JPS584966A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS584966A
JPS584966A JP56102563A JP10256381A JPS584966A JP S584966 A JPS584966 A JP S584966A JP 56102563 A JP56102563 A JP 56102563A JP 10256381 A JP10256381 A JP 10256381A JP S584966 A JPS584966 A JP S584966A
Authority
JP
Japan
Prior art keywords
mask
film
sio2
capacitance
storage region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56102563A
Other languages
Japanese (ja)
Inventor
Nobuo Sasaki
伸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56102563A priority Critical patent/JPS584966A/en
Publication of JPS584966A publication Critical patent/JPS584966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To equalize the characteristics of a RAM having high capacitance by forming a charge storage region and an electrode for capacitance through a self alignment system. CONSTITUTION:A field oxide film 2 and a gate oxide film 3 are formed onto a p type Si substrate 1. n<+> Poly Si 7 is stacked through a CVD method, and coated with SiO2 14. A negative type resist mask 15 is executed and B ions are implanted and a p<+> shielding region 5 is shaped, and As ions are inplanted and the n<+> storage region 6 is formed. When the SiO2 14 is etched in the HF of five Torr at the normal temperature, only the SiO2 under the mask 15 is removed selectively through etching. The mask 15 is removed, the n<+> poly Si 7 is patterned while using the SiO2 14 as a mask, the mask 14 is taken off, and the RAM type one transistor-one capacitance memory having double electrode structure by the Poly Si is completed through a conventional method. According to this constitution, the characteristics slightly vary because positional displacement is not generated between the charge storage region and the capacitance electrode.

Description

【発明の詳細な説明】 本発明は、多結晶シリコンからなる二重電極構造を有す
るメモリ・セルを含む半導体装置を製造する方法の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a semiconductor device including a memory cell having a double electrode structure made of polycrystalline silicon.

従来、高容量RAM (random access 
m@mory ) mlの1トランジスタ・1キヤパシ
タ・メモル・セルで鉱、キャパシタの容量を大にする為
、キャパシタ用電極下方の半導体基板表面には不純物拡
散領域を形成しているが、その領域とキャパシタ用電極
とはセルフ・アテインメントで形成されていない為、そ
れ等の間にずれを生じ易く、電気特性のバラツキが著し
かつえ。
Conventionally, high capacity RAM (random access
m@mory ) In order to increase the capacitance of a 1-transistor, 1-capacitor memory cell, an impurity diffusion region is formed on the surface of the semiconductor substrate below the capacitor electrode, but this region and Since the capacitor electrodes are not formed with self-attainment, misalignment between them is likely to occur, resulting in significant variations in electrical characteristics.

第1図乃至第8図は、この種半導体装置を製造する従来
技術を説明する為の工程要所に於ける装置の要部断面説
明図であり・、次に、これ等の図を参照しつつ説明する
1 to 8 are cross-sectional explanatory views of the main parts of the device at important points in the process to explain the conventional technology for manufacturing this type of semiconductor device.Next, please refer to these figures. I will explain.

第1図参照 (1)例えば窒化7リコン属iスクなどを使用し九遇択
的熱酸化法に依b、pmシリコン半導体基板1上にフィ
ールド用二酸化シリコン絶縁膜8を形成する。
Refer to FIG. 1. (1) A field silicon dioxide insulating film 8 is formed on the PM silicon semiconductor substrate 1 by a selective thermal oxidation method using, for example, a silicon nitride silicon disk.

(2)前記窒化シリコン属iスクなどを除去してから、
熱酸化法に依り、ゲーート絶縁膜3を形成する。
(2) After removing the silicon nitride disk, etc.,
A gate insulating film 3 is formed by thermal oxidation.

第8図参照 (3)  キャパシタ部分に窓を有するフォト・レジス
ト膜4を形成する。尚、 4には窓を示している。
Refer to FIG. 8 (3) A photoresist film 4 having a window is formed in the capacitor portion. Note that 4 shows a window.

(4)  例えば硼素イオンを注入してp+li!遮蔽
領域5を形成する。
(4) For example, by implanting boron ions, p+li! A shielding region 5 is formed.

(5)  引き続き、例えば砒素イオンを注入してnu
ll蓄積領域6を形成する。
(5) Continue to implant nu, for example, arsenic ions.
ll accumulation region 6 is formed.

