JPS5848623B2 - High chromium high nickel alloy with excellent hot workability and corrosion resistance - Google Patents

High chromium high nickel alloy with excellent hot workability and corrosion resistance

Info

Publication number
JPS5848623B2
JPS5848623B2 JP4626481A JP4626481A JPS5848623B2 JP S5848623 B2 JPS5848623 B2 JP S5848623B2 JP 4626481 A JP4626481 A JP 4626481A JP 4626481 A JP4626481 A JP 4626481A JP S5848623 B2 JPS5848623 B2 JP S5848623B2
Authority
JP
Japan
Prior art keywords
less
corrosion resistance
hot workability
nickel alloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4626481A
Other languages
Japanese (ja)
Other versions
JPS57161043A (en
Inventor
赳夫 工藤
実 三浦
和夫 山中
正夫 小池
博夫 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4626481A priority Critical patent/JPS5848623B2/en
Publication of JPS57161043A publication Critical patent/JPS57161043A/en
Publication of JPS5848623B2 publication Critical patent/JPS5848623B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は耐食性にすぐれるとともに良好な熱間加工性と
溶接性とを具備した高クロム高ニッケル合金に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high chromium, high nickel alloy that has excellent corrosion resistance, as well as good hot workability and weldability.

従来、硝酸及び弗酸より成る混酸にさらされる装置用材
料においては硝弗酸による激しい腐食のために金属材料
は使用されず、これらの環境下ではゴム、その他の耐酸
性樹脂などの非金属材料が使用されている。
Conventionally, metal materials have not been used for equipment that is exposed to a mixed acid consisting of nitric acid and hydrofluoric acid due to the severe corrosion caused by nitric and hydrofluoric acids, and non-metallic materials such as rubber and other acid-resistant resins have been used in these environments. is used.

しかし非金属材料では、機械的強度が要求される場合、
或は使用環境が高温となる場合には使用できないという
問題点があり、さらに非金属材料では大型構造物を製作
することが困難である。
However, when mechanical strength is required for non-metallic materials,
Another problem is that they cannot be used in high-temperature environments, and furthermore, it is difficult to manufacture large structures using non-metallic materials.

このような硝弗酸にさらされ、高温で使用される装置、
構造物としては高速増殖炉における使用済燃料の溶解槽
があり、斯る装置材料としてはインコネル6 9 0
( 3 0 Cr−60Ni,商品名)が良好な耐食性
を示すことが知られているが、本発明はさらに良好な洛
接性と、板、管の製作が可能である熱間加工性とを具備
し、而もインコネル690よりすぐれた耐食性を示す高
クロム高ニッケル合金を提供するもので、重量%で (IJ C0.02%以下、SiO−5%以下、Mn
2%以下、80.005%以下、A70、5%以下、Y
0.010〜0.10%,Cr33 〜38%,Ni5
0〜60%を含有し、残部は実質的にFeよりなるか又
は(2)C0.04%以下、Nb O. 4%以下、但
しCが0.02%以上の場合はNblOXC%以上、8
10.5%以下、Mn2%以下、80.005%以下、
A7 0. 5%以下、Y0.0 1 0−0.1 0
%,Cr33〜38%, N i 5 0〜60%を含
有し、残部は実質的にFeよりなることを特徴とするも
のである。
Equipment used at high temperatures, such as when exposed to nitric-fluoric acid;
The structure is a melting tank for spent fuel in a fast breeder reactor, and the equipment material is Inconel 690.
(30 Cr-60Ni, trade name) is known to exhibit good corrosion resistance, but the present invention provides even better weldability and hot workability that enables production of plates and tubes. The present invention provides a high chromium, high nickel alloy that has superior corrosion resistance than Inconel 690, and has a content of (IJ C0.02% or less, SiO-5% or less, Mn
2% or less, 80.005% or less, A70, 5% or less, Y
0.010~0.10%, Cr33~38%, Ni5
(2) C0.04% or less, Nb O. 4% or less, but if C is 0.02% or more, NblOXC% or more, 8
10.5% or less, Mn 2% or less, 80.005% or less,
A7 0. 5% or less, Y0.0 1 0-0.1 0
%, 33 to 38% of Cr, and 0 to 60% of Ni5, with the remainder substantially consisting of Fe.

