JPS5848616A - Cooling method for tuyere of refining vessel - Google Patents

Cooling method for tuyere of refining vessel

Info

Publication number
JPS5848616A
JPS5848616A JP14605981A JP14605981A JPS5848616A JP S5848616 A JPS5848616 A JP S5848616A JP 14605981 A JP14605981 A JP 14605981A JP 14605981 A JP14605981 A JP 14605981A JP S5848616 A JPS5848616 A JP S5848616A
Authority
JP
Japan
Prior art keywords
carbon material
tuyere
flow passage
fine particle
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14605981A
Other languages
Japanese (ja)
Inventor
Kenji Saito
健志 斎藤
Tsutomu Nozaki
野崎 努
Toshihiko Emi
江見 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14605981A priority Critical patent/JPS5848616A/en
Publication of JPS5848616A publication Critical patent/JPS5848616A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To cool the concentrical double-ply pipe tuyeres installed under the surface of a molten iron bath and to protect the same against erosion by running a fluid mixture of CO2 and a fine particle carbon material contg. alkaline metal components as protecting fluid in the annular flow passage on the outer side of said tuyeres. CONSTITUTION:In order to cool and protect the concentrical double-ply pipe tuyeres which are installed on the bottom of a converter and run gaseous oxygen for refining through the central flow passage, a fluid mixture of CO2 and a fine particle carbon material carrying 0.1-2.0% alkaline metal components is used as the protecting fluid to be run in the annular flow passage on the outer side of the central flow passage. Inexpensive coke powder and the like are suited for said fine particle carbon material. The alkali metals are carried in the carbon material by spraying an aq. soln. of alkali salt of NaCl or the like on coke powder or the like then drying the same. In the molten iron the alkali metals act as a catalyst and the endothermic reaction of CO2+C 2CO progresses quickly, whereby an effective cooling effect is provided.

Description

【発明の詳細な説明】 もので、とくに底吹き転炉の炉底に設置した同心2重管
羽目の冷却に有利に適合する冷却方法について提案する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention proposes a cooling method that is particularly advantageous for cooling concentric double pipe tubes installed at the bottom of a bottom-blown converter.

酸素底吹き転炉は、LD転炉に比べると、攪拌、混合が
よく、Il!鋼時開時間縮、合金歩出り向上、鉄歩止り
向上などの面で利点がある。ただ、浴面下に羽口を有す
るのでそれ自身の冷却が難しく、従来一般的に採用され
ている方法は同心の2重管羽目を使い、中心流路に流す
酸素ガスに対しその外側環状流路からプロパン等の炭化
水素系のガスを流し、該炭化水素系の分解によるその吸
熱によって羽目の冷却保護を図っている。この従来技術
の欠点は炭化水素の分解後に水素が鋼中に残存し、LD
転炉に比べると鋼中水素が2〜J ppIII高くなる
ことである。
Oxygen bottom-blown converter has better stirring and mixing than LD converter, and Il! It has advantages in terms of shortening the opening time for steel, improving alloy yield, and improving iron yield. However, since the tuyeres are located below the bath surface, it is difficult to cool the tuyere itself, and the conventional method generally used is to use concentric double pipe tuyeres, and the outer annular flow is A hydrocarbon-based gas such as propane is passed through the pipe, and the heat absorbed by the decomposition of the hydrocarbon-based gas is used to cool and protect the siding. The disadvantage of this prior art is that hydrogen remains in the steel after decomposition of hydrocarbons, resulting in LD
Compared to a converter, the hydrogen content in the steel is 2 to J ppIII higher.

また、羽口保護流体としてCO2を用いる技術が・・あ
る・しかし、CO□の冷却効果は前記のプロパンなどと
異なり分解反応を伴わないので、アルゴンや窒素の吹込
みと同様の抜熱効果しかな(、発明者らの試算によれば
対0体槽%で13〜l7%のCO2ガスが必要とされ、
多量の002の使用が不可欠とされるため高価になる欠
点があった。
There is also a technology that uses CO2 as a tuyere protective fluid.However, unlike the aforementioned propane, the cooling effect of CO2 does not involve a decomposition reaction, so it does not have the same heat removal effect as blowing argon or nitrogen. Kana (According to the inventors' calculations, 13 to 7% CO2 gas is required in terms of 0 body tank%,
Since it is essential to use a large amount of 002, it has the disadvantage of being expensive.