第3図参照 (6)  フォト・レジス11を除去してから化学気相
成長法(CVD法〕を適用して1m+ffi多結晶シリ
多結晶シリコ成膜7゜尚、多結晶シリコンへの不純物の
導入と多結晶シリコンの成長とは別にしても良い。
Refer to Figure 3 (6) After removing the photoresist 11, chemical vapor deposition (CVD) is applied to form a 1m+ffi polycrystalline silicon film.In addition, impurities are introduced into the polycrystalline silicon. This may be done separately from the growth of polycrystalline silicon.

3114図参照 (7)  null多結晶多結晶シリコ金膜7−ニング
してキャパシタ用電極を形成する為のマスクとなるフォ
ト・レジスト膜8を通常のフォト・リングラフィ技術に
て形成する。
(7) Null polycrystalline polysilicon gold film 7 is coated to form a photoresist film 8 which will serve as a mask for forming capacitor electrodes using ordinary photolithography technology.

第6図参照 (8)  フォト・レジスト膜8をマスクとして多結晶
電極7′を形成する。
Refer to FIG. 6 (8) Polycrystalline electrode 7' is formed using photoresist film 8 as a mask.

第6図参照 (9)  熱酸化法を適用してキャパシタ用電極7′の
表面に分離絶縁膜9を形成する。
Refer to FIG. 6 (9) A thermal oxidation method is applied to form an isolation insulating film 9 on the surface of the capacitor electrode 7'.

第7図参照 (2)化学気相成長法にて1+fi多結晶シリコン膜を
成長させ、これをフォト・リソグラフィ技術にてパター
冊ングし、トランスファ・ゲート用トランジスタのゲー
ト電極10を形成する。
Refer to FIG. 7. (2) A 1+fi polycrystalline silicon film is grown by chemical vapor deposition and patterned by photolithography to form the gate electrode 10 of the transfer gate transistor.

第8図参照 (ロ) 例えば、イオン注入法にて砒素イオンを注入し
てトランスファ・ゲート用トランジスタのn+瀝拡歓領
域11を形成する。
Refer to FIG. 8 (b) For example, arsenic ions are implanted using an ion implantation method to form the n+ diffusion region 11 of the transfer gate transistor.

(ロ)化学気相成長法にて燐硅酸ガラス絶縁膜νを成長
させ、これを通常のフォト・リングz)フイ技術にてパ
ターニングして電極コンタクト窓を形成する。この後、
必要に応じて熱処理して所謂ガラス・す7o−を行な2
ても良い。
(b) A phosphosilicate glass insulating film ν is grown by chemical vapor deposition, and patterned by a conventional photo-ring-fi technique to form an electrode contact window. After this,
If necessary, heat treatment is performed to form a so-called glass 7o-2.
It's okay.

(2)蒸着法にてアル(=ラム膜を形成し、それをフォ
ト・リソグラフィ技術にてパターニングし電極・配線1
3を形成する。
(2) Form an aluminum film using the vapor deposition method, pattern it using photolithography technology, and conduct electrode/wiring 1.
form 3.

前記工程説明から判るように、蓄積領域6とキャパシタ
用電極7′の位置合せは完全にフォト・リングラフィの
位置合せ精度に依存している。従って前記したように特
性のバラツキを生じ易い。
As can be seen from the above process description, the alignment of the storage region 6 and the capacitor electrode 7' completely depends on the alignment accuracy of photolithography. Therefore, as described above, variations in characteristics are likely to occur.

本発明は、゛製造工程に僅かな改変を加えるだけで、キ
ャパシタの電荷蓄積領域とキャパシタ用電極とをセルフ
・アラインメント方式で形成できるようにするものであ
シ、以下これを詳細に説明する。
The present invention enables the formation of a charge storage region of a capacitor and a capacitor electrode in a self-alignment manner by only making slight modifications to the manufacturing process. This will be described in detail below.

第9図乃至第臆図嬬本発明−実施例を説明する為の工程
要所に於ける半導体装置の要部断面説明図であり、次に
、これ等の図を参照しつつ記述する。尚、本発明は工程
の前半に特徴があり、後手は前記従来技術と変りない。
FIGS. 9 to 9 are explanatory cross-sectional views of main parts of a semiconductor device at key process points for explaining embodiments of the present invention, and the description will now be made with reference to these figures. Note that the present invention is characterized by the first half of the process, and the latter part is the same as the prior art described above.

第9図参照 (1)pffiシリコン半導体基板1に通常の技術を適
用してフィールド用二酸化シリコン絶縁膜2及び二酸化
シリコンのゲート絶縁膜3を形成する。
Refer to FIG. 9. (1) A field silicon dioxide insulating film 2 and a silicon dioxide gate insulating film 3 are formed on a pffi silicon semiconductor substrate 1 by applying a conventional technique.

