JPS5848756A - Air-fuel ratio control method for engine - Google Patents

Air-fuel ratio control method for engine

Info

Publication number
JPS5848756A
JPS5848756A JP14731381A JP14731381A JPS5848756A JP S5848756 A JPS5848756 A JP S5848756A JP 14731381 A JP14731381 A JP 14731381A JP 14731381 A JP14731381 A JP 14731381A JP S5848756 A JPS5848756 A JP S5848756A
Authority
JP
Japan
Prior art keywords
sensor
air
fuel ratio
value
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14731381A
Other languages
Japanese (ja)
Inventor
Hiroki Matsuoka
松岡 広樹
Toshimi Murai
村井 俊水
Takehisa Yaegashi
八重樫 武久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14731381A priority Critical patent/JPS5848756A/en
Publication of JPS5848756A publication Critical patent/JPS5848756A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To obtain the most proper air-fuel ratio by a method wherein two sets of O2 sensors are provided at an exhaust manifold and at the central part of a catalyst respectively and a standard value for one O2 sensor is changed based on the output characteristic of the other O2 sensor. CONSTITUTION:The control circuit 64, effecting the operational control of the valve opening time of a fuel injection vlave 22 based on the detecting values of an airflow meter 4, a throttle sensor 10, a revolution number sensor 58 or the like, effects the feedback control of the air-fuel ratio based on the detecting values of the first O2 sensor 36, provided in the exhaust manifold 34, and the second O2 sensor 38 provided at the central part of a catalyst convertor 32, in a predetermined load zone. The control circuit 64 takes the detecting value of the second O2 sensor into it at a predetermined interval and when the value is decided that it is in a rich side or in a lean side with respect to the window of the catalyst continuously in a predetermined period of time, changes a comparative standard value for the first O2 sensor into the optimum value and compensates the change of the characteristic of the O2 sensor.

Description

【発明の詳細な説明】 本発明は空燃比制御方法に係り、特に、電子制御式エン
ジンにおける空燃比を最適値に制御するに好適なエンジ
ンの空燃比制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio control method, and particularly to an engine air-fuel ratio control method suitable for controlling the air-fuel ratio in an electronically controlled engine to an optimum value.

一般に、この種の空燃比制御方法は、エンジンの排気分
岐管に設けた0曾センサにより検出した空燃比信号を電
子制御回路に取り込み、この電子制御回路によって前記
空燃比信号に基づいて排気分岐管にシける空燃比が濃い
(リッチ)場合は薄く。
Generally, in this type of air-fuel ratio control method, an air-fuel ratio signal detected by a zero sensor installed in an exhaust branch pipe of an engine is input into an electronic control circuit, and the electronic control circuit controls the exhaust branch pipe based on the air-fuel ratio signal. If the air-fuel ratio to be used is rich, reduce the air-fuel ratio.

逆に薄い(リーン)鳩舎Fi濃くなるようにエアブ曽−
ド竜−閉しあるいは燃料噴射装置の噴射時間を制御する
方法である。このような制御方法をフィードバック(F
/B)制御と称しているのである。
On the other hand, the thin (lean) pigeon coop becomes thicker.
This is a method of closing the door or controlling the injection time of the fuel injection device. Feedback (F
/B) It is called control.

上述のように空燃比を制御する理由は、排気分岐管の下
流に設けた三元触媒等の触媒コンバータの浄化−力(転
化率−)が理論空燃比近傍のごく狭い範■(ζO範囲を
ウィンドと称す)でしか高くならなiことから、このウ
ィンド内に空燃比を維持して触媒O浄化能力を最大限に
発揮させ4ために6る。
The reason for controlling the air-fuel ratio as described above is that the purification power (conversion rate) of a catalytic converter such as a three-way catalyst installed downstream of the exhaust branch pipe is within a very narrow range (ζO range) near the stoichiometric air-fuel ratio. Therefore, the air-fuel ratio is maintained within this window to maximize the catalyst O purification ability.

ところで、従来の空燃比制御方法に用iられるヘセンナ
は、前述しえように排気分岐管に一本だけ取参付けであ
るのが一般的である。しかも、排気分岐VK取り付けた
01センサの位置では、エンジンの各気筒から排出され
る排気ガスのンキシングや各気筒間バラツキによる影響
によって触媒のウィンドに合わせるのが困難であった。
By the way, as mentioned above, generally only one Hesenna used in the conventional air-fuel ratio control method is attached to the exhaust branch pipe. Furthermore, it is difficult to match the position of the 01 sensor attached to the exhaust branch VK with the window of the catalyst due to the effects of exhaust gas exhaust gas discharged from each cylinder of the engine and variations among the cylinders.

この九め。This ninth.

従来はウィンドーに合わせるように見込み制御等をおこ
なってい友、t、+、#Ofセンサの特性変化によって
、フィードバック制御に影響を受けていえ。ところで、
上述した問題点を解消する九めKは、Ox−に7 tを
触媒側に取抄付ければよく、このようにすれば触媒のウ
ィンドに合わせることは容易となる。しかしながら、こ
のような制御方法では、フィードバック(F/B)制御
が非常におそくなることから、過渡時にF/Bの遅れが
生じ空燃比が荒れる。その九めにエミッション(Emi
ms−1on)が悪化するという問題が生じ九。
Conventionally, predictive control was performed to match the window, but feedback control was affected by changes in the characteristics of the t, +, and #Of sensors. by the way,
The ninth K to solve the above-mentioned problem is to add 7t to Ox- to the catalyst side, and in this way it will be easy to match it to the window of the catalyst. However, in such a control method, the feedback (F/B) control becomes very slow, so a delay in F/B occurs during a transient period, and the air-fuel ratio becomes rough. Emission (Emi)
ms-1on) becomes worse.9.

本発明の目的は、上記従来技術の問題点を解消する九め
になされたもので、空燃比をウィンドに合せて02七シ
サの特性変化を補償し【適正空燃比に、M持できるとと
もに、触媒のコスト低減管図ったエンジンO空燃比制御
方法を提供するにある。
The object of the present invention is to solve the above-mentioned problems of the prior art.It is the ninth object of the present invention to adjust the air-fuel ratio to the window and compensate for the characteristic change of 0.27 cm. An object of the present invention is to provide an engine O air-fuel ratio control method that reduces the cost of catalysts.