この発明は、上記の羽口冷却技術の欠点を克服すること
を目的とするもので、CO,とc微粉末とアルカリ金属
との混合流体を保護流体に使うことで、上記欠点を克服
するものである。以下にその構成の詳細を説明する。
This invention aims to overcome the drawbacks of the above-mentioned tuyere cooling technology, and overcomes the above-mentioned drawbacks by using a mixed fluid of CO, c fine powder, and alkali metal as a protective fluid. It is. The details of the configuration will be explained below.

本発明は、保護流体(冷却ガス)としてC02ガスと炭
素微粒子との混合流体を用いるのを基本とする。このよ
うな混合流体を用いると、羽口先端の前の高温域で、C
o2+C−+200なる吸熱反応を起すため、従来公知
のCo2を単独で冷却ガスとして溶湯中に噴射するのに
比べ抜熱性が飛躍的に増大する。
The present invention is based on the use of a mixed fluid of CO2 gas and carbon particles as a protective fluid (cooling gas). When such a mixed fluid is used, C in the high temperature area in front of the tuyere tip
Since an endothermic reaction of o2+C-+200 occurs, the heat removal performance is dramatically increased compared to the conventional method in which Co2 alone is injected into the molten metal as a cooling gas.

しかし、上記吸熱反応速度はそれほど太きくないこと、
および混合する固体炭素は羽目先端部を通辿するわずか
な時間に反応が進まなければ羽目冷却剤として有効に働
かないことから粒度の非常に小ざいものが必要になるこ
となどの条件が課せられる。
However, the above endothermic reaction rate is not so large;
The solid carbon to be mixed in will not work effectively as a siding coolant unless the reaction progresses during the short time it passes through the siding tip, so conditions such as the need for extremely small particle size are imposed. .

本発明はそうした間―点を解決するために、固体炭素に
アルカリ金属を触媒として付加すれば、C02+C−+
λOOの反応速度が非常に大きくなることに着目して開
発した方法であり、とりわけこの方法を採用すれば、従
来反応速度が大きくなると使用できずにいた炭材の種類
、粒度に関する制限がゆるやかになり、容易かつ経済的
に羽口冷却を行えるようになるのである。
In order to solve this problem, the present invention proposes that if an alkali metal is added to solid carbon as a catalyst, C02+C-+
This method was developed with a focus on the fact that the reaction rate of λOO becomes extremely high.In particular, by adopting this method, restrictions on the type and particle size of carbon materials, which previously could not be used when the reaction rate was high, can be relaxed. This makes it possible to perform tuyere cooling easily and economically.

現在入手可能な固体炭素は数多くある。これらはさまざ
tな用途に使用されていて、その性質、価格も異なって
いる。本発明で対象とする羽目冷却に使用する固体炭素
の条件は、羽口先端のマツシュルームにできた間隙を通
過できる“平均粒径100μm以下の大金さのものであ
ること、CO8とすばやく反応して吸熱することが挙げ
られる。これを反応速度の点から見ると、平均粒径10
μ以下の固体炭素が羽口冷却に効果的と解され、これに
適合するものは気体炭化木葉の分解で生じたカーボンブ
ラック、あるいは活性炭を微粉砕したものがよい。しか
しながら、こうしたカーボンブラック等は輸送が困難で
高価であるばかりでなく、これを羽口冷却剤として使う
と鉄製造コストを高くするという若干の問題点がある。
There are many types of solid carbon currently available. These are used for a variety of purposes and have different properties and prices. The conditions for the solid carbon used for tuyere cooling, which is the object of the present invention, are that it must be large enough to pass through the gaps formed in the pine mushrooms at the tip of the tuyere, and that it must be of a large size with an average particle size of 100 μm or less, and must react quickly with CO8. From the viewpoint of reaction rate, an average particle size of 10
Solid carbon with a particle diameter of less than μ is considered to be effective for tuyere cooling, and suitable carbon black produced by decomposition of gaseous carbonized tree leaves or finely pulverized activated carbon are suitable. However, such carbon black and the like are not only difficult to transport and expensive, but also have some problems in that their use as a tuyere coolant increases the cost of producing iron.

そこで、本発明では固体炭素と002の反応をアルカリ
金属を触媒として用いることで粒径の大きい固体炭素を
使えるようにした。コークス等の固体炭素にアルカリ金
属を添加すれば、第1図に示。
Therefore, in the present invention, solid carbon having a large particle size can be used by using an alkali metal as a catalyst for the reaction between solid carbon and 002. If an alkali metal is added to solid carbon such as coke, the result is shown in Figure 1.