即ち、耐食性についてはCr量を33%以上と増加し、
C量をできるだけ低減し、さらにNbを適正量添加すれ
ば向上すること、及びCr量は高くなるにつれて熱間加
工性が著しく劣化し、又Nbを添加すると酵接性が劣化
することを知見した。
That is, for corrosion resistance, the amount of Cr was increased to 33% or more,
It was found that reducing the amount of C as much as possible and adding an appropriate amount of Nb improves the properties, and that as the amount of Cr increases, the hot workability deteriorates significantly, and when Nb is added, the fermentation weldability deteriorates. .

本発明はこれらの成分を適正量に規制することにより加
工性、溶接性の良好な而もインコネル690よりも耐食
性のすぐれた高クロム高ニッケル合金を得ることに成功
したものである。
The present invention has succeeded in obtaining a high chromium, high nickel alloy which has good workability and weldability and has better corrosion resistance than Inconel 690 by regulating these components in appropriate amounts.

本発明者らは主要成分がCr,Niからなる合金を種々
溶製し、その耐食性、熱間加工性及び躊接性を調べた処
、下記の如き結果を得た。
The present inventors melted various alloys whose main components were Cr and Ni, and investigated their corrosion resistance, hot workability, and weldability, and obtained the following results.

■)耐食性 硝弗酸溶液中での耐食性として考慮すべきものは耐全面
腐食性と耐粒界腐食性であり、上記溶製合金の熱延材に
TIG溶接を施した後、溶接部を中央にして3闘厚xl
Omm幅X40m長さの試験片を採取し、11モル硝酸
と0.1モル弗酸から成る混酸の沸騰溶液中に6時間浸
漬した後、腐食速鷹ならびに溶接部の粒界腐食の発生の
有無を調べた処、耐全面腐食性で最も重要な成分はCr
であり、第1図に示すように55%NiベースでCr量
を変えた合金の腐食速度はCr量の増加とともに著しく
低減する。
■) Corrosion resistance The corrosion resistance in nitric-fluoric acid solution that should be considered is general corrosion resistance and intergranular corrosion resistance.After performing TIG welding on the hot-rolled material of the above ingot alloy, Te 3 fighting thickness XL
A test piece with a width of 0 mm and a length of 40 m was taken and immersed in a boiling solution of a mixed acid consisting of 11 molar nitric acid and 0.1 molar hydrofluoric acid for 6 hours. According to research, the most important component for general corrosion resistance is Cr.
As shown in FIG. 1, the corrosion rate of alloys based on 55% Ni with varying amounts of Cr decreases significantly as the amount of Cr increases.

しかし38%Cr以上ではCr増加の効果は小さいこと
を知見した。
However, it was found that the effect of increasing Cr is small at 38% Cr or more.

一方粒界腐食は第2図に示すようにSiを約0、2%を
含有する35Cr−55Ni合金の粒界腐食の発生はC
量を0.02%以下とするか或はそれ以上の場合にはN
b/C,qlOのとき酸接部の粒界腐食を防止できるこ
とを知見した。
On the other hand, as shown in Figure 2, intergranular corrosion occurs in a 35Cr-55Ni alloy containing approximately 0.2% Si.
If the amount is 0.02% or less or more, N
It has been found that when b/C, qlO, intergranular corrosion at the acid contact area can be prevented.

なおSi量が0.5%より多くなると上記の粒界腐食を
生じないC量、Nb量の範囲でも粒界腐食が発生した。
Note that when the amount of Si exceeded 0.5%, intergranular corrosion occurred even in the range of the amount of C and Nb that did not cause intergranular corrosion.

2)熱間加工性 30kgの角型のインゴットを1200℃に加熱した後
熱間圧延を行ない、その際の割れの発生の有無を調べた
処、熱間加工性はCr量の増大とともに劣化し、特に3
0%を越えるとその劣化は著しいが、35%Crをベー
スにしてNi量を変化させた合金の熱間加工性は第1表
に示すように50%Ni以上でかなり熱間加工性が向上
するが、しかしまだ十分とは言い難い。
2) Hot workability A square ingot weighing 30 kg was heated to 1200°C and then hot rolled, and the occurrence of cracking during that process was examined. Hot workability deteriorated as the amount of Cr increased. , especially 3
When the content exceeds 0%, the deterioration is significant, but as shown in Table 1, the hot workability of alloys with varying amounts of Ni based on 35% Cr improves considerably when the content exceeds 50% Ni. However, it is still far from sufficient.