本鞄明は、上記目的を達成する九めに、エンジンKll
続し九排気分腋管に第1の02センナを取や付けるとと
もに、排気ガスを浄化する触媒のほぼ中央部あるiは下
流側に館2のO,センナを取り付け、jlllOヘセン
サからの空燃比信号を基準値と比較し、この比較結果に
基づいて空燃比フィードパラI制御を行なわしめ、第2
のOf−にンサからの空mm*−*に基づいて空燃比が
前記触媒のウィンドOII腸内にあるか否か検出し、そ
の検出結果が一定期間内に連続してリッチあるいはリー
ンと判定されえときに前記第1の02センナ用の基準値
を所定の値だけ変更せしめて最適空燃比となるjうにす
ることを特徴とする。
This bag is the ninth to achieve the above purpose.
Next, install the first 02 senna in the 9 exhaust branch axillary pipes, and install the 02 senna in the second building on the downstream side, which is approximately in the center of the catalyst that purifies the exhaust gas, and adjust the air-fuel ratio from the sensor to jlllO. The signal is compared with a reference value, air-fuel ratio feed Para I control is performed based on the comparison result, and the second
It is detected whether or not the air-fuel ratio is within the window OII of the catalyst based on the air mm *-* from the sensor, and the detection result is determined to be rich or lean continuously within a certain period of time. The present invention is characterized in that the first reference value for the 02 senna is changed by a predetermined value when the air-fuel ratio is set to the optimum air-fuel ratio.

以下1本発明の一実施例を図面に基づいて詳細に説−す
る。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第111は本発明の一実施例が実施される電子制御式1
yジンを示す構成図である。本実施例は、図に示すよう
に、エアクリーナー2と、エアクリーナーsO下流側に
設けられた吸入空気量センサとしてのエア70−メータ
4とを備えている。エアフローメータ4ij、チャンバ
ー4A内に回転可能に設けられたメジャリングプレート
4Bと、メジャリングプレー)4Bの開關を検出するポ
テンショメータ4Cとから構成されている。従って、吸
入空気量はポテンショメータ4cから出方される電圧と
して検出される。、また、エアフローメータ4の近傍に
は、吸入空気の温度を検出する吸入空気温センサ6が設
けられている。
No. 111 is an electronically controlled type 1 in which an embodiment of the present invention is implemented.
FIG. As shown in the figure, this embodiment includes an air cleaner 2 and an air 70-meter 4 as an intake air amount sensor provided downstream of the air cleaner sO. It is composed of an air flow meter 4ij, a measuring plate 4B rotatably provided in the chamber 4A, and a potentiometer 4C that detects the opening of the measuring plate 4B. Therefore, the amount of intake air is detected as the voltage output from the potentiometer 4c. Further, an intake air temperature sensor 6 is provided near the air flow meter 4 to detect the temperature of intake air.

エアフローメータ4の下流側には、スロットル弁8が配
置され゛、スロットル弁8の近傍にはスロットル弁の開
fを検出してスーツトル位置信号を出力するスロットル
センサ10が配置されている。
A throttle valve 8 is disposed downstream of the air flow meter 4, and a throttle sensor 10 is disposed near the throttle valve 8 to detect the opening f of the throttle valve and output a throttle position signal.

このスロットル弁8は運転室に設けられ九加速ペダル1
1によ、つて連動されるようになっている。
This throttle valve 8 is provided in the driver's cab, and nine acceleration pedals 1 are provided.
1, it is designed to be linked.

!喪、スロットル弁8の下流側にはサージタンク12が
設けられ、このサージタンク12にけスロットル弁8を
迂回する迂回路14が設けられて−る。そして、この迂
回路14Kitステツプモーター16により制御される
エアバルブ18が設けられている。このエアパルプ18
tj、エンジンのアイドルシンダ時にスロットル弁8を
迂回して吸入空気をサージタンク12内に通過させエン
ジンの回転数を■標値に制御するものである。
! A surge tank 12 is provided downstream of the throttle valve 8, and a detour 14 that bypasses the throttle valve 8 is provided in the surge tank 12. An air valve 18 controlled by this detour 14Kit step motor 16 is provided. This air pulp 18
tj, when the engine is idle, the intake air bypasses the throttle valve 8 and passes into the surge tank 12 to control the engine speed to the target value.

サージタンク12KF!インテークマニホールド20が
接続されてお秒、このインテークマニホールド20内に
央出して燃料噴射弁22が配置され”ch、、4ンテー
クマニホールド20tjエンジン240働鋳寓2BK接
続され、エンジンの燃焼室28はエキゾーストボート3
0を介して排気分岐管84KIl続されてその後方に三
元触媒を充填しえ餉@mンバーター32が接続されてい
る。また、エキゾーストポート30に接続されている側
における排気分岐管34の集合部分には混合気を理論空
燃比近傍に制御するための第1の0!セyす36がII
Lll付けられるとともに、触媒コンバータ32の触s
O下流付近における酸素IIl置を検出する第!Oへ七
ンt38が、触媒コンバータ32の触媒の中央l16!
いは下流側に取り付けられている。
Surge tank 12KF! After the intake manifold 20 is connected, the fuel injection valve 22 is placed centrally inside the intake manifold 20, and the engine 240 is connected to the engine combustion chamber 28. exhaust boat 3
The exhaust branch pipe 84K is connected to the exhaust branch pipe 84K1 through the exhaust branch pipe 84K1, and an inverter 32 filled with a three-way catalyst is connected behind it. Further, in the gathering part of the exhaust branch pipe 34 on the side connected to the exhaust port 30, a first 0! Says 36 is II
At the same time as the catalytic converter 32 is
Detecting the oxygen IIl position near the O downstream! 7 t38 to O is the center l16 of the catalyst of the catalytic converter 32!
or installed on the downstream side.

(ζOII總例では、触媒の中央部に取り付けている。(In the ζOII example, it is attached to the center of the catalyst.

) なお、符号40はエンジン冷却水温を検出する水温セン
サである。
) Note that reference numeral 40 is a water temperature sensor that detects the engine cooling water temperature.

エンジン24の点火プラグ42け、ディストリヒユータ
ー44に接続され、ディストリビュー!−44はイグナ
イタ−46に接続されている。なお、符号48は吸気弁
、50は排気弁、52はトランスミッション、54Fi
シフトレバ−のニュートラル位置を検出するニュートラ
ルスタートスイッチ、56Fi車速センナである。
42 spark plugs of the engine 24 are connected to the distributor 44 and distributed! -44 is connected to an igniter 46. In addition, numeral 48 is an intake valve, 50 is an exhaust valve, 52 is a transmission, and 54Fi
This is a neutral start switch that detects the neutral position of the shift lever, and a 56Fi vehicle speed sensor.

また、ディストリビュータ−44tCは、エンジン回転
数センサとしてのピックアップ5Bとデイストリビエー
タシャフト60に固定されたシグナルロータ62とが設
けられており、例えばクランク角30f毎にクランク角
基準位置信号が電子制御回路64に入力されている。従
ってクランク角基準位置信号の発生間隔とクランク角基
準位置信号の個数とによりエンジン回転数が求められる
Further, the distributor 44tC is provided with a pickup 5B as an engine rotation speed sensor and a signal rotor 62 fixed to the distributor shaft 60. For example, the crank angle reference position signal is transmitted to the electronic control circuit every 30 f of the crank angle. 64 is input. Therefore, the engine speed can be determined from the generation interval of the crank angle reference position signals and the number of crank angle reference position signals.