すようにCO2との反応速度は急激に大きくなるし、第
、2図に示す反応速度とアルカリ金属添加縁の関係から
判るように、ある程度のアルカリ金属の添加は反応速度
を飛躍的に増大させる。反応速度を大きくするのは、図
面に明らかなようにアルカリ金属の重量比で0.01%
以上である。また2%以上ではもはやその効果も頭打ち
となっていることがわかる。このように−コークス粉に
アルカリ金属を0.0/%〜2%添加すれば、CO2と
の反応M!度が大きくなり、平均粒径lOOμのコーク
スでも、数μノ粒径のカーボンブラックに匹敵する反応
速度が得られる。なお、アルカリ金属の添加方法として
は、特に制限する必要はなく、たとえばNa04 #K
OI 、 NaOH、KOHなどのアルカリ塩を水に溶
解させ、その溶液をコークスなどの固体炭素に噴霧した
後乾燥させて帯同させたものでよい。
As shown in Figure 2, the reaction rate with CO2 increases rapidly, and as can be seen from the relationship between the reaction rate and the alkali metal addition edge shown in Figure 2, the addition of a certain amount of alkali metal dramatically increases the reaction rate. . As is clear from the drawing, the reaction rate increases when the weight ratio of alkali metal is 0.01%.
That's all. Moreover, it can be seen that the effect has reached a plateau at 2% or more. In this way, if 0.0/% to 2% of alkali metal is added to coke powder, the reaction with CO2 M! Even with coke having an average particle size of lOOμ, a reaction rate comparable to that of carbon black having a particle size of several μm can be obtained. Note that there is no need to particularly limit the method of adding the alkali metal; for example, Na04 #K
An alkali salt such as OI, NaOH, or KOH may be dissolved in water, and the solution may be sprayed onto solid carbon such as coke and then dried to entrain it.

次にこの発明の実施例について説明する。Next, embodiments of this invention will be described.

実誇例は、11試験転炉を用いて、吹錬実験を行った例
である。羽口からの吹込み炭素の種類以外、は同一条件
にそろえて吹錬した条件の代表例を次に示す。
A demonstration example is an example in which a blowing experiment was conducted using a 11-test converter. The following is a typical example of blowing conditions under the same conditions except for the type of carbon injected from the tuyere.

溶銑量s j t、s溶銑成分: ”/li、s%、5
110.3!%、Knlo、zo%s X’10./l
o%s S10.oz2%s吹止1010、os%、温
度ttso℃、炉底羽口&! 1本、溶銑温度/JJO
℃、送酸速度/2.I Mm”/win  (全量底吹
き)、00g比c対0□)s%、カーボン添装置002
!10 = / (モル比)。
Hot metal amount s j t, s hot metal component: ”/li, s%, 5
110.3! %, Knlo, zo%s X'10. /l
o%s S10. oz2%s blowstop 1010, os%, temperature ttso℃, hearth tuyere &! 1 piece, hot metal temperature/JJO
°C, oxygen delivery rate/2. I Mm”/win (total amount bottom blowing), 00g ratio c to 0□)s%, carbon addition device 002
! 10 = / (molar ratio).

以上の条件で吹錬した結果は第1表のとおりである〇 第1表 −KOj水溶液噴霧した時のに分の対コークス■詔鼠慢 ここで使用したコークスは、コークス製造工場で発生し
たl關以下の粉コークスをボールミルで粉砕し粒度を整
えたものである。添加するアルカリ金属は、KO!試薬
を水にとかしl規定の水溶液とし、その水溶液をコーク
スに均等に噴霧して目的の瀘を添加した0この第1表は
同一条件で各々Sヒート連続して吹録し、羽口溶損量を
平均して比較したものである。
The results of blowing under the above conditions are shown in Table 1. 〇Table 1 - Coke ratio when sprayed with KOj aqueous solution. This is made by crushing coke powder with a ball mill to adjust the particle size. The alkali metal to be added is KO! The reagent was dissolved in water to make a specified aqueous solution, and the aqueous solution was evenly sprayed onto the coke to add the desired filter.Table 1 shows the results of continuous spraying with S heat under the same conditions, and the tuyere melting. This is a comparison of the average amounts.

比較例として示したよう−にアルカリ金属を添加しない
場合は、平均粒径侵μのコークスの場合には羽口溶損が
大きいため安価に入手できるにもかかわらずアセチレン
ブラックの代りとして使用できがい。
As shown in the comparative example, if no alkali metal is added, coke with an average particle diameter of μ causes large tuyere melting, so it cannot be used as a substitute for acetylene black even though it is available at a low price. .

この第1表から判るようにアルカリ添加をしてC02と
の反応速度を増加させると、コークスでも粒径の大きい
ままアセチレンブラックとほぼ同等の羽口冷却効果を示
した。
As can be seen from Table 1, when alkali was added to increase the reaction rate with CO2, even coke showed a tuyere cooling effect almost equivalent to that of acetylene black, even though the particle size was large.

