JPS58485B2 - Start-up control method for shaft furnace for continuous sintering and reduction of steel powder - Google Patents

Start-up control method for shaft furnace for continuous sintering and reduction of steel powder

Info

Publication number
JPS58485B2
JPS58485B2 JP52108358A JP10835877A JPS58485B2 JP S58485 B2 JPS58485 B2 JP S58485B2 JP 52108358 A JP52108358 A JP 52108358A JP 10835877 A JP10835877 A JP 10835877A JP S58485 B2 JPS58485 B2 JP S58485B2
Authority
JP
Japan
Prior art keywords
furnace
raw material
powder
sintering
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52108358A
Other languages
Japanese (ja)
Other versions
JPS5442316A (en
Inventor
伊藤俊治
梶永剛啓
桜田一男
小倉邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP52108358A priority Critical patent/JPS58485B2/en
Publication of JPS5442316A publication Critical patent/JPS5442316A/en
Publication of JPS58485B2 publication Critical patent/JPS58485B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 この発明は、銅粉の焼結還元用シャフト炉の始業制御法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a start-up control method for a shaft furnace for sintering and reducing copper powder.

鋼粉、就中合金鋼粉は、主としていわゆる水アトマイズ
法で調製されることが多いが、そのまゝでは粉末冶金法
による製品化には適用できず、従来ミルスケールなどの
粗還元に引続いて施された仕上げ還元工程に相当するよ
うな焼結還元を経てはじめて粉末冶金用材料とすること
ができる。
Steel powder, especially alloyed steel powder, is often prepared mainly by the so-called water atomization method, but it cannot be applied to commercialization by powder metallurgy as it is, and it is not possible to apply it as is to commercialization by powder metallurgy. A material for powder metallurgy can only be obtained through sintering reduction, which corresponds to the final reduction process performed in the process.

しかるにMn 、 Crなどの酸化性の強い元素を主体
に合金した鋼粉は、水アトマイズ法により粉末粒子表面
が容易に酸化されて難還元性の酸化被膜を形成するので
従来の仕上還元工程では、還元困難であった。
However, with steel powder alloyed mainly with strongly oxidizing elements such as Mn and Cr, the surface of the powder particles is easily oxidized by the water atomization method, forming a hard-to-reducible oxide film, so the conventional finishing reduction process cannot be used. It was difficult to reduce the amount.

従って該アトマイズ鋼粉に対してそれに見合うような焼
結還元を可能々らしめることの要請は今や焦眉の急務と
化しつゝある。
Therefore, the need to enable a commensurate sintering reduction of the atomized steel powder is now becoming an urgent need.

この点発明者は、さきに特願昭51−26708号にて
上記課題の打開に供すべく上記したよりな鋼粉に予め炭
素を内装せしめて、該鋼粉の予熱焼結を経て減圧雰囲気
下における高周波誘導加熱による焼結自己還元が、有利
に適合することの基本的開発成果を、その実施型態とし
てとくにたで形炉すなわちシャフト炉が適合することと
ともにすでに開示したところである。
In this regard, the inventor previously disclosed in Japanese Patent Application No. 51-26708 that in order to overcome the above problem, the above-mentioned stiff steel powder was preloaded with carbon, and the steel powder was preheated and sintered in a reduced pressure atmosphere. We have already disclosed the basic development results of the advantageous suitability of sintering self-reduction by high-frequency induction heating in the field of sintering, together with the particular suitability of vertical or shaft furnaces as an embodiment thereof.

この発明はかようなシャフト炉の実際操業に関するその
後の開発研究に際し、発明者らが新たに遭遇した幾多の
困難のうち、とくにシャフト炉での焼結還元における固
有な問題点、とくにシャフト炉の始業制御方法に関する
有効な解決を以下くわしくのべる所において提案するも
のである。
This invention focuses on the problems inherent in sinter reduction in shaft furnaces, among the many new difficulties encountered by the inventors during subsequent research and development regarding the actual operation of shaft furnaces. An effective solution for the start-of-work control method is proposed in detail below.

