JPS5848923A - High pressure oxidizer - Google Patents

High pressure oxidizer

Info

Publication number
JPS5848923A
JPS5848923A JP56148081A JP14808181A JPS5848923A JP S5848923 A JPS5848923 A JP S5848923A JP 56148081 A JP56148081 A JP 56148081A JP 14808181 A JP14808181 A JP 14808181A JP S5848923 A JPS5848923 A JP S5848923A
Authority
JP
Japan
Prior art keywords
pressure
tube
reaction vessel
sub
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56148081A
Other languages
Japanese (ja)
Inventor
Mikio Takagi
幹夫 高木
Mamoru Maeda
守 前田
Haruo Shimoda
下田 春夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56148081A priority Critical patent/JPS5848923A/en
Publication of JPS5848923A publication Critical patent/JPS5848923A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide

Abstract

PURPOSE:To obtain a safe apparatus without any contamination by accomodating a water tank within the sub-pressure proof container, connecting it to the reaction vessel and supplying water to said reaction vessel while the pressure within said sub-pressure proof container is kept higher than that within the reaction vessel. CONSTITUTION:The main pressure-proof container 1 is set to a predetermied pressure P and an internal pressure of reaction tube 2 is set to P0 while an internal pressure of the sub-pressure proof container 5 is set to P1. Here, the respective pressure differences DELTAP0, DELTAP1 from the pressure P are set to the feedback type controllers 3, 9. In case a pressure condition is set as follow, namely, P<P0<P1, the pure water 6 is pressurizingly sent to the reaction tube 2 through a fine tube 7 by the relation of DELTAP1-DELTAP0, humidifying inside of the tube 2. When a value of DELTAP1-DELTAP0 is properly selected, amount of pure water to be supplied can be controlled easily, and in addition amount of water to be supplied can be changed by changing tube diameter of the fine tube 7 or by restricting flow path by providing a valve 11 at the intermediate portion. According to this structure, a high pressure pump is no longer necessary and a safe high pressure oxidizer can be obtained without generating contamination and any anxiety of explosion.

Description

【発明の詳細な説明】 本発明は高圧酸化装置に係り、特に反応容器内を加湿雰
囲気とするための加湿装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-pressure oxidation apparatus, and particularly to a humidification apparatus for creating a humidified atmosphere inside a reaction vessel.

高圧酸化袋、置は半導体基板を高圧の加湿雰囲気内で加
熱旭理することにより、シリコン基板表面に比較的低温
且つ短時間で酸化kmを形成することを目的とする装置
であや、そのため反応管内を加湿雰囲気とするための加
湿手段を具備している。
A high-pressure oxidation bag is a device whose purpose is to form oxide km on the surface of a silicon substrate at a relatively low temperature and in a short time by heating a semiconductor substrate in a high-pressure humidified atmosphere. It is equipped with a humidifying means to create a humidified atmosphere.

この加温手段として従来は高圧水素(Hりを燃焼させ【
水蒸気(H! o)を発生させるようにしたものが多く
用いられていた。これは加湿源が気体であるので取り扱
いが容易なこと、及び高純度のH2Oが得られ汚染の心
配がないという長所を有する反面、高圧水素を用いるの
で爆発を招く危険がある。
Conventionally, the heating method used was to burn high-pressure hydrogen (H2).
Many were used to generate water vapor (H!o). This method has the advantage that it is easy to handle because the humidification source is a gas, and that high-purity H2O is obtained and there is no risk of contamination. However, since high-pressure hydrogen is used, there is a risk of explosion.

そこで昨今においては高圧水素に代えて高純度の水を加
湿源とする加温手段が試みられている。
Therefore, in recent years, attempts have been made to use high-purity water as a humidifying source instead of high-pressure hydrogen.

これは例えば高圧ポンプを用いて高純度の水を反応管内
に圧送しようとする(のであって、前述した爆発のよう
な急峻性はないが、高圧ポンプ自身の材質や、高圧ポン
プの溶接部の材質、加工法に起因する汚染が発生する恐
れがあり、長期間にわたってかかる汚染の発生を防止す
ることは容易ではない。
This is because, for example, a high-pressure pump is used to forcefully pump high-purity water into a reaction tube (this is not as sudden as the explosion mentioned above, but the material of the high-pressure pump itself and the welded parts of the high-pressure pump Contamination may occur due to materials and processing methods, and it is not easy to prevent such contamination over a long period of time.

