JPS5848613B2 - Heat treatment method for metal materials - Google Patents

Heat treatment method for metal materials

Info

Publication number
JPS5848613B2
JPS5848613B2 JP4477377A JP4477377A JPS5848613B2 JP S5848613 B2 JPS5848613 B2 JP S5848613B2 JP 4477377 A JP4477377 A JP 4477377A JP 4477377 A JP4477377 A JP 4477377A JP S5848613 B2 JPS5848613 B2 JP S5848613B2
Authority
JP
Japan
Prior art keywords
pressure
transformation
heat treatment
temperature
metal materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4477377A
Other languages
Japanese (ja)
Other versions
JPS53129110A (en
Inventor
裕 金築
陸郎 小川
洋 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4477377A priority Critical patent/JPS5848613B2/en
Publication of JPS53129110A publication Critical patent/JPS53129110A/en
Publication of JPS5848613B2 publication Critical patent/JPS5848613B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires

Description

【発明の詳細な説明】 本発明は金属材料の均一な材質を得るための新規な熱処
理法に関するもので、その特徴とするところは、金属材
料を高温から冷却して相を変化する際、該材料に圧力を
かけて相転移を遅延せしめると共に、その圧力下で相転
移線直前において圧力を除荷して相転移を進行せしめる
ところにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel heat treatment method for obtaining a uniform quality of a metal material. The process involves applying pressure to the material to delay the phase transition, and under that pressure, releasing the pressure just before the phase transition line to allow the phase transition to proceed.

相変態は金属材料のいろいろの特性の向上に非常に広範
に使用されているが、例えばFe−C系ではペイナイト
変態、マルテンサイト変態等に見られる。
Phase transformation is very widely used to improve various properties of metal materials, and for example, in Fe--C systems, it can be seen as paynite transformation, martensitic transformation, etc.

これらの一般的な熱処理方法は一度、高温で溶体化後、
急速に冷却し、準安定相に相変態させるものである。
These general heat treatment methods involve once solution treatment at high temperature;
It rapidly cools and transforms into a metastable phase.

すなわち、変態する場合には、一般に加熱時、と冷却時
の変態温度が異っていて、ヒステリシスを有している。
That is, when transformation occurs, the transformation temperatures during heating and cooling are generally different, and there is hysteresis.

このことは冷却時の変態が冷却速度に依存していること
をも示していて、非常に急速に冷却すれば高温相がその
まま凍結される。
This also indicates that the transformation during cooling is dependent on the cooling rate; if the material is cooled very rapidly, the high-temperature phase is frozen as it is.

この状態で新しい相に変態する場合には、その生或速度
、または成長速度が、その変態温度によって決定される
ために、変態後さまざまの組織を有し、それぞれ独自の
特性を現す金属材料が得られる。
When a new phase is transformed in this state, the rate of its formation or growth is determined by its transformation temperature. can get.

しかしながらこれらの組織を得るためには急冷が基本的
な条件であるが、この条件は、その材料の質量に依存す
るもので、大きくなれば急冷は不可能となる。
However, rapid cooling is a basic condition for obtaining these structures, but this condition depends on the mass of the material, and if the mass becomes large, rapid cooling becomes impossible.

発生する熱応力に対しても、非常に脆い材料では焼割れ
のおそれがあり急冷は更らに困難となってくる。
In response to the generated thermal stress, extremely brittle materials may suffer from quench cracking, making rapid cooling even more difficult.

このような場合に圧力を付加することが極めて効果的で
ある。
In such cases, applying pressure is extremely effective.

すなわち冷却過程で圧力を負荷させると、容易に過冷さ
れると共に変態開始時間が非常に遅くなる。
That is, if pressure is applied during the cooling process, it will be easily supercooled and the transformation start time will be extremely slow.

しかしながら、圧力下でそのまま変態を行なわしめる場
合には、質量効果に対しては効果があっても変態生成物
は高圧相に変化したり、もしくは常圧下の場合に比べそ
の組織に変化が現われる。
However, when the transformation is directly carried out under pressure, even though the mass effect is effective, the transformation product changes to a high-pressure phase, or its structure changes compared to when it is under normal pressure.

このことは常圧下での変態生成物の特性を変化させてし
まう。
This changes the properties of the transformation product under normal pressure.

