregnated with oil-based ink to obtain an ink-retaining porous material.

実地例6〜7でえた各インク保持多孔体の強靭性、耐摩
耗性および空隙率を前記実施例1〜4と同様にして調べ
た。その結果を第2表に示す。
The toughness, abrasion resistance, and porosity of each of the ink-retaining porous bodies obtained in Practical Examples 6 and 7 were examined in the same manner as in Examples 1 to 4 above. The results are shown in Table 2.

第   2511 またこれら実施例1〜7でえられたインク保持多孔体は
その微細孔内に含有されるインクの滓出性にすぐれてお
り、とくに微圧下でのインク鯵出性にすぐれていた。
No. 2511 In addition, the ink-retaining porous bodies obtained in Examples 1 to 7 were excellent in oozing out of the ink contained in the fine pores, and in particular, were excellent in ink extrusion under slight pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における熱可塑性樹脂粉末が構造用粉末
素材に付着した状態の一例を示す概略断WBWJ、第2
図は球状の構造用粉末素材の毫−ルド内ての配列を示す
概略説明図、第3図は第1図に示した構造用粉末素材の
モールド内での配列を示す一路断面図である。 (図面の符号) (1):構造用粉末素材 (2):熱可塑性樹脂粉末
FIG. 1 is a schematic cross-section WBWJ showing an example of the state in which the thermoplastic resin powder of the present invention is attached to the structural powder material;
The figure is a schematic explanatory diagram showing the arrangement of spherical structural powder materials in the mold, and FIG. 3 is a cross-sectional view showing the arrangement of the structural powder materials shown in FIG. 1 in the mold. (Drawing code) (1): Structural powder material (2): Thermoplastic resin powder

Claims (1)

【特許請求の範囲】 1 無機粉末または熱可塑性エラスジマー粉末からなる
構造用粉末素材の表面に、粉末状または液状の接金用有
機弾性素材を付着せしめたのち、4−ルド内に充填し、
加熱加圧して多孔体を成形し、ついでインタを含浸せし
めることを特徴とするインク保持多孔体の製造法。 2 粉末状の接金用有機弾性素材が熱可塑性樹脂粉申で
ある特許請求の範囲第1項記載の方法0 6 液状の接金用有機弾性素材が溶融した熱可塑性樹脂
、熱可塑性ゴム、液状熱硬化性樹脂または反応性液状ゴ
ムである特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A powdered or liquid organic elastic material for welding is adhered to the surface of a structural powder material made of inorganic powder or thermoplastic elaszimer powder, and then filled in a four-fold,
A method for producing an ink-retaining porous body, which comprises molding the porous body by heating and pressurizing it, and then impregnating it with an interlayer. 2. The method according to claim 1, wherein the powdery organic elastic material for welding is a thermoplastic resin powder. 6. The liquid organic elastic material for welding is a molten thermoplastic resin, thermoplastic rubber, or liquid. 2. The method according to claim 1, wherein the resin is a thermosetting resin or a reactive liquid rubber.
JP7533481A 1981-05-18 1981-05-18 Manufacturing method of ink holding porous body Expired JPS5939458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7533481A JPS5939458B2 (en) 1981-05-18 1981-05-18 Manufacturing method of ink holding porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7533481A JPS5939458B2 (en) 1981-05-18 1981-05-18 Manufacturing method of ink holding porous body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP13467983A Division JPS5935968A (en) 1983-07-22 1983-07-22 Manufacture of ink holding porous body

Publications (2)

Publication Number Publication Date
JPS5849732A true JPS5849732A (en) 1983-03-24
JPS5939458B2 JPS5939458B2 (en) 1984-09-22

Family

ID=13573247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7533481A Expired JPS5939458B2 (en) 1981-05-18 1981-05-18 Manufacturing method of ink holding porous body

Country Status (1)

Country Link
JP (1) JPS5939458B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174682A (en) * 1984-02-20 1985-09-07 Tsukahara Kogyo Kk Production of elastic porous stamp material
JPS61295041A (en) * 1985-06-24 1986-12-25 Tsukahara Kogyo Kk Manufacture of ink-occluding type stamp material
JPS6222332U (en) * 1985-07-25 1987-02-10
JPH0348021A (en) * 1989-04-03 1991-03-01 Nabeya Kogyo Kk Spring and manufacture thereof
US5062619A (en) * 1989-04-03 1991-11-05 Nabeya Kogyo Co., Ltd. Non-linear spring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948868A (en) * 1982-09-10 1984-03-21 Toshiba Corp Magnetic head device
JPS61151873A (en) * 1984-12-26 1986-07-10 Hitachi Ltd Screw connection structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174682A (en) * 1984-02-20 1985-09-07 Tsukahara Kogyo Kk Production of elastic porous stamp material
JPS61295041A (en) * 1985-06-24 1986-12-25 Tsukahara Kogyo Kk Manufacture of ink-occluding type stamp material
JPS6222332U (en) * 1985-07-25 1987-02-10
JPH0348021A (en) * 1989-04-03 1991-03-01 Nabeya Kogyo Kk Spring and manufacture thereof
US5062619A (en) * 1989-04-03 1991-11-05 Nabeya Kogyo Co., Ltd. Non-linear spring

Also Published As

Publication number Publication date
JPS5939458B2 (en) 1984-09-22

Similar Documents

Publication Publication Date Title
FI86869C (en) Composite material in the form of thermoplastic polymer reinforced with fibers
US4986948A (en) Molding process for fiber reinforced plastics
KR0139918B1 (en) Improved laminate composites and method for making the same
JPH01132639A (en) Filled molding material and its production
US4451539A (en) Surfacing foils for coating plastics parts
EP1578576B1 (en) Near net shape prepreg
JPS5849732A (en) Preparation of ink-holding porous material
US3668096A (en) Method and apparatus for controlling polymerization reactions
JPS63170428A (en) Production of prepreg
EP0318616B1 (en) Fiber-reinforced composite materials and resin composition therefor
JP2018504513A (en) Flexible metal polymer composite
US3922247A (en) Handleable, moldable ester-type resin compositions
JPH02166134A (en) Resin composition
JPS5935968A (en) Manufacture of ink holding porous body
JPS59199724A (en) Production of composite molded article
KR102294685B1 (en) Carbon fiber fabric including functional particle and manufacturing method thereof
JPH0435495B2 (en)
Iroh et al. Mechanical properties of electropolymerized matrix composites
JPH01110536A (en) Prepreg containing fine particle of resin
Lee et al. Liquid‐rubber‐modified epoxy adhesives cured with dicyandiamide. II.–Morphology and adhesion strengths
JP3571775B2 (en) Prepreg
JPH11124442A (en) Production of plastic composite machine part
JPS6244571B2 (en)
JPS6341726B2 (en)
GB2188935A (en) Articles of filled synthetic polymeric materials and glass bead filler therefor