排気ガス再循環(EGR)通路66Fi排気分岐管34
とサージタンク12とを接続し、オンオフ弁形式の排気
ガス再循環(EGR)−御弁68は電気パルスに応動し
てEGR通路66を開閉するように&つている。
Exhaust gas recirculation (EGR) passage 66Fi exhaust branch pipe 34
and surge tank 12, and an on-off valve type exhaust gas recirculation (EGR) control valve 68 is connected to open and close the EGR passage 66 in response to electrical pulses.

これらOセンサ4C16,1O540,36゜38%s
4、s6.58の出力、および蓄電池690電圧は電子
制御部64へ送られるよう罠なって−る。燃料噴射弁2
2は気筒に対応してインテータ!二ホールド20の近傍
に設けられ、ポンプ70は燃料タンク72からの燃料を
燃料通路74を介して燃料噴射弁22へ送出するように
なって%/%る。
These O sensors 4C16, 1O540, 36°38%s
4, the output of s6.58, and the battery 690 voltage are configured to be sent to the electronic control unit 64. fuel injection valve 2
2 is an intator corresponding to the cylinder! A pump 70 is provided near the second hold 20 and pumps fuel from a fuel tank 72 to the fuel injection valve 22 through a fuel passage 74.

電子制御回路64は、第2図に示すようにランダム・ア
クセス・メモリー(RAM)7g及び80と、リード・
オンリー・メモリー(ROM)82と、中央感層装置(
CPU)84と、入出力回路(Ilo)86と、アナロ
グディジタル変換器(ムDC38gとを含んで構成され
、RAM78及び110.ROM81 CPU84、l
1086およびムDC88Fiデータバス90によ抄接
続されて−る。なお、RAM80は、エンジン24停止
時KTh−ても補助電源から電力が供給されており、そ
の記憶が保持できるよう罠なっている。
The electronic control circuit 64 includes random access memories (RAM) 7g and 80, and read/write memory as shown in FIG.
Only memory (ROM) 82 and central sensing layer device (
CPU) 84, input/output circuit (Ilo) 86, analog/digital converter (MUDC38g), RAM78 and 110.ROM81 CPU84, l
1086 and a DC88Fi data bus 90. Note that the RAM 80 is supplied with power from the auxiliary power source even when the engine 24 is stopped KTh-, and serves as a trap so that the memory can be retained.

また、l1086には、ディストリビュータ−44から
出力されるクランク角基準信号、スロットルセンサlO
から出力されるスロットル位置備考、ニュートラルスタ
ートスイッチ54から出方されるニュートラルスイッチ
信号、ニアコンディショナー(図示せず)から出力され
るエアコンディジシナ信号、イグニッションスイッチ(
図示せず)から出力されるイグニッションスイッチ信号
、イグナイター46から出力される点火確認信号および
[2の0曹セン“す3Bから出力される空燃比信号等が
入力されるとともに、エアパルプ18を制御するエアパ
ルプ信号、燃料噴射弁22管制御する燃料噴射信号およ
びイグナイター46を制御9−する点大信号等が出力さ
れる。また、ADC88にはエアフ四−メーター4から
出力される吸入空気量信号、吸気温センサ6から出力さ
れる吸気温信号、第1 O0*センサ36から出力され
る空燃比信号、蓄電池69からの電圧および水温センサ
40から出力される水温信号が入力されており、各信号
はADC88によりディジタル信号に変換される。なお
、ROM82に記憶されているマツプ、I10@6およ
びADC88に入出力される信号は、エンジンの制御状
態に応じて各種のマツプが記憶されるとともに各種の信
号が入力または出力される。さらに1電子制御回路64
1;を各センサからの入力信号をパラメータとして燃料
噴射量を計算し、計算した燃料噴射量に対応したパルス
幅の電気パルスを燃料噴射弁22へ送るよう罠なってい
る。電子制御回路641′iエアパルプ18のパルスモ
ータ16、EGR制御弁68%自動変速機の油圧−御回
路のソ?ノイド弁(図示せず)、およびイグナイタ46
を制御するようになっている。
In addition, l1086 includes a crank angle reference signal output from the distributor 44, and a throttle sensor lO
Throttle position notes output from the neutral start switch 54, neutral switch signal output from the neutral start switch 54, air conditioner signal output from the near conditioner (not shown), ignition switch (
An ignition switch signal outputted from the igniter 46 (not shown), an ignition confirmation signal outputted from the igniter 46, an air-fuel ratio signal outputted from the ignition sensor 3B, etc. are input, and the air pulp 18 is controlled. An air pulp signal, a fuel injection signal for controlling the fuel injection valve 22 pipe, and a high point signal for controlling the igniter 46 are outputted.The ADC 88 also receives an intake air amount signal output from the airfmeter 4, an intake air amount signal outputted from the airfmeter 4, etc. The intake air temperature signal output from the air temperature sensor 6, the air-fuel ratio signal output from the first O0* sensor 36, the voltage from the storage battery 69, and the water temperature signal output from the water temperature sensor 40 are input, and each signal is sent to the ADC 88. The maps stored in the ROM 82 and the signals input and output to the I10@6 and ADC 88 are converted into digital signals according to the control status of the engine. Input or output.Furthermore, one electronic control circuit 64
1; is used as a parameter to calculate the fuel injection amount, and sends an electric pulse having a pulse width corresponding to the calculated fuel injection amount to the fuel injection valve 22. Electronic control circuit 641'i Air pulp 18 pulse motor 16, EGR control valve 68% automatic transmission oil pressure - control circuit so? Noid valve (not shown) and igniter 46
is designed to be controlled.

上述のように構成された電子制御エンジンの動作を以下
に説明する。
The operation of the electronically controlled engine configured as described above will be explained below.