また、このように圧力下で行う場合には、この変態終了
時間も大きく長時間側にづれる。
Furthermore, when the transformation is carried out under pressure in this way, the time required to complete the transformation is also significantly longer.

本発明は圧力を負荷しながらも変態開始直前に圧力を除
去し変態は常圧下で行なわしめることを特徴としており
、したがって変態後の組織は常圧下で得られる組織であ
って、かつ常圧下では得られない均一性を有するのであ
る。
The present invention is characterized in that the pressure is applied, but the pressure is removed just before the start of transformation, and the transformation is carried out under normal pressure.Therefore, the structure after transformation is the structure obtained under normal pressure, and the structure obtained under normal pressure is It has an unobtainable uniformity.

同様の方法は、析出処理に対しても有効である。Similar methods are also effective for precipitation treatments.

通常の析出処理は、固溶量の多い高温に材料を加熱し、
十分に析出物を固溶させた後に、固溶量の少い低温に名
冷し、その温度またはそれより高い温度に材料を保持し
、析出を進行させて、均一で微細な析出物を得て、材料
の有効な性質の改善がはかれる。
Normal precipitation treatment involves heating the material to a high temperature with a large amount of solid solution.
After sufficiently dissolving the precipitates, the material is cooled down to a low temperature with a small amount of solid solution, and the material is maintained at that temperature or higher to allow precipitation to proceed and obtain uniform and fine precipitates. As a result, the effective properties of the material can be improved.

析出は、過飽和度を駆動力として、核の生戒と成長で進
行する点は相変態と類似している。
Precipitation is similar to phase transformation in that it proceeds with the growth and growth of nuclei using supersaturation as a driving force.

過飽和度は高温よりの名冷の冷却速度に依存し、質量効
果が介在する。
The degree of supersaturation depends on the rate of cooling from high temperature, and there is a mass effect involved.

すなわち材料が大きくなると均一な過飽和度は得られ難
い。
That is, when the material becomes large, it is difficult to obtain a uniform degree of supersaturation.

このような冷却過程に圧力を負荷すれば、極めて容易に
十分な過飽和度を得ることができる。
By applying pressure to such a cooling process, a sufficient degree of supersaturation can be obtained very easily.

本発明は冷却過程に圧力を負荷し、所定温度に達した後
に圧力を除荷し、析出は常圧で進行させることを骨子と
しており、通常の析出処理では得られない均一な析出状
態を得ることができるのである。
The main idea of the present invention is to apply pressure during the cooling process, remove the pressure after reaching a predetermined temperature, and allow precipitation to proceed under normal pressure, thereby achieving a uniform precipitation state that cannot be obtained with normal precipitation processing. It is possible.

次に本発明を具体例で詳細に説明する。Next, the present invention will be explained in detail using specific examples.

硬鋼線、ピアノ線のパテンテイング処理に対して実施し
た例を以下に示す。
Examples of patenting treatments for hard steel wire and piano wire are shown below.

パテンティング処理は、炭素鋼をA3点以上の高温域で
溶体化後、澹速に変態温度まで過冷し、その温度で恒温
保持することによって行なわれている。
Patenting treatment is carried out by solution-treating carbon steel at a high temperature range of A3 point or higher, rapidly supercooling it to a transformation temperature, and maintaining the temperature constant at that temperature.

この場合、変態温度が、約500℃と高温であり、かつ
素線を急速に過冷するために現在鉛浴が使用されている
In this case, the transformation temperature is as high as about 500° C., and a lead bath is currently used to rapidly supercool the wire.

しかしながら、この鉛浴においても素線径が大きくなれ
ば、線の内外を均一かつ急速に過冷することは困難とな
ってくる。
However, even in this lead bath, as the wire diameter increases, it becomes difficult to uniformly and rapidly supercool the inside and outside of the wire.

すなわち線の表面は急速に冷却されるが内部は線径が大
きくなればなる程、中心部の冷却速度は遅くなる。
That is, the surface of the wire is rapidly cooled, but as the wire diameter increases, the cooling rate at the center becomes slower.

一方冷却速度と組織との関係を示すものとしてTTT
,CCT図があるが、このTTT曲線の鼻部の温度が微
細なパーライトの変態温度であってこの臨界冷却速度以
下では、微細な組織を得ることは困難である。
On the other hand, as an indicator of the relationship between cooling rate and structure, TTT
, CCT diagram, but the temperature at the nose of this TTT curve is the transformation temperature of fine pearlite, and it is difficult to obtain a fine structure below this critical cooling rate.