第10図参照 (2)化学気相成長法にてi子機多結晶りリコン膜7を
成長させる。
Refer to FIG. 10 (2) Grow the i-child polycrystalline silicon film 7 by chemical vapor deposition.

(3)  例えば熱酸化法にて厚さ例えば500 (X
) s*の二酸化クリコン@ 14 i形成する。
(3) For example, the thickness is 500 (X
) Forms s* of cricon dioxide @ 14 i.

第11図参照 (4)通常のフォト・リングラフィ技術にてキャノ(7
タ領域形成窓tVするフォト・レジスト膜ルを形成すと
。尚、このフォト・レジストはネガ臘のものを使用する
See Figure 11 (4) Cano (7) using normal photo-phosphorography technology
A photoresist film is formed to form a photoresist region forming window tV. Incidentally, this photoresist is a negative one.

(5)イオン注入法を適用し、例えば硼素イオンを注入
してp中温遮蔽領域Sを形成する。
(5) Applying an ion implantation method, for example, implanting boron ions to form a p-moderate shielding region S.

(6)引き続き例えば砒素イオンを注入してn十臘蓄積
領域6を形成する0 第U図参照 (7)常温で圧力例えば5(Torr)の弗[(HF)
ガス中に於いて二酸化シリ;ン膜14のエツチングを行
なう。
(6) Subsequently, for example, arsenic ions are implanted to form an accumulation region 6 (see Figure U).
The silicon dioxide film 14 is etched in gas.

これに依シ、ネガ溢のフォト・レジスト膜「の下に在る
二酸化クリコン膜のみがエッチングされる。
Depending on this, only the silicon dioxide film under the negative photoresist film is etched.

このような現象が起きる理由は解明されていないが、実
験的にilmすることは容易である。
Although the reason why such a phenomenon occurs has not been elucidated, it is easy to illuminate it experimentally.

(8)  この後、フォト・レジスト膜15を除去し、
バターニングされた二酸化シリコン膜14ヲマスクにし
てn十置多結晶シリコン膜7をバターニングし、二酸化
シリコン膜14を除去すれば185図に見られる構造が
得られる。従って、前記従来技術を適用してlia図に
見られる完成品を得ることがで龜る。
(8) After this, the photoresist film 15 is removed,
By using the patterned silicon dioxide film 14 as a mask, the n-decade polycrystalline silicon film 7 is patterned, and the silicon dioxide film 14 is removed to obtain the structure shown in FIG. 185. Therefore, it is difficult to obtain the finished product shown in the lia diagram by applying the prior art.

以上の説明で判るように、本発明に依れば、高容量RA
MIII)ランジスタ・lキャパシタ・メモリを製造す
るに除し、電荷蓄積領域とキャパシタ用電極をセルフ・
アラインメント方式で形成することができるから、それ
等の間に位置ずれは発生せず、従って、電気特性のバラ
ツキ拡僅少になる。
As can be seen from the above explanation, according to the present invention, high capacity RA
MIII) When manufacturing transistors, l-capacitors, and memories, charge storage regions and capacitor electrodes are self-contained.
Since they can be formed using an alignment method, no misalignment will occur between them, and therefore variations in electrical characteristics will be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図線従来技術に依る工程を1!明する為
の工1ml!所に於ける牛導体装置の要部断面説明図、
縞9図乃至籐シ図社本発明−実施例を観閲説明図である
。 図に於いて、lは基板、!ii絶縁膜、3はゲート絶縁
膜、5は遮蔽領域、6は蓄積領域、7は多結晶シリコン
膜、14は二酸化シリコン膜、tはフォト・レジスト膜
、7′紘キヤパシタ用電極である。 特許出願人 富士通株式会社 代理人弁理士 玉 蟲 久 五 部(外3名)第1図 第2図 第3図 第4図 第7図 第9図 第11図 第12図
Figures 1 to 8 show the process according to the prior art 1! 1ml of work to clarify! A sectional explanatory diagram of the main part of the cow conductor device at the location,
FIGS. 9A and 9B are explanatory diagrams of the present invention-embodiments published by Shimazusha. In the figure, l is the substrate! ii is an insulating film, 3 is a gate insulating film, 5 is a shielding region, 6 is an accumulation region, 7 is a polycrystalline silicon film, 14 is a silicon dioxide film, t is a photoresist film, and 7' is a capacitor electrode. Patent Applicant: Fujitsu Limited Patent Attorney Hisashi Gobe Tamamushi (3 others) Figure 1 Figure 2 Figure 3 Figure 4 Figure 7 Figure 9 Figure 11 Figure 12