本笑總例の動作は、要するに、エンジン24に接続され
九排気分岐管34における空燃比を第1のへセンサ3−
で検出して、電子制御回路64に取に込むとともに排気
ガスを浄化する触媒コンパ−タ32の触媒の中央部ある
いけ下流側における空燃比を1lI2の0.センサ38
で検出して電子制御回路64に取り込み、この電子制御
回路64において、第1の01センサ36からの空燃比
信号をADC88でAD変換し、このAD変換した値F
OXをRA、M2Oに記憶し%RAM80の別なエリア
に記憶され九所定の基準値0XVRと前記AD変換値F
OXを比較し、この比較結果に基づいて空燃比フィード
バック制御をし、かつ、錆2の0#センナ3Bからの空
燃比信号をl1086を介して得ておき、このl108
6からの空燃比信号が一定期関内に連続してリッチある
いはリーン側である場合に、リッチ側のときは前記基準
値0XVRから所定の値αを減算して新たな基準値0X
VRとしてRAM80に記憶し、t*hリーン側のとき
Fi前記基準値0XVRK所定の値aを加算して新たな
基準値0XVRとしてRAM80に記憶するようにして
基準−〇XVRを変更せしめてエンジン24の空燃比を
触媒のウィンドに合せ、最適空燃比を得るものである。
In short, the operation of this complete example is to measure the air-fuel ratio in the nine exhaust branch pipes 34 connected to the engine 24 to the first sensor 3-
The air-fuel ratio at the center or downstream side of the catalyst of the catalyst comparator 32, which purifies the exhaust gas, is detected by the electronic control circuit 64 and is input to the electronic control circuit 64 to purify the exhaust gas. sensor 38
In this electronic control circuit 64, the air-fuel ratio signal from the first 01 sensor 36 is AD-converted by an ADC 88, and this AD-converted value F
OX is stored in RA and M2O, and stored in another area of %RAM80, and the predetermined reference value 0XVR and the AD conversion value F are stored.
OX is compared, air-fuel ratio feedback control is performed based on the comparison result, and an air-fuel ratio signal from Rust 2 0# Senna 3B is obtained via l1086.
When the air-fuel ratio signal from 6 is continuously on the rich or lean side for a certain period of time, when it is on the rich side, a predetermined value α is subtracted from the reference value 0XVR to create a new reference value 0X.
The reference value 0XVR is stored in the RAM 80 as VR, and when t*h is on the lean side, the reference value 0 The optimum air-fuel ratio is obtained by adjusting the air-fuel ratio of the catalyst to the catalyst window.

以下、さらに第3図および第4図に基づいて詳細に11
11する。113図は本11!糟例に係る主ルーチンを
示し、第4図は同側込みルーチンを示す本のである。
Below, 11 will be explained in detail based on Figures 3 and 4.
11. Figure 113 is book 11! The main routine related to the negative example is shown, and FIG. 4 is a book showing the routine including the same side.

第3−において、主ルーチンがステップ3o。In step 3-, the main routine is step 3o.

でスーートとし、ステップ301で初期値管セットすみ
0次−で、ステップ302においてフィードパラI (
F/B )条件成立かを判定し、F/B秦件が成立して
いればステップ303において75−JINFBt*2
1 ) (TFBK’l”をセット)してステップ30
5に移る。ステップ302にお^て、F/l秦件が成立
していなければステップ304に11)、このステップ
304でフラッグIPIK’0’をセット(リセット)
してステップS、OSに移行する。ステップ305にお
いてフラッグIP1に’l’が立っているか、すなわち
FB制御をするときか否かを判定する。このステップ3
0!!でフラッグ蓄FBがIO#であればFB制御はす
る必要がないのでステップ340のリターンにとぶこと
に1にる。tた。逆に、ステップ305において、フラ
ッグTFBK’l’が立っているときFi%F/B制御
するときであるので、ステップ306に移る。ステップ
306では、フラッグIK I K”l’が立っている
か否かを判定する。つまり、積分(KI)制御をするか
否かを判定する。
In step 301, the initial value tube is set to 0 order -, and in step 302, the feed parameter I (
F/B) Determine whether the condition is satisfied, and if the F/B condition is satisfied, 75-JINFBt*2 in step 303.
1) (Set TFBK'l") and step 30
Move on to 5. In step 302, if the F/l condition has not been established, proceed to step 304 (11), and in this step 304, set (reset) the flag IPIK'0'.
Then, in step S, the process moves to the OS. In step 305, it is determined whether the flag IP1 is set to 'l', that is, whether it is time to perform FB control. This step 3
0! ! If the flag storage FB is IO#, there is no need to perform FB control, so the process jumps to the return of step 340 and becomes 1. It was. Conversely, when the flag TFBK'l' is set in step 305, it is time to perform Fi% F/B control, so the process moves to step 306. In step 306, it is determined whether the flag IK I K"l' is set. In other words, it is determined whether or not integral (KI) control is to be performed.

ステップ306において、フラッグTKIが“OI′で
あるならKI制御する必要がないのでステップ31Gに
とぶ。逆゛に、ステップ306において。
In step 306, if the flag TKI is "OI', there is no need to perform KI control, so the process jumps to step 31G. Conversely, in step 306, the process jumps to step 31G.

フラッグIKIが”l“であると判定され良なら。If the flag IKI is determined to be "l" and is OK.

KI制御するために、ステップ307においてフラッグ
T K I K’O”をセットし、ステップ308で積
分定数計算し、ステップ309で積分補正量ΔFAFt
基本空燃比補正量FAFとして出力する。ステップ31
Gにお鱒て、フラッグK 5KIPK # 1 #がセ
ットされているか否か、つまりスキップ制御するか否か
を判定する。ステップ310において、フラッグl5K
IPK”o’がセットされているとき、すなわちスキッ
プ制御しないときは。
In order to perform KI control, a flag "T K I K'O" is set in step 307, an integral constant is calculated in step 308, and an integral correction amount ΔFAFt is set in step 309.
Output as the basic air-fuel ratio correction amount FAF. Step 31
G, it is determined whether the flag K5KIPK #1 # is set, that is, whether or not skip control is to be performed. In step 310, flag l5K
When IPK "o" is set, that is, when skip control is not performed.

なにもせずにステップ316にとぶ。ステップ310に
おいて、フラッグTSKIPK’l“がセット富れでい
るときは、スキップ制御する鳴のとして、まずフラッグ
H8KIPK’O’をセットし、ステップallでスキ
ップ計算し、次いでステップ313てス午ツブ補正値Δ
R8を基本空燃比補正量FAFとして出方し、さらにス
テップ314でブックダTKIにl”をセットし、ステ
ップa18に11!。
Jump to step 316 without doing anything. In step 310, when the flag TSKIPK'l'' is set too low, the flag H8KIPK'O' is first set as a skip control sound, the skip calculation is performed in step all, and then the skip correction is performed in step 313. value Δ
R8 is output as the basic air-fuel ratio correction amount FAF, and further, in step 314, l'' is set in Booker TKI, and in step a18, 11!

J ? ラフ31 S K jP L/% テ、 jl
I 2 O0x 七ンt 3 gからO空燃比信号に基
づiて設定されるり一ン判定フラッグTOXRLK’l
”が設定されているか否かを判定し、設定されていれば
ステップ316に移行して所定の基準値0XVRK所一
定の値tll管見て新たな基準値0XVRとしてRAM
80に記憶する0次いで、ステップ317に*D、第2
00m+3’t38からの空燃比信号に基づいて設定さ
れるリーン判定7ラツグl0XRLに#o#をセットし
てステップ321に移る。ステップ3115Kかiで、
フラッグl0XRLが10”であるときには、ステップ
318に$り、ステップ818でリッチ411定7ラツ
グTOXRRK11″が立ってぃるか否かを判定し、立
っていないときにはり一ンでもリッチでもな−としてス
テップ321にとび。
J? Rough 31 S K jP L/% Te, jl
I 2 O0x 7 t 3 g to 0 air fuel ratio signal set based on i 1 judgment flag TOXRLK'l
” has been set, and if it has been set, the process moves to step 316, where the predetermined reference value 0XVRK is checked at a certain value tll, and a new reference value 0XVR is stored in the RAM.
80, then *D in step 317, the second
#o# is set in lean determination 7 lag l0XRL, which is set based on the air-fuel ratio signal from 00m+3't38, and the process moves to step 321. In step 3115K or i,
When the flag 10XRL is 10'', the process goes to step 318, and in step 818 it is determined whether the rich 411 constant 7 flag TOXRRK11'' is set, and if it is not set, it is determined that the flag is neither particularly high nor rich. Skip to step 321.