こゝにシャフト炉での焼結還元に供する原料鋼粉には、
たとえば、アトマイズ法で調製した炭素を予め合金した
鋼粉をそのまゝ用いるか又はその含有炭素量を原料鋼粉
の減圧(この発明ではいわゆる真空を含めて単に減圧と
いゝ、その度合を単に減圧度という)雰囲気下における
鋼粉粒子の還元反応に関して補うのに必要な量の炭素質
材料(たとえば黒鉛、木炭、コークスなど)の粉末との
混合物よりなるものを用いるが、何れにしても流動性の
ある粉状を呈する型態がむしろ処理取扱い上は便宜に活
用されるわけではあり、高周波誘導加熱による焼結還元
の反応工程とこれに進めるまでの間における予熱焼結工
程の進行との斉合の下でこの予熱に供する最初の切出し
装入原料鋼粉の支持を司るようにシャフト炉内にせシ上
がり式に設けられる先導ダミの降下に伴う予熱炉の炉心
管内における原料粉末の堆積準位低下を補うべき原料粉
末の供給を円滑、確実に行わせることが必要である。
The raw steel powder used for sintering reduction in the shaft furnace includes:
For example, a steel powder pre-alloyed with carbon prepared by the atomization method may be used as is, or the amount of carbon contained in the steel powder may be reduced by reducing the pressure of the raw material steel powder (in this invention, it is simply referred to as "reduced pressure" including so-called vacuum, and the degree of such reduction is simply referred to as "reduced pressure"). A mixture of carbonaceous materials (e.g., graphite, charcoal, coke, etc.) powder in an amount necessary to compensate for the reduction reaction of steel powder particles in an atmosphere (referred to as a degree of fluidity) is used. Rather, a powder-like form is used for convenience in processing and handling, and the synchronization between the reaction process of sinter reduction by high-frequency induction heating and the progress of the preheating sintering process before proceeding to this process is important. The accumulation level of the raw material powder in the core tube of the preheating furnace due to the lowering of the guide dummy installed in the shaft furnace in a raised manner to support the first cut and charged raw material steel powder for preheating. It is necessary to smoothly and reliably supply the raw material powder to compensate for the decrease.

この発明の具体的な目的は、実はかような初期予熱段階
における先導ダミの降下移動とこれに伴う原料粉末の補
給動作についての特別な工夫によってとくにこの種のシ
ャフト炉の円滑な始業制御につき有利な解決を実現する
ところにある。
The specific purpose of the present invention is to provide a system that is particularly advantageous for smooth start-up control of this type of shaft furnace by special devising of the descending movement of the leading dummy during the initial preheating stage and the accompanying replenishment of raw material powder. It is about realizing solutions.

さてかような予熱段階においては、はゞその温度域に相
当する1000℃近傍において、主としてFeO系酸化
物の還元反応が有利に進行することから、こゝに減圧雰
囲気下の予熱をシャフト炉の始業当初から施すことがの
ぞまれるがこの場合においても、予熱炉の炉底付近にお
いて適用される減圧度を原料粉末の切出し側におけるそ
れよりもやゝ弱めとすることによって予熱炉に装入され
た原料鋼粉の上下圧力差が生粉床の流下を促進するきっ
かけになるのを有利に防止できる。
In such a preheating stage, the reduction reaction of FeO-based oxides mainly proceeds advantageously in the vicinity of 1000°C, which corresponds to that temperature range, so preheating in a reduced pressure atmosphere is performed in a shaft furnace. It is preferable to apply this from the beginning of the operation, but even in this case, the degree of vacuum applied near the bottom of the preheating furnace is made slightly weaker than that on the cutting side of the raw material powder, so that the powder is charged into the preheating furnace. It is possible to advantageously prevent the vertical pressure difference of the raw steel powder from becoming a trigger for promoting the flowing down of the raw powder bed.

この発明の実施に供ちれるシャフト炉の一例を第1図に
示した。
An example of a shaft furnace used for carrying out the present invention is shown in FIG.

図中1は予熱炉、2は高周波炉を示し、これらは図のよ
うにその順のたて配列になる。
In the figure, 1 indicates a preheating furnace, and 2 indicates a high frequency furnace, and these are arranged vertically in that order as shown in the figure.

予熱炉1は、下向きにわずかなテーパーの末広がりにな
るを可とする耐熱鋼管製の炉心管3と、この炉心管3を
取囲む耐火物炉壁4との間で、Cガスその他燃料の燃焼
もしくは抵抗加熱による外部加熱を施す燃焼室もしくは
加熱室5を有し、6は鉄皮である。
The preheating furnace 1 is configured to burn C gas and other fuels between a core tube 3 made of a heat-resistant steel pipe that is slightly tapered downward and a refractory wall 4 that surrounds the core tube 3. Alternatively, it has a combustion chamber or a heating chamber 5 that performs external heating by resistance heating, and 6 is an iron skin.

なお本図はCガス炉の例であるがバーナおよび排ガス煙
道は図示を省略した。
Note that this figure shows an example of a C gas furnace, but the burner and exhaust gas flue are not shown.

高周波炉2は、誘導加熱コイル7を、予熱炉1の炉心管
3に摺動フランジ継手8を介して連結しだ一ターン二次
コイル9のまわりに配置し、この二次コイル9の内部に
アルミナ磁器よりなるを可とする絶縁内筒10を内装し
てなる。
The high frequency furnace 2 has an induction heating coil 7 connected to the furnace core tube 3 of the preheating furnace 1 via a sliding flange joint 8, and arranged around a one-turn secondary coil 9. An insulating inner cylinder 10 made of alumina porcelain is installed inside.