本発明の目的は上記問題点を解消して汚染を発生する恐
れがなく、且つ安全な高圧酸化装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a safe high-pressure oxidation device that does not cause contamination.

本発明の高圧酸化装置の特徴は、水槽と、該水槽を収容
せる副耐圧容器と、前記水槽及び反応容器(f)とを連
通ずる細管と、前記間耐圧容器内圧力の制御手段とを有
してなる加湿手段を具備することにある。
The high-pressure oxidation apparatus of the present invention is characterized by comprising a water tank, an auxiliary pressure vessel that accommodates the water tank, a thin tube that communicates the water tank and the reaction vessel (f), and means for controlling the internal pressure of the pressure vessel (f). The purpose of the present invention is to provide a humidifying means formed by:

以下本発明の一実施例を図面を用いて説明する。An embodiment of the present invention will be described below with reference to the drawings.

図において1は金属製の主耐圧容器、2は該主耐圧容器
内に収容された石英よりなる反応管、3はフィードバッ
ク型しギレータで、以上により高圧酸化装置の主部Aを
構成する。また4は石英よりなる水槽、5は該水槽4を
内部に収容する副耐圧容器でステンレスのような金属よ
りなり、6は高純度の水(以下単に純水と記す)、7は
一端が前記水槽4内に貯えられた純水6の中に挿し込ま
ね、一端が、前記反応管2に連結された石英よりなる細
管、8は前記細管7を保持すると共に、前記主耐圧容器
1内部と副耐圧容115内部とを密封状、に遮断するゴ
ム栓、9はフィードバック型レギュレータ、10は前記
主耐圧容器1内圧力をフィードパ、り型レギエレータ9
にフィードバックするための配管、11はパルプ、12
は配管であって、以上により加湿装[Bを構成する。
In the figure, 1 is a main pressure vessel made of metal, 2 is a reaction tube made of quartz housed in the main pressure vessel, and 3 is a feedback type gerator, which constitutes the main part A of the high-pressure oxidation apparatus. Further, 4 is a water tank made of quartz, 5 is an auxiliary pressure-resistant container that houses the water tank 4 inside and is made of metal such as stainless steel, 6 is high-purity water (hereinafter simply referred to as pure water), and 7 is a water tank whose one end is A thin tube 8 made of quartz, which is inserted into the pure water 6 stored in the water tank 4 and whose one end is connected to the reaction tube 2, holds the thin tube 7 and is connected to the inside of the main pressure vessel 1. 9 is a feedback type regulator; 10 is a feedback type regulator 9 that feeds the pressure inside the main pressure vessel 1;
Piping for feeding back to, 11 is pulp, 12
is a pipe, and the above constitutes a humidifier [B].

上記中、主耐圧容器内t内に反応管2を収容する主部A
は、従来の高圧酸化装置と何ら異なる所はな(、この構
造は周知の如く反応管2内外の圧力差を極力小さくして
、反応管の破損や変形を防止しようとするものである。
Among the above, the main part A accommodates the reaction tube 2 inside the main pressure vessel t.
This is no different from conventional high-pressure oxidation equipment (as is well known, this structure is designed to minimize the pressure difference between the inside and outside of the reaction tube 2 to prevent breakage or deformation of the reaction tube.

即ち、主耐圧容器l内圧力Pを所定の反応管2内圧力P
0と大気圧との間の選ばれた圧力(実用的にはPoより
稍低い圧力)として、反応管2内圧力P0と大気圧との
差の大部分を主耐圧容Wh1で負担させ、反応管2の負
担を軽減し得るようになっている。ここで反応管2内圧
力P6を主耐圧容器1内圧力Pより大とするのは、主耐
圧容器1内雰囲気が反応管2内に入るのを防止するため
である。フィードバック型しdfjLレータ3はこの目
的のために選ばれたものであって、これは主耐圧容器1
内圧力Pを基準として、反応管2内圧力P。が常にPよ
る所望の圧力差ΔP0だけ高くなるよう制御する。
That is, the pressure P inside the main pressure vessel 1 is set to the predetermined pressure P inside the reaction tube 2.
The pressure selected between 0 and atmospheric pressure (practically a slightly lower pressure than Po) is set so that most of the difference between the reaction tube 2 internal pressure P0 and atmospheric pressure is borne by the main pressure capacity Wh1, and the reaction The load on the pipe 2 can be reduced. The reason why the internal pressure P6 of the reaction tube 2 is set higher than the internal pressure P of the main pressure vessel 1 is to prevent the atmosphere inside the main pressure vessel 1 from entering the reaction tube 2. A feedback type dfjL regulator 3 was chosen for this purpose, and it
The internal pressure P of the reaction tube 2 is based on the internal pressure P. is controlled so that it is always higher by a desired pressure difference ΔP0 due to P.