フラッグl0XRRに“1′が設定されているときKは
、第2のOsセンサ38の空燃比信号はリッチと判定さ
れステップ319に移る、。ステップ319におい【、
IIIIIの0.センナ36からのAD変換値FOXと
比較するための所定の基準値0XVRから所定の値tx
t減算して新たな基準値0XVRとしてRAM8Gに記
憶し、ステップ320で第2のOlセンサ38用のリッ
チ判定フラッグT 0XRRK“ONをセットし、ステ
ップ321に移行する。
When the flag l0XRR is set to 1', the air-fuel ratio signal of the second Os sensor 38 is determined to be rich, and the process moves to step 319.In step 319, [,
III 0. A predetermined value tx from a predetermined reference value 0XVR for comparison with the AD conversion value FOX from the senna 36
t is subtracted and stored in the RAM 8G as a new reference value 0XVR, and in step 320, the rich determination flag T0XRRK"ON for the second Ol sensor 38 is set, and the process moves to step 321.

ステップ321では、第1 O0vセンサ36からのA
D変換値FOXを取り込み、ステップ322に移る。ス
テップ322において、今回の第1のOsセンサ36か
らの値FOXと所定の基準値0XVRとを比較し、今回
の値FOXが小さければ、ステップ323でフラッグ■
0XRK’o’をセットしてステップ325に移る。ス
テップ322で今回の値FOXが所定の基準値0XVR
より大きければ、ステップ324に移り、ステップ32
4でフラッグ0XRK’l’をセットしてステップ31
1に移る。このステップ325において、今回の値FO
Xを前回の値0XOLDが記憶されているRAMl10
0轟該エリアに記憶せしめ、ステップ326に移る。
In step 321, the A from the first O0v sensor 36 is
The D conversion value FOX is taken in, and the process moves to step 322. In step 322, the current value FOX from the first Os sensor 36 is compared with a predetermined reference value 0XVR, and if the current value FOX is small, a flag is flagged in step 323.
0XRK'o' is set and the process moves to step 325. In step 322, the current value FOX is set to the predetermined reference value 0XVR.
If it is larger, move to step 324 and step 32
4, set flag 0XRK'l' and step 31
Move to 1. In this step 325, the current value FO
RAM l10 where the previous value of X is stored 0XOLD
0 is stored in the corresponding area, and the process moves to step 326.

ステップ326において、第2の01センサ38 。In step 326, the second 01 sensor 38.

の信号−を取)込むタイイングか否か管判定する。It is determined whether or not the signal is tied.

IILヤ込み時間フラッグ蓄oxvRに”l“が立って
−れば、ステップ327に111、:y 9 ツ/ T
 OXVRK#0’をセットする0次いで、ステップ3
28KjPIA″c、第意00*−kyl118のl1
086のポートO値OXRを堆ヤ込み、これがり一ンか
否かステップ32・で判定する。ステップ329におい
て%Ig!00*センサ38からの空燃比信号が9m、
 yと判定されると、ステップ330に移り、仁のステ
ップ310においてリーンカウンタCLOXに1を加算
し、ステップ331に移る。ステップ331にシiて、
リッチカウンタCROXK’O”を入れ、ステツ゛プ3
82に11り、ステップ332でり−yカウyりCLO
Xが一定の時間A以上であlf、リーンにずれていると
判定してステップ333に移る。ステップ333におい
て、第2のOsセンサ38からのり一ン判定フラッグT
 0XRLK″l#tセツトし、かつリーンカウンタC
LOXK#0#をセットする。ステップ332において
If "l" is set in the IIL time flag storage oxvR, step 327 is executed with 111:y9/T
Set OXVRK#0' to 0 then step 3
28KjPIA″c, No. 00*-kyl118 l1
The port O value OXR of 086 is loaded, and it is determined in step 32 whether this is also one. In step 329 %Ig! 00*Air-fuel ratio signal from sensor 38 is 9m,
If it is determined as y, the process moves to step 330, in which 1 is added to the lean counter CLOX at step 310, and the process moves to step 331. At step 331,
Insert the rich counter CROXK'O'' and proceed to step 3.
11 at 82, step 332 - y cow y ri CLO
If X is greater than or equal to a certain time A, it is determined that there is a shift to lean, and the process moves to step 333. In step 333, the glue one judgment flag T from the second Os sensor 38 is
0XRLK″l#t and lean counter C
Set LOXK#0#. At step 332.

一定の時間AK違していなければ、ステップ340ニ移
ル。ステップ329において、第200.センナ38か
らの空燃比信号がリッチと判定されると。
If there is no AK error for a certain period of time, move to step 340. In step 329, the 200th. When the air-fuel ratio signal from the senna 38 is determined to be rich.

ステップ334で、第2の0・センサ′(8のlJi’
ツチカウンタCROXKIを加算し、ステップ335で
リーンカウンタCLOXK”0’をセットする。
In step 334, a second 0 sensor'(lJi' of 8
The lean counter CROXKI is incremented, and in step 335, the lean counter CLOXK is set to "0".

すなわち、一定時間に連続してリッチあるいはリーンが
続いているか゛を、ステップ329〜337で判定して
いる。次いで、ステップ336において、リッチカウン
タCROXが電電時間B以上あればリッチにずれている
と判定し、ステップ337において、第2の0■センサ
38のリッチ判定フラッグl0XRRK”l’をセット
し、リッチカウンタCROXK’0“をセットする。
That is, it is determined in steps 329 to 337 whether the rich or lean condition continues for a certain period of time. Next, in step 336, if the rich counter CROX is equal to or longer than the electric current time B, it is determined that the rich counter has deviated from the rich state, and in step 337, the rich judgment flag l0 Set CROXK'0''.

次に、 落4図に基づいて親羽する。Next, make the main feathers based on the 4th map.