予熱炉1の頂部に、切出し装置11を介して二段式の原
料ホッパ12を配置する。
A two-stage raw material hopper 12 is placed at the top of the preheating furnace 1 via a cutting device 11 .

原料ホッパ12には、原料鋼粉を貯え、これを図示例で
はスライドフィーダ13の定容積まず内に導き、炉心管
3内における原料鋼粉の装入レベルを、適時に検出する
昇降式ツイーン14のストロークに応じてスライドフィ
ーダ13を動作させることによって原料鋼粉を間けつ的
に炉心管3内に切出し装入する。
The raw material hopper 12 stores raw material steel powder, and in the illustrated example, it is guided into a fixed volume of a slide feeder 13, and an elevating twin 14 detects the charging level of the raw material steel powder in the furnace core tube 3 in a timely manner. By operating the slide feeder 13 according to the stroke of the feeder, the raw steel powder is intermittently cut and charged into the furnace core tube 3.

炉心管3内には、この原料鋼粉の最初の装入を予熱炉1
内において堆積させるように、せり上がり式の先導ダミ
15を設ける。
The first charging of this raw steel powder is carried out in the preheating furnace 1 into the furnace core tube 3.
A rising type leading dummy 15 is provided to allow the deposition inside.

先導ダミ15は、炉心管3の下端近くで比較的緩くはま
り合うダミヘッド16と、これに重ねて固定したスチー
ルウールパツキン17を、長い昇降ステム18上に保持
させてなる。
The leading dummy 15 is made up of a dummy head 16 that fits relatively loosely near the lower end of the furnace core tube 3, and a steel wool packing 17 superimposed and fixed on the dummy head 16, which is held on a long elevating stem 18.

昇降ステム18は図示を略したが、たとえばロープ仕掛
けにより、たとえば数mm/minの微速での降下を制
御できるようにする。
Although the elevating stem 18 is not shown, it is possible to control the lowering at a slow speed of several mm/min, for example, by means of a rope.

なお図中19は、この発明に従って得られる焼結還元ケ
ーキ(以下■ケーキという)の重量を、その生成に応じ
て先導ダミ15から肩代り支持するピンチロール、20
は1ケーキの粗砕カッタ、21は、放出固定シュート、
22はパケット、23は取出口扉、24は■ケーキ冷却
室である。
In the figure, reference numeral 19 denotes a pinch roll 20 that supports the weight of the sintered reduction cake obtained according to the present invention (hereinafter referred to as ``cake'') from the leading dummy 15 in accordance with its formation.
1 is a cake coarse crushing cutter, 21 is a fixed discharge chute,
22 is a packet, 23 is an outlet door, and 24 is a cake cooling chamber.

この発明に従うシャフト炉の操業は、図示した先導ダミ
15の上昇位置において、先ずスライドフィーダ13を
作動させて、原料ホッパ12内の原料鋼粉を、予熱炉1
の炉心管3内に切出し、間けつ的に装入することの第1
着手にはじまり、このスライドフィーダ13の復元行程
で、ツイーン14が空ストロークを行うことによりスラ
イドフィーダ13の切出し装入動作を反覆させ、これに
より原料鋼粉が炉心管3内で先導ダミ15の上端部のス
チールウール17上に充てんされて柱状堆積体が形成さ
れると、ツイーン14がストローク途中でこれを検出し
、その結果一旦スライドフィーダ13が停止する一方で
この間に予熱炉1内の燃焼室にガス着火が行われ、その
外部加熱によって、先導ダミ15上に保持された柱状堆
積物は、その外周から半径方向内向きの焼結反応が進行
し、これによって柱状堆積物には筒殻状の焼結域が肥厚
化するような成長がおこる。
In the operation of the shaft furnace according to the present invention, the slide feeder 13 is first operated in the illustrated raised position of the leading dummy 15, and the raw steel powder in the raw material hopper 12 is transferred to the preheating furnace.
The first step is to cut out the material into the furnace core tube 3 and charge it intermittently.
Starting from the start, during the restoring process of the slide feeder 13, the tween 14 performs an empty stroke to repeat the cutting and charging operation of the slide feeder 13, and as a result, the raw steel powder is transferred to the upper end of the leading dummy 15 in the core tube 3. When the steel wool 17 is filled and a columnar deposit is formed, the tween 14 detects this during the stroke, and as a result, the slide feeder 13 temporarily stops while the combustion chamber in the preheating furnace 1 Gas ignition is performed, and due to the external heating, the columnar deposit held on the leading dummy 15 undergoes a sintering reaction radially inward from its outer periphery, and as a result, the columnar deposit has a cylindrical shell shape. Growth occurs such that the sintered zone becomes thicker.