上′記主部Aに具備せしめた加湿装置Bは、水槽6内に
収容された純水6を、反応管2内に圧力差によ咬圧逸し
ようとするものである。
The humidifying device B provided in the main section A is intended to release the pure water 6 contained in the water tank 6 into the reaction tube 2 by pressure difference.

この目的のため、副耐圧容器5を設け、これを主耐圧容
器1と気密状に連結する。そして副耐圧容SS内部に水
槽4を設置し、その中に純水6を入れておく。この水槽
′4から細管7を導出し反応管2と連結させる。これに
より水槽4内と反応管2内とを連通せしめる。なお13
は反応管2より導出された石英細管よりなる接続端14
との接続部を示す。更に細管7が気密状に挿通されたゴ
ム栓8番こより耐圧容器5の連結用開口部を密封する。
For this purpose, a secondary pressure vessel 5 is provided, which is connected to the main pressure vessel 1 in an airtight manner. A water tank 4 is installed inside the sub-pressure capacity SS, and pure water 6 is kept in it. A thin tube 7 is led out from this water tank '4 and connected to the reaction tube 2. This allows the inside of the water tank 4 and the inside of the reaction tube 2 to communicate with each other. Note 13
is a connecting end 14 made of a quartz tube led out from the reaction tube 2;
Shows the connection with. Further, the connecting opening of the pressure-resistant container 5 is sealed by a rubber plug No. 8 into which the thin tube 7 is inserted in an airtight manner.

このゴム栓8は主耐圧容器lと副耐圧容器5間を気密状
に遮断すると共に、細管7を保持する。副耐圧容器5内
には所望の高圧ガス、例えば高圧窒素(Nm)がパルプ
11を開くことにより配管12を介して送入される。副
耐圧容器5内の圧力P□は、フィードバック型レギュレ
ータ9により主耐圧容器l内圧力Pを基準として設定さ
れた所望の圧力差ΔP1だけ高い圧力に1Ii11御さ
れる。
This rubber stopper 8 airtightly blocks the main pressure vessel 1 and the sub pressure vessel 5, and also holds the thin tube 7. A desired high-pressure gas, for example, high-pressure nitrogen (Nm), is introduced into the sub-pressure vessel 5 via a pipe 12 by opening the pulp 11 . The pressure P□ in the auxiliary pressure vessel 5 is controlled by the feedback regulator 9 to a pressure 1Ii11 higher than the pressure P in the main pressure vessel 1 by a desired pressure difference ΔP1.

次に上述の如く構成した高圧酸化装置の動作をこりいて
説明する。
Next, the operation of the high pressure oxidation apparatus constructed as described above will be explained in detail.

先ず主耐圧容器l内圧力Pを所定の圧力、例えば10〔
υ〕G二設定する。これは図示はしてなし・が、主耐圧
容器1に連結された間圧ガス(例えば窒素N、)配管系
を二通常のレギーレータを介装しておき、このレギ、レ
ー月こ上記所定の圧力を設定することにより行なうこと
ができる。
First, the pressure P inside the main pressure vessel l is set to a predetermined pressure, for example, 10 [
υ〕G2 set. This is not shown in the figure, but the pressure gas (for example, nitrogen N) piping system connected to the main pressure vessel 1 is interposed with two ordinary regulators, and the regulator This can be done by setting the pressure.

次いで反応管2内圧力P0、副耐圧容器5内圧力P、と
鋳記主耐圧容器Pとの圧力差ΔP0.ΔP1をそれぞれ
、フィードバック型レギュレータ、3.9Gこ設定する
。なおΔPG 、及びムP1は前述した如く、po=p
+ΔP。
Next, the pressure difference ΔP0 between the reaction tube 2 internal pressure P0, the auxiliary pressure vessel 5 internal pressure P, and the casting main pressure vessel P is determined. ΔP1 is set to 3.9G using a feedback type regulator. Note that ΔPG and P1 are as described above, po=p
+ΔP.

p、−p +ΔP1 且つ Δp、 > Δpo、(ΔP0+ Δp、>o)
なる関係を満足するよう選ばれた値であって、例えばa
P。を5〜20 (Torr) *ΔP、を約0.5 
(警)とする。
p, -p +ΔP1 and Δp, > Δpo, (ΔP0+ Δp, >o)
A value selected to satisfy the relationship, for example, a
P. 5 to 20 (Torr) *ΔP, approximately 0.5
(police).