111E4園KjiPイて、xfy1350t’、ft
J−JLば4(mse・〕の割)込みがあると、ステッ
プ351に移り%F/l夷行フ実行グTFBが立ってい
るか(TFI−1)を判定する。ステップ351でフラ
ッグTFIが立っていれば、ステップ352に$1ディ
レィ実行フラッグIDELAYが′O“のと壷はステッ
プ353で第1のOsセンサ36からOAD変換値FO
Xを取勤込む。ステップ8S4にシーて、比較用の基準
電圧0XVRと前記FOXとを比較し、FOXが大会け
ればステップト■に1する。ステップ355では、[1
のot−tytss用のり)f75ッグxOXRをみて
、フック/HOXRがリセット(すなわち、T 0XR
−0)されているときに、比較電圧る横切ったとしてス
テップ356でディレィカウンタCDELAYにリーン
ディレィTDLをセットし、ステップ3511に移行す
る。また、ステップ355において、フラッグTOXR
が#1”のときは、ステップ361にとび1割込み終了
となる。ステップ354にシーて、ムD変換値FOXが
基準値0)I’VRより小さいと判定されると、ステッ
プ357に移抄、ステップ357で第1の0!センサ3
6用のフラッグl0XRが”0#ならば、ステップ35
8に移り、このステップ358でディレィカウンタCD
ELAYKリッチディレィTDRをセットしてステップ
359に移る。ステップ357で、フラッグ10XRが
#1″なら何も行なわず、ステップ363に移る。ステ
ップ359でFi、ディレィ実行フラッグTDELAY
K’l’をセットする。
111E4 garden KjiPite, xfy1350t', ft
If there is an interrupt of J-JL 4 (mse.), the process moves to step 351 and it is determined whether the %F/l execution flag TFB is set (TFI-1). If the flag TFI is set in step 351, the $1 delay execution flag IDELAY is 'O' in step 352, and the OAD conversion value FO is output from the first Os sensor 36 in step 353.
Work on X. At step 8S4, the reference voltage 0XVR for comparison is compared with the FOX, and if FOX is high, 1 is set in step 2. In step 355, [1
ot-tytss glue) f75 g xOXR, the hook/HOXR is reset (i.e. T 0XR
-0), it is assumed that the comparison voltage has crossed, and a lean delay TDL is set in the delay counter CDELAY in step 356, and the process proceeds to step 3511. Also, in step 355, the flag TOXR
is #1'', the process jumps to step 361 and ends the first interrupt.If it is determined in step 354 that the MUD conversion value FOX is smaller than the reference value 0)I'VR, the process moves to step 357. , in step 357 the first 0!sensor 3
If the flag l0XR for 6 is “0#”, step 35
8, and in this step 358 the delay counter CD
The ELAYK rich delay TDR is set and the process moves to step 359. In step 357, if the flag 10XR is #1'', nothing is done and the process moves to step 363. In step 359, Fi and the delay execution flag TDELAY are set.
Set K'l'.

一方、ステップ゛352において、ディレィ実行フラッ
グIDgLAYK’l“が立っていると判定されると、
ステップ360に移り、このステップ360において、
ディレィカウンタCDELAYから#l“を差し引いた
値をディレィカウンタCDELAYに配憶させ、ステッ
プ361に移る。ステップ361では、ディレィカウン
タCDELAYの値が10“となったか、すなわちディ
レィ終了かを判定し、終了していなければ、ステップ3
63に移り、ステップ361で終了と判定されると、ス
テップ36゛2で、スキップフラッグ¥5KIPK’l
’をセットしてステップ363に移り5割込み終了とな
る。
On the other hand, if it is determined in step 352 that the delay execution flag IDgLAYK'l is set,
Moving on to step 360, in this step 360,
The value obtained by subtracting #l" from the delay counter CDELAY is stored in the delay counter CDELAY, and the process moves to step 361. In step 361, it is determined whether the value of the delay counter CDELAY has reached 10", that is, whether the delay has ended, and the process ends. If not, step 3
63, and when it is determined in step 361 that the process has ended, in step 36'2, the skip flag
' is set and the process moves to step 363, ending the 5th interrupt.

上述のようにタイマ割込制御は動作するものである。The timer interrupt control operates as described above.

このように、本夾總例#i、第2のOtセンサ38から
O空燃比信号が一定期間の間にリーンあるいはリッチの
いずれか一方に連続して出力され九ときに、lll00
sセンサ36からの空燃比信号と比較する基準値を所定
の値だけ変更し、この変更後の基準値で第1 O0tセ
ンサ36からの空燃比信号を比較し、との比較結果で空
燃比フィードバック制御およびこれのディレィなかけて
一適正空燃比とするものであ゛る。
In this way, in this example #i, when the O air-fuel ratio signal is continuously output from the second Ot sensor 38 to either lean or rich for a certain period of time, lll00
The reference value to be compared with the air-fuel ratio signal from the s sensor 36 is changed by a predetermined value, the air-fuel ratio signal from the first O0t sensor 36 is compared with the changed reference value, and the air-fuel ratio feedback is performed based on the comparison result. The control and delay thereof are used to obtain an appropriate air-fuel ratio.

以上述べたように本発明によれば、排気分岐管に設は良
路1の0!ナンサ、および排気ガス浄化用の触媒・の中
央部あるいけ下流側に設けた缶センサからO空燃比信号
を電子制御回路に取り込み、所定の期間内における第一
2のOfセンサからの空燃比信号が触媒のウィンドに対
し一定期間内に連続してリッチあるいはり−ン側にある
と判定されたときに第1のO,センサからの空燃比信号
と比較するための基準値を所定の値だけ変更せしめ、こ
れと前記第1のOvセンサからの空燃比信号との比較結
果に基づいて空燃比フィードバック制御をするので、O
tセンサの特性変化を補償して適正な空燃比に維持でき
るとともに、触媒のコストの低減を図れるという効果が
ある。
As described above, according to the present invention, the exhaust branch pipe is set at 0! The O air-fuel ratio signal is taken into the electronic control circuit from the can sensor installed in the central part of the NANSA and the downstream side of the catalyst for exhaust gas purification, and the air-fuel ratio signal from the 1st 2nd OF sensor within a predetermined period is input. A reference value for comparison with the air-fuel ratio signal from the first oxygen sensor is set by a predetermined value when it is determined that the air-fuel ratio signal is continuously on the rich or rebound side with respect to the catalyst window within a certain period of time. Since the air-fuel ratio feedback control is performed based on the comparison result between this change and the air-fuel ratio signal from the first Ov sensor, the Ov
This has the effect that it is possible to maintain a proper air-fuel ratio by compensating for changes in the characteristics of the t-sensor, and it is also possible to reduce the cost of the catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