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に薄い絶縁膜を形成し、その上にシリコン
膜を形成し、更にその上に絶縁膜を形成し、腋絶縁膜を
キャパ7タ領域形成用窓を有するネガffiフォト・レ
ジスト膜で覆い、該ネガ潅フォト・レジスト膜をマスク
にして前記半導体基板にイオン注入して電荷蓄積領域を
形成し、しかる後、弗酸系ガス中にて前記ネガ臘フォト
・レジスト膜直下の絶縁属をエツチングしてから前記窓
内に残され九絶縁膜をマスクにして前記シリコン膜をバ
ターニングしキャパシタ用電極を形成する工程が含まれ
てなることを特徴とする半導体装置の製造方法。
A thin insulating film is formed on a semiconductor substrate, a silicon film is formed on it, an insulating film is further formed on that, and the underarm insulating film is a negative FFI photoresist film having a window for forming a capacitor region. Then, using the negative photoresist film as a mask, ions are implanted into the semiconductor substrate to form a charge storage region, and then the insulating material directly under the negative photoresist film is removed in hydrofluoric acid gas. 1. A method of manufacturing a semiconductor device, comprising the steps of etching and then buttering the silicon film using the insulating film left in the window as a mask to form a capacitor electrode.
JP56102563A 1981-06-30 1981-06-30 Manufacture of semiconductor device Pending JPS584966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56102563A JPS584966A (en) 1981-06-30 1981-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56102563A JPS584966A (en) 1981-06-30 1981-06-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS584966A true JPS584966A (en) 1983-01-12

Family

ID=14330689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56102563A Pending JPS584966A (en) 1981-06-30 1981-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS584966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142252A2 (en) * 1983-09-26 1985-05-22 Fujitsu Limited Method for producing semiconductor device
EP0167024A2 (en) * 1984-07-02 1986-01-08 International Business Machines Corporation Process for making an improved dynamic memory cell structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649554A (en) * 1979-09-28 1981-05-06 Hitachi Ltd Manufacture of semiconductor memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649554A (en) * 1979-09-28 1981-05-06 Hitachi Ltd Manufacture of semiconductor memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0142252A2 (en) * 1983-09-26 1985-05-22 Fujitsu Limited Method for producing semiconductor device
EP0167024A2 (en) * 1984-07-02 1986-01-08 International Business Machines Corporation Process for making an improved dynamic memory cell structure

Similar Documents

Publication Publication Date Title
JP2658824B2 (en) Method for manufacturing semiconductor device
JP2761685B2 (en) Method for manufacturing semiconductor device
US4977102A (en) Method of producing layer structure of a memory cell for a dynamic random access memory device
JP2959932B2 (en) Method of manufacturing high capacity storage node
US5384276A (en) Method of fabricating a memory device with a multilayer insulating film
US5071781A (en) Method for manufacturing a semiconductor
US5583070A (en) Process to form rugged polycrystalline silicon surfaces
JP2671833B2 (en) Semiconductor device and manufacturing method thereof
JP2894361B2 (en) Semiconductor device and manufacturing method thereof
JP2803589B2 (en) Method for manufacturing semiconductor device
US5721152A (en) Method of fabricating a stacked capacitor for a DRAM cell by plasma etching
US5374577A (en) Polysilicon undercut process for stack DRAM
JPS584966A (en) Manufacture of semiconductor device
JP2917894B2 (en) Method for manufacturing semiconductor device
JPH05251658A (en) Manufacture of semiconductor device
JPH0640549B2 (en) Method for manufacturing MOS semiconductor device
US4482908A (en) High capacity memory cell having a charge transfer channel covered by a stepped insulating layer
KR0136916B1 (en) Manufacturing method of semiconductor device
KR970011670B1 (en) A method for fabricating stack type dram cell
KR0123234B1 (en) Fabricating method of stacked charge storage electrode
JPS63200562A (en) Manufacture of semiconductor storage device
KR0166839B1 (en) Semiconductor memory process
KR0135256B1 (en) Forming method of charge storage electrode
KR100271792B1 (en) Method of fabricating capacitor
JPH0284741A (en) Manufacture of semiconductor device