以上説明したように本発明によれば、羽口冷却が容易に
かつ経済的にでき、しかも安価な固体炭素を羽口冷却剤
として使用することができるので、製鋼コストの削減が
できる。
As explained above, according to the present invention, tuyere cooling can be performed easily and economically, and inexpensive solid carbon can be used as the tuyere coolant, so that steel manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面のm/図はカリウム添加に伴うC02→、200反
応置装特性図、第2図はアルカリ添加社と反応速度との
関係を示す線図である。 特許出願人  川崎製鉄株式全社 第1図 温崖q5θて 第2図
The m/diagram in the drawing is a characteristic diagram of the C02→200 reactor associated with potassium addition, and FIG. 2 is a diagram showing the relationship between alkali addition and reaction rate. Patent applicant Kawasaki Steel Corporation Figure 1 Temperature cliff q5θ Figure 2

Claims (1)

【特許請求の範囲】 1、 精錬容器内の溶鉄浴面下に設置した中心流路から
M錘用酸素ガスを流動きせる同心2重管羽目の冷却に当
り、中心流路外側の環状流路に保護流体を流動させるこ
とにより当該羽口の冷却を行う方法において、 上記保護流体として、C02と重ft%で0./〜λ・
0%のアルカリ金属分を帯同する微粒炭素材料との混合
流体を用いることを特徴とする羽口の冷却方法。
[Scope of Claims] 1. For cooling the concentric double pipe siding that allows oxygen gas for the M weight to flow from the center channel installed below the surface of the molten iron bath in the refining vessel, an annular channel outside the center channel is used. In the method of cooling the tuyere by flowing a protective fluid, the protective fluid contains C02 and 0.5% by weight. /~λ・
A method for cooling a tuyere characterized by using a mixed fluid with a fine carbon material containing 0% alkali metal.
JP14605981A 1981-09-18 1981-09-18 Cooling method for tuyere of refining vessel Pending JPS5848616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14605981A JPS5848616A (en) 1981-09-18 1981-09-18 Cooling method for tuyere of refining vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14605981A JPS5848616A (en) 1981-09-18 1981-09-18 Cooling method for tuyere of refining vessel

Publications (1)

Publication Number Publication Date
JPS5848616A true JPS5848616A (en) 1983-03-22

Family

ID=15399148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14605981A Pending JPS5848616A (en) 1981-09-18 1981-09-18 Cooling method for tuyere of refining vessel

Country Status (1)

Country Link
JP (1) JPS5848616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634193A1 (en) * 1993-07-13 1995-01-18 Rockwell International Corporation Method and system for feeding propellant slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634193A1 (en) * 1993-07-13 1995-01-18 Rockwell International Corporation Method and system for feeding propellant slurry

Similar Documents

Publication Publication Date Title
KR100207154B1 (en) A pocess for producing metals and metal alloy in a smelt reduction vessel
US8845779B2 (en) Process for producing molten iron
US3293334A (en) Preparation of spherical metal powder
JPH07502566A (en) iron manufacturing method
US3617394A (en) Kiln passivation of reduced ores
JPS6023182B2 (en) Melting method for medium carbon high chromium molten metal
JPS5848616A (en) Cooling method for tuyere of refining vessel
US3551139A (en) Desulphurizing composition for treating iron melts and method
US4198228A (en) Carbonaceous fines in an oxygen-blown blast furnace
WO1981002429A1 (en) Process for recovering co-rich off-gas in metal smelting
US4565551A (en) Coal gasification apparatus
JPS58130216A (en) Refining method of high alloy steel and stainless steel
CA1224044A (en) Apparatus of gasifying carbonaceous material
US2523475A (en) Method of reducing the carbon content of steel
US4436553A (en) Process to produce low hydrogen steel
JP5506789B2 (en) Manufacturing method of molten iron
JPS62228410A (en) Method for recovering metal from granular ore by melt reduction
US3591155A (en) Rotary furnace for difficult to reduce oxides
JPS61284512A (en) Production of high-chromium steel using chromium ore
JPS6184311A (en) Method for heating molten iron by secondary combustion method
CA1202487A (en) Coal gasification method and apparatus therefor
JPS60194009A (en) Method for refining stainless steel
KR810001941B1 (en) Continuous process of converting non-ferrous metal sulfide concentrates
JPH01283312A (en) Method for melting iron-contained cold material
JPH02179806A (en) Smelting reduction method for iron ore