以上により各部の圧力は所望の如く制御され、P < 
P、< Plなる関係に保たれる。従って純水6はPl
とPoとの圧力差ΔP〔即ちΔP−ΔP、−ΔP0)に
より細管7を介して反応管2内に圧送されることとなり
、反応管2内を加湿雰囲気とすることができる。
With the above, the pressure in each part is controlled as desired, and P <
The relationship P, < Pl is maintained. Therefore, pure water 6 is Pl
Due to the pressure difference ΔP (that is, ΔP−ΔP, −ΔP0) between Po and Po, the reaction tube 2 is forced to be fed into the reaction tube 2 through the thin tube 7, and a humidified atmosphere can be created in the reaction tube 2.

本加湿装置においては、反発管2内に供給される純水の
量を、容易に制御できる。即ち上記圧力差ΔPを適宜選
択することにより制御し得るのみならず、細管7が水の
流れに対し抵抗として作用することを利用し、この抵抗
を可変することによっても制御し得る。上記抵抗の値は
、Ji’+? 7の内径を選択するか、或いは細管7の
途中にバルブを設け、このパルプにより流路を制限する
等により可変できる。
In this humidifying device, the amount of pure water supplied into the repulsion tube 2 can be easily controlled. That is, it can be controlled not only by appropriately selecting the pressure difference ΔP, but also by making use of the fact that the thin tube 7 acts as a resistance to the flow of water, and by varying this resistance. The value of the above resistance is Ji'+? It can be varied by selecting the inner diameter of the tube 7, or by providing a valve in the middle of the thin tube 7 and restricting the flow path using this pulp.

以上述べた如く本実施例においては、圧力差シΔPによ
って純水が反応管2内に圧送され、従来例の如く望まし
くない高圧ポンプを必要としない。
As described above, in this embodiment, pure water is pumped into the reaction tube 2 by the pressure difference ΔP, and there is no need for an undesirable high-pressure pump as in the conventional example.

また水槽4及び細管7に加えられる圧力はごく小さくて
よいので、両者とも半導体に対する汚染の心配のない石
英により作成し得る。従って本実施例の加湿装置は汚染
を生じる恐れがなく、安全且つ取り扱い容易である。
Further, since the pressure applied to the water tank 4 and the thin tube 7 only needs to be very small, both can be made of quartz without worrying about contaminating semiconductors. Therefore, the humidifying device of this embodiment is safe and easy to handle without the risk of contamination.

本発明は上記−実施例に限定されることなく更に種々変
形して実施できる。
The present invention is not limited to the above-mentioned embodiments, but can be implemented with various modifications.

例えば細管7は水槽4の側壁の底面近くから導出しても
よい。
For example, the thin tube 7 may be led out from near the bottom of the side wall of the water tank 4.

また編耐圧容器5の配設位置は上記一実施例の如く主耐
圧容器1の上部に限定する必要はなく、主耐圧容器1の
横或いは斜め上方等任意である。
Further, the arrangement position of the knitted pressure vessel 5 need not be limited to the upper part of the main pressure vessel 1 as in the above-mentioned embodiment, but may be placed at any position such as beside or diagonally above the main pressure vessel 1.

但し、水槽4と反応管2との高さ方向の相対的更に使用
する高圧ガスが高圧窒素に限定されるものでなく、例え
ば反応管2内雰囲気を高圧酸素(02)としてもよいこ
と、或いは圧力の制御方法も選択し得るものであること
、等は特に説明するまでもない。
However, the relative height of the water tank 4 and the reaction tube 2, and the high pressure gas used is not limited to high pressure nitrogen; for example, the atmosphere inside the reaction tube 2 may be high pressure oxygen (02), or There is no need to specifically explain that the pressure control method can also be selected.

以上説明した如く、本発明により汚染を生じる恐れがな
く、取や扱い容易且つ安全な高圧酸化装置が提供された
As explained above, the present invention provides a high-pressure oxidation device that is free from contamination, easy to handle, and safe.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す要部断面図で、図中、1は
主耐圧容器、2は反応管、4は水槽、5は副耐圧容器、
6は高純度の水、7は細管、Bは加湿装置を示す。
The figure is a sectional view of essential parts showing an embodiment of the present invention, in which 1 is a main pressure vessel, 2 is a reaction tube, 4 is a water tank, 5 is a sub pressure vessel,
6 indicates high purity water, 7 indicates a capillary, and B indicates a humidifier.