そこで35Cr−55Ni合金について種々の微量元素
の影響について検討した結果、Sの低減並びにYを適正
量添加することによって熱間加工性が著しく向上するこ
とが明らかになった。
Therefore, as a result of studying the effects of various trace elements on the 35Cr-55Ni alloy, it became clear that hot workability was significantly improved by reducing S and adding an appropriate amount of Y.

第2表にその結果を示すように、S量を0.005%以
下にし、面もYを0.010〜0.10%添加すると、
熱間加工性は良好となり、又0.10%よりも多く添加
すると熱間加工性は再び劣化することを知った。
As shown in Table 2, when the amount of S is reduced to 0.005% or less and Y is added to the surface by 0.010 to 0.10%,
It was found that the hot workability became good, and that if more than 0.10% was added, the hot workability deteriorated again.

3)溶接性 上記熱延材について、バレストレン試験を行ない、溶接
割れ長さを測定して溶接性を評価する。
3) Weldability The hot-rolled material described above is subjected to a balestrene test, and the weld crack length is measured to evaluate weldability.

第3図に35Cr−55Niの試験結果を示す。FIG. 3 shows the test results for 35Cr-55Ni.

Si量が0.3%のものでは0.4%以上のNb添加さ
れると割れ長さが急増し、溶接性が劣化する。
In the case where the Si content is 0.3%, when 0.4% or more of Nb is added, the crack length increases rapidly and the weldability deteriorates.

それに対して0.8%Siを含有する合金では0.2%
Nbでも溶接性が劣化することを知った。
In contrast, alloys containing 0.8% Si have 0.2% Si.
I learned that Nb also deteriorates weldability.

次に以上の結果をもとに、本発明における合金戒分を限
定した理由について説明する。
Next, based on the above results, the reason for limiting the alloy classification in the present invention will be explained.

Cr:Crは硝弗酸溶液における耐全面腐食性を向上さ
せる必須成分で、33%以上を必要とするが、38%以
上ではその効果は飽和するので33〜38%とする。
Cr: Cr is an essential component that improves general corrosion resistance in nitric-fluoric acid solutions, and requires a content of 33% or more, but the effect is saturated at 38% or more, so the content is set at 33 to 38%.

一方33%より多くなると熱間加工性は劣化する。On the other hand, if it exceeds 33%, hot workability deteriorates.

Ni:33〜38%Crの熱間加工性を向上させるには
50%以上のN1が必要であり、60%以上になっても
その効果は小さいので50〜60%に限定する。
Ni: 33-38% To improve the hot workability of Cr, 50% or more of N1 is required, and even if it becomes 60% or more, the effect is small, so it is limited to 50-60%.

C及びNb:耐粒界腐食性はC量の低減ならびにNbの
添加によって向上するが、Nb量を0.4%より多く添
加すると溶接性が劣化するので0.4%以下に限定する
C and Nb: Intergranular corrosion resistance is improved by reducing the amount of C and adding Nb, but if the amount of Nb is added more than 0.4%, weldability deteriorates, so it is limited to 0.4% or less.

又0.02%C以下ではNbは必ずしも必要でないが0
.02%Cより多くなると粒界腐食を防止する上にNb
/Cを10倍以上に保つ必要がある。
Also, below 0.02%C, Nb is not necessarily necessary, but 0
.. If the amount exceeds 0.02%C, intergranular corrosion is prevented and Nb
/C must be kept at 10 times or more.

0.4%Nb以下でNb/C乏10とするにはC量は0
.04%以下にする必要がある。
To achieve Nb/C depletion of 10 with 0.4%Nb or less, the amount of C must be 0.
.. It is necessary to keep it below 0.04%.

Sj:Siは脱酸剤として必要成分であるが、0.5%
より多くなると溶接性ならびに耐粒界腐食性力戸著しく
劣化するので0.5%以下とする。
Sj:Si is a necessary component as a deoxidizing agent, but 0.5%
If the content is higher, weldability and intergranular corrosion resistance will be significantly deteriorated, so the content should be 0.5% or less.

Mn:Mnは、脱酸剤として用い、又オーステナイト安
定化、熱間加工性を向上せしめる元素で2%以上の添加
は高価となり実用的でない。
Mn: Mn is an element used as a deoxidizing agent and also stabilizes austenite and improves hot workability, and addition of 2% or more is expensive and impractical.