このTTT曲線は材料固有の特性であって、添加元素に
よって大きく影響をうけることは良く知られていて、こ
れまで上記の問題点に対処するために合金元素を添加し
、TTT曲線の鼻部を長時間側に移動させることによっ
て、太径線材の熱処理が行なわれている。
It is well known that this TTT curve is a characteristic unique to the material and is greatly affected by the added elements.In order to deal with the above-mentioned problems, alloying elements have been added to improve the nose of the TTT curve. The large diameter wire is heat treated by moving it to the long time side.

しかしながら添加元素の効果は、臨界冷却速度を遅くす
るだけではなく、組織変化をもたらすもので、変形能に
対して悪影響を及ぼすことが多い。
However, the effect of additive elements is not only to slow down the critical cooling rate, but also to bring about structural changes, which often have a negative effect on deformability.

本発明は、高温での溶体化後の過冷段階で線径に応じ、
かつ装置の冷却能に応じて圧力をかけ変態温度での恒温
保持段階では、急速に圧力を抜き去ることによって圧力
下変態の利点のみを使用し、パテンテイングを行う。
In the present invention, depending on the wire diameter in the supercooling stage after solution treatment at high temperature,
In addition, in the step of maintaining a constant temperature at the transformation temperature by applying pressure according to the cooling capacity of the device, the pressure is rapidly removed to use only the advantages of transformation under pressure and perform patenting.

この方法によれば非常に均一かつ微細なパーライト組織
を太径線材において実現することができる。
According to this method, a very uniform and fine pearlite structure can be realized in a large diameter wire.

第1表は、実施した試料の化学組戒を示すもので、ほぼ
共析組成の炭素鋼である。
Table 1 shows the chemical composition of the tested sample, which is carbon steel with a nearly eutectoid composition.

圧力は固体圧媒を用いた高圧装置を用いた。A high-pressure device using a solid pressure medium was used for pressure.

使用圧力は、装置の冷却能の関係から25Kbである。The operating pressure is 25 Kb due to the cooling capacity of the device.

素線は12φ間/の太径素線を使用している。The wire used is a thick wire with a diameter of 12φ.

第j図は試料のオーステナイト後の冷却曲線(同図中■
)と圧力パターン(同図中■)との関係を示す。
Figure j shows the cooling curve of the sample after austenite (in the figure
) and the pressure pattern (■ in the figure).

同図に示すように900℃に加熱した試料を500℃に
過冷して恒温保持し、圧力は500℃に到達後20Kb
から常圧まで急速に除荷したのである。
As shown in the figure, a sample heated to 900°C is subcooled to 500°C and kept at a constant temperature, and the pressure is 20 Kb after reaching 500°C.
The load was rapidly unloaded from to normal pressure.

第2図はこのように高圧下熱処理を行なった試料の硬度
分布(同図中I)と鉛パテンティングした比較材(化学
組成、線径は同一)の硬度分布(同図中田)を示すもの
である。
Figure 2 shows the hardness distribution of the sample heat-treated under high pressure (I in the figure) and the hardness distribution of the lead-patented comparative material (chemical composition and wire diameter are the same) (Nakata in the figure). It is.

同図に示す硬度分布からもわかるように単に鉛パテンテ
イングした場合に比較して高圧下熱処理した場合は線の
内外において非常に均一なかつ微細な組織を示している
のである。
As can be seen from the hardness distribution shown in the same figure, compared to the case of simply lead patenting, the case of heat treatment under high pressure shows a very uniform and fine structure inside and outside the wire.

この実施例では共析鋼の場合であるが、本発明によれば
過共析鋼に対しても有効で、通常太径の過共析鋼では初
析セメンタイトが延性を阻害するが本発明法によりこれ
を粒内に均一に分散させることもできるのである。
Although this example deals with eutectoid steel, the present invention is also effective for hypereutectoid steel. Normally, pro-eutectoid cementite inhibits ductility in large-diameter hypereutectoid steel, but the present invention is effective for hypereutectoid steel. This allows it to be uniformly dispersed within the grains.

尚本発明で圧力のかけ方としては多軸性の圧縮力で静水
圧がもつともよく、一軸圧縮は効果がない。
In the present invention, as a method of applying pressure, hydrostatic pressure may be applied using multiaxial compression force, and uniaxial compression is ineffective.