Claims (1)

【特許請求の範囲】[Claims] 被電現物を収容する反応容器と、該反応容器を内部に収
変せる主耐圧容器と、前記反応容器内雰囲気に加湿する
手段とを具備し、前記反応容器内及び前記主耐圧容器内
圧力を所望の圧力に制御し得る高圧酸化装置に粘いて、
前記加湿手段が水槽と、該水槽を収容する副耐圧容器と
、前記水槽及び前記反応容器とを連通ずる細管と、前記
副耐圧容器内圧力の制御手段とを具備してなり、前記副
耐圧容器内圧力を前記反応容器内圧力より高くすること
により、前記水槽より前記反応容器内に水分を供給する
ように構成したことを特徴とする高圧酸化装置。
It comprises a reaction vessel for accommodating an object to be electrified, a main pressure vessel for storing the reaction vessel therein, and a means for humidifying the atmosphere inside the reaction vessel, and the pressure inside the reaction vessel and the main pressure vessel is controlled. Adhering to a high-pressure oxidizer that can control the desired pressure,
The humidifying means includes a water tank, a sub-pressure vessel for accommodating the water tank, a thin tube communicating the water tank and the reaction vessel, and means for controlling the internal pressure of the sub-pressure vessel, and the sub-pressure vessel A high-pressure oxidation apparatus characterized in that the internal pressure is made higher than the internal pressure of the reaction vessel so that water is supplied from the water tank into the reaction vessel.
JP56148081A 1981-09-18 1981-09-18 High pressure oxidizer Pending JPS5848923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56148081A JPS5848923A (en) 1981-09-18 1981-09-18 High pressure oxidizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56148081A JPS5848923A (en) 1981-09-18 1981-09-18 High pressure oxidizer

Publications (1)

Publication Number Publication Date
JPS5848923A true JPS5848923A (en) 1983-03-23

Family

ID=15444798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56148081A Pending JPS5848923A (en) 1981-09-18 1981-09-18 High pressure oxidizer

Country Status (1)

Country Link
JP (1) JPS5848923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718863B2 (en) 2000-12-20 2004-04-13 Nissin Kogyo Co., Ltd. Vacuum booster
US7549711B2 (en) 2002-06-21 2009-06-23 Nissin Kogyo Co., Ltd. Vacuum pressure booster

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6718863B2 (en) 2000-12-20 2004-04-13 Nissin Kogyo Co., Ltd. Vacuum booster
US7549711B2 (en) 2002-06-21 2009-06-23 Nissin Kogyo Co., Ltd. Vacuum pressure booster

Similar Documents

Publication Publication Date Title
US6607785B2 (en) Bubbler
US20050181129A1 (en) Sub-atmospheric pressure delivery of liquids, solids and low vapor pressure gases
JP2553946B2 (en) Gas supply method for substrate surface treatment
US6047744A (en) Delivery system and manifold
KR20120066082A (en) Fluid storage and dispensing system for storing and dispensing of fluid
US3594232A (en) Device for the automatic adjustment of the supply of liquids
JP2001156055A (en) Method and apparatus for gasifying liquid material
JPH06132226A (en) Vaporizer supplier for liquid raw material
EP1367149A1 (en) Fluorine gas generator
JPS5848923A (en) High pressure oxidizer
JP2005139025A (en) Hydrogen producing apparatus and fuel cell system
JP3106575B2 (en) Deep sea equalizer
US3098769A (en) Fuel gas generator control system for fuel cells
JPH0927455A (en) Manufacture of semiconductor substrate and material gas supplying apparatus
EP0533201B1 (en) Liquid vaporization valve
EP0907862B1 (en) Method of reducing the duration of the thermal stabilisation phase of a liquefied gas converter
US5220574A (en) Excimer laser with hydrogen chloride and method for producing hydrogen chloride for an excimer laser
US20220010932A1 (en) Apparatus for supplying gas
JP2938461B2 (en) Liquefiable raw material introduction method to CVD equipment
JP2004296614A (en) Liquid material vaporization/supply device
JPH1187295A (en) Substrate-processing system
JPS6171832A (en) Stock material supply apparatus
JPS5992933A (en) Feeder for raw material gas
JP3342729B2 (en) Method and apparatus for forming aluminum alloy wiring
JPH11200051A (en) Liquid vaporizer