S:Sが0.005%より多くなると熱間加工性が著し
く劣化するので0.005%以下とする。
S: If S exceeds 0.005%, hot workability will be significantly deteriorated, so the S content should be 0.005% or less.

Y:Yは熱間加工性を著しく向上させ、その効果は0.
01〜0.10%の範囲で大きい。
Y: Y significantly improves hot workability, and its effect is 0.
It is large in the range of 0.01 to 0.10%.

Al:脱酸剤として有効であり、05%まで添加できる
Al: Effective as a deoxidizing agent, and can be added up to 0.5%.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

第3表に示す本発明合金ならびに比較合金を溶製し、耐
食性、熱間加工性並ひに溶接性を調べた。
The alloys of the present invention and comparative alloys shown in Table 3 were melted and examined for corrosion resistance, hot workability, and weldability.

いずれも前述と同じ評価法を用い、その結果を第3表に
同時に示す。
The same evaluation method as described above was used in both cases, and the results are also shown in Table 3.

上表より明らかなように本発明合金は耐食性(耐全面腐
食性及び耐粒界腐食性)、熱間加工性及び溶接性ともに
良好であるが比較合金はいずれかの性能において十分で
ない。
As is clear from the above table, the alloy of the present invention has good corrosion resistance (general corrosion resistance and intergranular corrosion resistance), hot workability, and weldability, but the comparative alloy is not sufficient in any of the performances.

Cr量が33%よりも小さいもの(A17.18)は耐
全面腐食性が劣り、又C量、Nb量(C0.02〜0.
04%でNb/Cく10のもの(49.14))及びS
i量(AI 0 . 1 6)が本発明合金の範囲外の
ものは溶接部に粒界腐食が発生し、又Cr量が38%よ
り多いもの(413),Niが50%より小さいもの(
A6.12),S量が0.005%より多いもの(,%
1 1 )及びY量が0.010〜0.10%外のもの
(/l6.15.16)はいずれも熱間加工性が十分で
ない。
Those with a Cr content of less than 33% (A17.18) have poor general corrosion resistance, and those with a C content and Nb content (C0.02 to 0.02%) have poor general corrosion resistance.
04% Nb/C (49.14) and S
When the i content (AI 0.1 6) is outside the range of the present invention alloy, intergranular corrosion occurs in the welded part, and when the Cr content is more than 38% (413) and the Ni content is less than 50% (
A6.12), S content is more than 0.005% (,%
1 1 ) and those having a Y amount outside of 0.010 to 0.10% (/l6.15.16) do not have sufficient hot workability.

又Nb量が0.4%より多いもの(,%11)及びそれ
以下でもSi量が0.5%ldaえると(AI0,16
)躊接性が悪くなる。
In addition, when the Nb amount is more than 0.4% (,%11), and even if the Si amount is less than 0.5%lda (AI0, 16)
) Poor connectivity.

なお涜18合金はインコネル690相当合金であり、腐
食速度が本発明合金より大きく、而も粒界腐食が発生し
ている。
It should be noted that Alloy No. 18 is an alloy equivalent to Inconel 690, and its corrosion rate is higher than that of the alloy of the present invention, and intergranular corrosion occurs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は55%N1ベース合金におけるCr量と腐食速
度との関係、第2図は0.2Si−35Cr55Niベ
ース合金の粒界腐食の発生に及ぼすC%とNb%との関
係、第3図はSi−35Cr55Crベース合金におけ
るNb量と溶接性との関係を示す図表である。
Figure 1 shows the relationship between Cr content and corrosion rate in a 55%N1 base alloy, Figure 2 shows the relationship between C% and Nb% on the occurrence of intergranular corrosion in a 0.2Si-35Cr55Ni base alloy, and Figure 3 is a chart showing the relationship between the amount of Nb and weldability in a Si-35Cr55Cr base alloy.