圧力は高い程、相転移の時間が長くとれるが、あまり高
いと負荷が困難である。
The higher the pressure, the longer the phase transition time can be, but if the pressure is too high, it will be difficult to apply the load.

以上の説明から本発明は金属材料特に質量効果の高い金
属材料の均一な材質を得るための顕著な熱処理法である
From the above explanation, the present invention is an outstanding heat treatment method for obtaining uniform quality of metal materials, especially metal materials with high mass effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は共析鋼の冷却曲線と圧力パターンの関係を示す
図、第2図は共析鋼線断面の硬度分布を示した図である
FIG. 1 is a diagram showing the relationship between the cooling curve and pressure pattern of eutectoid steel, and FIG. 2 is a diagram showing the hardness distribution of a cross section of the eutectoid steel wire.

Claims (1)

【特許請求の範囲】[Claims] 1 金属材料を高温から冷却して、相を変化させるに際
し、該材料に圧力をかけて相転移を遅延せしめると共に
、圧力下における相転移直前において圧力を除荷し相転
移を進行せしめることを特徴とする金属材料の熱処理法
1. When a metal material is cooled from a high temperature to change its phase, pressure is applied to the material to delay the phase transition, and the pressure is released just before the phase transition under pressure to allow the phase transition to proceed. Heat treatment method for metal materials.
JP4477377A 1977-04-18 1977-04-18 Heat treatment method for metal materials Expired JPS5848613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4477377A JPS5848613B2 (en) 1977-04-18 1977-04-18 Heat treatment method for metal materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4477377A JPS5848613B2 (en) 1977-04-18 1977-04-18 Heat treatment method for metal materials

Publications (2)

Publication Number Publication Date
JPS53129110A JPS53129110A (en) 1978-11-10
JPS5848613B2 true JPS5848613B2 (en) 1983-10-29

Family

ID=12700724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4477377A Expired JPS5848613B2 (en) 1977-04-18 1977-04-18 Heat treatment method for metal materials

Country Status (1)

Country Link
JP (1) JPS5848613B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757826A (en) * 1980-09-24 1982-04-07 Kobe Steel Ltd High pressure continuous heat treatment for metallic wire rod
GB2440334A (en) * 2006-06-13 2008-01-30 Rolls Royce Plc A method of controlling the microstructure of a metal

Also Published As

Publication number Publication date
JPS53129110A (en) 1978-11-10

Similar Documents

Publication Publication Date Title
OUCHI et al. The effect of hot rolling condition and chemical composition on the onset temperature of γ-α transformation after hot rolling
Stickels Carbide refining heat treatments for 52100 bearing steel
Garcia et al. Formation of austenite in 1.5 pct Mn steels
Dunlop et al. Precipitation of VC in ferrite and pearlite during direct transformation of a medium carbon microalloyed steel
US4457789A (en) Process for annealing steels
US3131097A (en) Heat treatment of bearing steel to eliminate retained austenite
Kayali et al. The development of fine structure superplasticity in cast ultrahigh carbon steels through thermal cycling
JPS5848613B2 (en) Heat treatment method for metal materials
Wilcox et al. Effect of precipitation on hot ductility of niobium and aluminium microalloyed steels
JPS59136421A (en) Preparation of rod steel and wire material having spheroidal structure
US2875109A (en) Method for the isothermal treatment of alloys after casting
Koppenaal et al. The effect of prior deformation on the strength and annealing of reverted austenite
US3922181A (en) Thermal treatment of steel
US3444008A (en) Controlled atmosphere processing
JPH01104718A (en) Manufacture of bar stock or wire rod for cold forging
Ptačinová et al. Influence of sub-zero treatment in liquid helium and tempering on the microstructure of tool steel Vanadis 6
US2764515A (en) Method of spheroidizing steel stock
RU2086667C1 (en) Method of treating aging austenite invar alloys
JPS6358889B2 (en)
KR100342673B1 (en) A method of manufacturing meduium carbon steel wire rods for spheroidization heat treatment
US2219320A (en) Heat treating process for white cast iron
US2538239A (en) Method for hardening cast iron
JPS6176612A (en) Manufacture of high strength spheroidal graphite cast iron
SU901302A1 (en) Method of thermal treatment of cast austenite steels
US2067896A (en) Surface hardened cast iron articles of manufacture