年1図は本発明に係る一実施例が適用される電子制御式
エンジンを示す構成図、第2図は同電子制御回路を詳細
に示すブロック図、第3図は本発明の一実施例を示す流
れ図、IE4図は同流れ図である。 24・・・エンジン、22・・・燃料噴射弁、34・・
・排気分岐管、32・・・触媒コンバータ、36 ・”
館1 O0tセンサ、 3 B−@2のQ、セ:/す、
64・・・電子制御回路。 代理人  鵜 沼 辰 之 Cほか2名)
Figure 1 is a block diagram showing an electronically controlled engine to which an embodiment of the present invention is applied, Figure 2 is a block diagram showing the electronic control circuit in detail, and Figure 3 is a diagram showing an embodiment of the present invention. The flowchart shown and the IE4 diagram are the same flowchart. 24...Engine, 22...Fuel injection valve, 34...
・Exhaust branch pipe, 32...Catalytic converter, 36 ・"
Building 1 O0t sensor, 3 B-@2's Q, SE:/su,
64...Electronic control circuit. Agent Tatsuyuki Unuma and 2 others)

Claims (1)

【特許請求の範囲】[Claims] (1)  エンジンに接続された排気分岐管に!11の
Osセンナを取り付けるとともに、排気ガスを浄化する
触媒のほぼ中央部あるいは下流側に第2のOsセンナを
取シ付け、第1のOsセンナからの空燃比信号を基準値
と比較し、この比較結果に基づいて空燃比フィードバッ
ク制御を行なわしめ、第2のOfセンナからの空燃比信
号に基づいて空燃比が前記触媒のウィンドの範囲内にあ
るか否か検出し。 その検出結果が一定期関内に連続してリッチあるいはり
一ンと判定され九ときに前記tlX1のへセンナ用の基
準値を所定の値だけ変更せしめて最適空燃比となるよう
にするエンジンの空燃比制御方法。
(1) In the exhaust branch pipe connected to the engine! In addition to installing the No. 11 Os sensor, a second Os sensor is installed approximately in the center or downstream of the catalyst that purifies exhaust gas, and the air-fuel ratio signal from the first Os sensor is compared with the reference value. Air-fuel ratio feedback control is performed based on the comparison result, and it is detected whether the air-fuel ratio is within the window of the catalyst based on the air-fuel ratio signal from the second Of sensor. When the detection result is continuously determined to be rich or rich for a certain period of time, the reference value for tlX1 is changed by a predetermined value to achieve the optimum air-fuel ratio. Fuel ratio control method.
JP14731381A 1981-09-18 1981-09-18 Air-fuel ratio control method for engine Pending JPS5848756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14731381A JPS5848756A (en) 1981-09-18 1981-09-18 Air-fuel ratio control method for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14731381A JPS5848756A (en) 1981-09-18 1981-09-18 Air-fuel ratio control method for engine

Publications (1)

Publication Number Publication Date
JPS5848756A true JPS5848756A (en) 1983-03-22

Family

ID=15427364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14731381A Pending JPS5848756A (en) 1981-09-18 1981-09-18 Air-fuel ratio control method for engine

Country Status (1)

Country Link
JP (1) JPS5848756A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170643A (en) * 1985-01-24 1986-08-01 Fuji Heavy Ind Ltd Compensation control system of o2 sensor in air-fuel ratio control
JPS61178531A (en) * 1985-02-01 1986-08-11 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Controller for internal combustion engine
JPS61279748A (en) * 1985-06-06 1986-12-10 Nippon Denso Co Ltd Air-fuel ratio control unit
JPS62157254A (en) * 1985-12-28 1987-07-13 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
US4693076A (en) * 1985-04-09 1987-09-15 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4703619A (en) * 1985-04-09 1987-11-03 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4707985A (en) * 1985-09-12 1987-11-24 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
US4707984A (en) * 1985-04-15 1987-11-24 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4712373A (en) * 1985-04-12 1987-12-15 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4720973A (en) * 1985-02-23 1988-01-26 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having double-skip function
US4723408A (en) * 1985-09-10 1988-02-09 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
JPS6332141A (en) * 1986-07-26 1988-02-10 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
US4729219A (en) * 1985-04-03 1988-03-08 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4739614A (en) * 1985-02-22 1988-04-26 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system in internal combustion engine
US4745741A (en) * 1985-04-04 1988-05-24 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4747265A (en) * 1985-12-23 1988-05-31 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4750328A (en) * 1986-10-13 1988-06-14 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4761950A (en) * 1985-09-10 1988-08-09 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
JPS63156491U (en) * 1987-03-31 1988-10-13
US4796425A (en) * 1986-10-13 1989-01-10 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
JPS6453043A (en) * 1987-05-11 1989-03-01 Mitsubishi Motors Corp Air-fuel ratio controller for internal combustion engine
US4809501A (en) * 1987-01-16 1989-03-07 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4811557A (en) * 1986-10-13 1989-03-14 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4817383A (en) * 1986-11-08 1989-04-04 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4817384A (en) * 1986-08-13 1989-04-04 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4831838A (en) * 1985-07-31 1989-05-23 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
US4840027A (en) * 1986-10-13 1989-06-20 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4854124A (en) * 1987-07-10 1989-08-08 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having divided-skip function
US4881368A (en) * 1987-02-09 1989-11-21 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4905469A (en) * 1987-10-20 1990-03-06 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback system having improved activation determination for air-fuel ratio sensor
US4941318A (en) * 1988-03-01 1990-07-17 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback control system having short-circuit detection for air-fuel ratio sensor
US4964271A (en) * 1987-03-06 1990-10-23 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback control system including at least downstream-side air-fuel ratio sensor
US4964272A (en) * 1987-07-20 1990-10-23 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback control system including at least downstreamside air-fuel ratio sensor
US4970858A (en) * 1988-03-30 1990-11-20 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback system having improved activation determination for air-fuel ratio sensor
USRE33942E (en) * 1985-02-22 1992-06-02 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system in internal combustion engine
US5157920A (en) * 1990-05-07 1992-10-27 Japan Electronic Control Systems Co., Ltd. Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
US5193339A (en) * 1990-05-16 1993-03-16 Japan Electronic Control Systems Co., Ltd. Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
US5251437A (en) * 1990-09-04 1993-10-12 Japan Electronic Control Systems Co., Ltd. Method and system for controlling air/fuel ratio for internal combustion engine
JPH0618639U (en) * 1992-08-17 1994-03-11 日本電子機器株式会社 Air-fuel ratio controller for internal combustion engine
US5307625A (en) * 1991-07-30 1994-05-03 Robert Bosch Gmbh Method and arrangement for monitoring a lambda probe in an internal combustion engine
US5598702A (en) * 1994-02-17 1997-02-04 Unisia Jecs Corporation Method and apparatus for controlling the air-fuel ratio of an internal combustion engine
US5619852A (en) * 1994-07-08 1997-04-15 Unisia Jecs Corporation Air/fuel ratio control system for internal combustion engine
DE102004060652B3 (en) * 2004-06-02 2006-02-16 Mitsubishi Denki K.K. Air-fuel ratio control device for an internal combustion engine
WO2006053802A1 (en) * 2004-11-16 2006-05-26 Siemens Aktiengesellschaft Method and a device for providing lambda control in an internal combustion engine