Claims (1)

【特許請求の範囲】 1 重量%で、C O. 0 2%以下、S i 0.
5%以下、Mn2%以下、80.005%以下、A7
0. 5%以下、Y0.0 1 0−0.1 0%,
Cr33〜38%,Ni50〜60%を含有し、残部は
実質的にFeよりなることを特徴とする熱間加工性およ
び耐食性のすぐれた高クロム高ニッケル合金。 2 重量%で、C0.04%以下、NbO.4%以下、
但しCが0.02%以上の場合はNblOXC%以上、
S i 0. 5%以下、Mn2%以下、80.005
%以下、Al0.5%以下、Y O.0 1 0−0.
1 0%,Cr33〜38%,Ni50〜60%を含有
し、残部は実質的にFeよりなることを特徴とする熱間
加工性および耐食性のすぐれた高クロム高ニッケル合金
[Claims] 1% by weight of CO. 0 2% or less, S i 0.
5% or less, Mn 2% or less, 80.005% or less, A7
0. 5% or less, Y0.0 1 0-0.1 0%,
A high chromium, high nickel alloy with excellent hot workability and corrosion resistance, containing 33 to 38% Cr, 50 to 60% Ni, and the remainder substantially consisting of Fe. 2% by weight, C0.04% or less, NbO. 4% or less,
However, if C is 0.02% or more, NblOXC% or more,
S i 0. 5% or less, Mn 2% or less, 80.005
% or less, Al0.5% or less, Y O. 0 1 0-0.
A high chromium, high nickel alloy with excellent hot workability and corrosion resistance, characterized in that it contains 10% Cr, 33-38% Cr, and 50-60% Ni, with the remainder substantially consisting of Fe.
JP4626481A 1981-03-31 1981-03-31 High chromium high nickel alloy with excellent hot workability and corrosion resistance Expired JPS5848623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4626481A JPS5848623B2 (en) 1981-03-31 1981-03-31 High chromium high nickel alloy with excellent hot workability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4626481A JPS5848623B2 (en) 1981-03-31 1981-03-31 High chromium high nickel alloy with excellent hot workability and corrosion resistance

Publications (2)

Publication Number Publication Date
JPS57161043A JPS57161043A (en) 1982-10-04
JPS5848623B2 true JPS5848623B2 (en) 1983-10-29

Family

ID=12742345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4626481A Expired JPS5848623B2 (en) 1981-03-31 1981-03-31 High chromium high nickel alloy with excellent hot workability and corrosion resistance

Country Status (1)

Country Link
JP (1) JPS5848623B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104447A (en) * 1982-12-02 1984-06-16 Sumitomo Metal Ind Ltd High ni-alloy containing cr with high stress corrosion cracking resistance

Also Published As

Publication number Publication date
JPS57161043A (en) 1982-10-04

Similar Documents

Publication Publication Date Title
JPH028840B2 (en)
PL171499B1 (en) Austenitic ni-mo alloy
CN104822487A (en) Welding material for weld cladding
KR940010230B1 (en) Improvement in structural parts of austenitic nichel-chromium-iron alloy
JPS5848623B2 (en) High chromium high nickel alloy with excellent hot workability and corrosion resistance
JP3128233B2 (en) Nickel-based alloy with good corrosion resistance
JPS6358214B2 (en)
JP5675957B2 (en) Heat generator tube for steam generator, steam generator and nuclear power plant
CN106222577A (en) Stainless steel alloy and preparation method thereof, the stainless steel cladding of fuel assembly
EP0050408A1 (en) Austenitic alloy steel and bar, billet, wire, slab, plate, sheet, tube or forgings
JPH02173235A (en) Corrosion resisting zirconium alloy
JPS6039118A (en) Manufacture of austenitic stainless steel containing boron and having superior resistance to intergranular corrosion and intergranular stress corrosion cracking
JP2892295B2 (en) Welding method for stainless steel with excellent nitric acid corrosion resistance
JPS582259B2 (en) A high chromium alloy that exhibits excellent corrosion resistance against mixed acids consisting of nitric acid and hydrofluoric acid.
JPS62224493A (en) Wire for welding 9cr-2mo steel
JPS592736B2 (en) Cr↓-Mo steel for pressure vessels
JPS5945751B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance
JP3237486B2 (en) Stainless steel with excellent thermal neutron absorption capacity
JPH0132290B2 (en)
JPH02115350A (en) Stainless steel excellent in seawater corrosion resistance
JP2796460B2 (en) Welding material for high Si content stainless steel
JPH0237830B2 (en) 9CRR1MOKOYOSETSUYOWAIYA
JPS61581A (en) Corrosion resistant beryllium substrate
JPS5817247B2 (en) High chromium alloy with good corrosion resistance and weldability against mixed acids consisting of nitric acid and hydrofluoric acid
JPH0336239A (en) Austenitic iron-base alloy