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170643A (en) * 1985-01-24 1986-08-01 Fuji Heavy Ind Ltd Compensation control system of o2 sensor in air-fuel ratio control
JPS61178531A (en) * 1985-02-01 1986-08-11 ローベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Controller for internal combustion engine
USRE33942E (en) * 1985-02-22 1992-06-02 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system in internal combustion engine
US4739614A (en) * 1985-02-22 1988-04-26 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system in internal combustion engine
US4720973A (en) * 1985-02-23 1988-01-26 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having double-skip function
US4729219A (en) * 1985-04-03 1988-03-08 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4745741A (en) * 1985-04-04 1988-05-24 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4693076A (en) * 1985-04-09 1987-09-15 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4703619A (en) * 1985-04-09 1987-11-03 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4712373A (en) * 1985-04-12 1987-12-15 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
US4707984A (en) * 1985-04-15 1987-11-24 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved response characteristics
JPS61279748A (en) * 1985-06-06 1986-12-10 Nippon Denso Co Ltd Air-fuel ratio control unit
US4831838A (en) * 1985-07-31 1989-05-23 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
US4723408A (en) * 1985-09-10 1988-02-09 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
US4761950A (en) * 1985-09-10 1988-08-09 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
US4707985A (en) * 1985-09-12 1987-11-24 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
US4819427A (en) * 1985-12-23 1989-04-11 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4747265A (en) * 1985-12-23 1988-05-31 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
JPS62157254A (en) * 1985-12-28 1987-07-13 Toyota Motor Corp Air-fuel ratio control device of internal combustion engine
US4779414A (en) * 1986-07-26 1988-10-25 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
JPS6332141A (en) * 1986-07-26 1988-02-10 Toyota Motor Corp Air-fuel ratio control device for internal combustion engine
US4817384A (en) * 1986-08-13 1989-04-04 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4750328A (en) * 1986-10-13 1988-06-14 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4811557A (en) * 1986-10-13 1989-03-14 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4840027A (en) * 1986-10-13 1989-06-20 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4796425A (en) * 1986-10-13 1989-01-10 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system carrying out learning control operation
US4817383A (en) * 1986-11-08 1989-04-04 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4809501A (en) * 1987-01-16 1989-03-07 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US4881368A (en) * 1987-02-09 1989-11-21 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having improved exhaust emission characteristics
US5022225A (en) * 1987-03-06 1991-06-11 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback control system including at least downstream-side air fuel ratio sensor
US4964271A (en) * 1987-03-06 1990-10-23 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback control system including at least downstream-side air-fuel ratio sensor
JPS63156491U (en) * 1987-03-31 1988-10-13
US4912926A (en) * 1987-05-11 1990-04-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Air/fuel ratio control system for internal combustion engine
JPS6453043A (en) * 1987-05-11 1989-03-01 Mitsubishi Motors Corp Air-fuel ratio controller for internal combustion engine
US4854124A (en) * 1987-07-10 1989-08-08 Toyota Jidosha Kabushiki Kaisha Double air-fuel ratio sensor system having divided-skip function
US4964272A (en) * 1987-07-20 1990-10-23 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback control system including at least downstreamside air-fuel ratio sensor
US4905469A (en) * 1987-10-20 1990-03-06 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback system having improved activation determination for air-fuel ratio sensor
US4941318A (en) * 1988-03-01 1990-07-17 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback control system having short-circuit detection for air-fuel ratio sensor
US4970858A (en) * 1988-03-30 1990-11-20 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio feedback system having improved activation determination for air-fuel ratio sensor
US5157920A (en) * 1990-05-07 1992-10-27 Japan Electronic Control Systems Co., Ltd. Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
US5193339A (en) * 1990-05-16 1993-03-16 Japan Electronic Control Systems Co., Ltd. Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
US5251437A (en) * 1990-09-04 1993-10-12 Japan Electronic Control Systems Co., Ltd. Method and system for controlling air/fuel ratio for internal combustion engine
US5307625A (en) * 1991-07-30 1994-05-03 Robert Bosch Gmbh Method and arrangement for monitoring a lambda probe in an internal combustion engine
JPH0618639U (en) * 1992-08-17 1994-03-11 日本電子機器株式会社 Air-fuel ratio controller for internal combustion engine
US5598702A (en) * 1994-02-17 1997-02-04 Unisia Jecs Corporation Method and apparatus for controlling the air-fuel ratio of an internal combustion engine
US5619852A (en) * 1994-07-08 1997-04-15 Unisia Jecs Corporation Air/fuel ratio control system for internal combustion engine
DE102004060652B3 (en) * 2004-06-02 2006-02-16 Mitsubishi Denki K.K. Air-fuel ratio control device for an internal combustion engine
WO2006053802A1 (en) * 2004-11-16 2006-05-26 Siemens Aktiengesellschaft Method and a device for providing lambda control in an internal combustion engine
US7673443B2 (en) 2004-11-16 2010-03-09 Siemens Aktiengesellschaft Method and a device for providing lambda control in an internal combustion engine

Similar Documents

Publication Publication Date Title
JPS5848756A (en) Air-fuel ratio control method for engine
US4508075A (en) Method and apparatus for controlling internal combustion engines
US20190309698A1 (en) Method for controlling an exhaust gas component filling level in an accumulator of a catalytic converter
US10871116B2 (en) Method for regulating a filling of a reservoir of a catalytic converter for an exhaust gas component as a function of an aging of the catalytic converter
JPS5848755A (en) Air-fuel ratio control system for engine
US7287525B2 (en) Method of feedforward controlling a multi-cylinder internal combustion engine and associated feedforward fuel injection control system
US5243952A (en) Air-fuel ratio control apparatus for use in engine
US5884477A (en) Fuel supply control system for internal combustion engines
WO2006016423A1 (en) Engine controller and controlling method
JP3887903B2 (en) Air-fuel ratio control device for internal combustion engine
US5522367A (en) Method and device for predicting a future load signal in connection with the control of an internal-combustion engine
JP3641914B2 (en) Control device for internal combustion engine
KR20020033773A (en) Method for operating an internal combustion engine
US8020369B2 (en) Expanded mixture control for reducing exhaust-gas emissions
JP2548273B2 (en) Fuel injection control device for internal combustion engine
US5899192A (en) Fuel supply control system for internal combustion engines
US5483938A (en) Air-fuel ration control system for internal combustion engines
US4559915A (en) Method of controlling air-fuel ratio and ignition timing in internal combustion engine and apparatus therefor
US4662339A (en) Air-fuel ratio control for internal combustion engine
JPH052823B2 (en)
JPS5963328A (en) Method of controlling air-fuel ratio in engine having electronically controlled fuel injection device
JP2841806B2 (en) Air-fuel ratio control device for engine
JP3377336B2 (en) Air-fuel ratio control device
JP2512789B2 (en) Engine fuel control device
JPS5872631A (en) Air-fuel ratio control method of engine