この予熱温度は一般に780〜1200℃の範囲で、原
料鋼粉の成分組成や、装置の規模その他の条件によって
適切に選ばれ、上記の筒殻状の焼結域力唯己保形と、そ
の内部および上部へさらに堆積される原料鋼粉の自重支
持とを達して崩かいによる生粉流下の心配がなくなるま
でに必要な時間焼結が継続される。
This preheating temperature is generally in the range of 780 to 1200°C, and is appropriately selected depending on the composition of the raw steel powder, the scale of the equipment, and other conditions. Sintering is continued for a period of time necessary to support the weight of the raw material steel powder further deposited inside and on top, and to eliminate the fear of raw powder flowing down due to crumbling.

このとき、柱状堆積体の外径を160mmに設定した試
験によると、筒殻状の焼結域の肉厚がはゞ30mm従っ
て内部の未焼結部外径100mm程度で降下開始が十分
な状態が得られた。
At this time, according to a test in which the outer diameter of the columnar deposit was set to 160 mm, the wall thickness of the cylindrical shell-shaped sintered region was 30 mm.Therefore, the inner unsintered part had a sufficient outer diameter of about 100 mm to start descending. was gotten.

この焼結域を含む柱状堆積体についてとくにPケーキと
よぶことにする。
The columnar deposit containing this sintered region will be particularly referred to as a P cake.

上記のPケーキの焼上りをまって、一旦予熱炉1の炉温
を予熱温度が1100℃に設定されたとき500℃程度
まで降温させる。
Waiting for the above P cake to be baked, the temperature of the preheating furnace 1 is lowered to about 500°C when the preheating temperature is set at 1100°C.

との降温は、耐熱鋼の炉心管3に生じる熱収縮が、Pケ
ーキの半径方向緊縮、締め固めをもたらして、次に予熱
炉を再昇温した際に、炉心管3のみが先行膨張するにと
もない、Pケーキと炉心管3の内壁との間に、僅少の間
隙を生じて、Pケーキの円滑な芯降下が準備されるとこ
ろとなる。
As the temperature decreases, the thermal contraction that occurs in the heat-resistant steel furnace tube 3 causes radial tightening and compaction of the P cake, and when the preheating furnace is then heated again, only the furnace core tube 3 expands in advance. As a result, a slight gap is created between the P cake and the inner wall of the furnace core tube 3, and the smooth core descent of the P cake is prepared.

かようにして降下を開始したPケーキは、引続き高周波
誘導加熱されるが、この際以下にのべるようにして高周
波入力の漸増下にPケーキを加熱昇温することがまた必
要である。
The P cake that has started to fall in this way is subsequently heated by high frequency induction, but at this time it is also necessary to heat the P cake under gradual increases in the high frequency input as described below.

すなわち、上記降温ののち、所定の予熱温度である11
00℃まで予熱炉温を再昇温させ、筒穀状焼結域を生長
させながら先導ダミ15のダミヘッド16を高周波炉2
の加熱帯の直下まで遂次降下させ、この間に後続して装
入される原料鋼粉に予熱を施し、筒状焼結域を遂次だて
方向に成長させる。
That is, after the above temperature drop, the preheating temperature is 11
The preheating furnace temperature is raised again to 00°C, and the dummy head 16 of the leading dummy 15 is heated in the high frequency furnace 2 while growing the cylindrical grain sintered area.
During this time, the raw material steel powder charged subsequently is preheated, and a cylindrical sintered region is successively grown in the vertical direction.

なお、原料粉末の降下中においても、予熱管内原料粉末
の堆積準位を定位置に保持する方法としては、タイマー
により間けつ的に昇降を繰返すツイーン−14が、その
下端を原料粉末の堆積準位に接する以前に、図示しない
下限位置設定のリミットスイッチを押し「入」とするこ
とによりスライドフィーダー13へ信号が発せられて、
追加粉末が投入される方式により行なわれる。
In addition, as a method for maintaining the deposition level of the raw material powder in the preheating tube at a fixed position even while the raw material powder is descending, Tween-14, which is repeatedly raised and lowered intermittently by a timer, keeps its lower end at the deposition level of the raw material powder. Before contacting the slide feeder 13, a signal is sent to the slide feeder 13 by pressing the limit switch (not shown) for setting the lower limit position and turning it on.
This is done by adding additional powder.

その後、再びツイーン−14が降下し、もし再び下限リ
ミットスイッチを「入」とするならば、更に粉末が追加
投入され、また、もし下限リミットスイッチを「入」と
する以前にツイーン−14の下端が原料粉末の堆積準位
に接したならば、ツイーン−14はタイマーによるタイ
ムアツプ後、上昇して上限位置に停止し、粉末の追加投
入は行なわれない。
After that, the Tween-14 descends again, and if the lower limit switch is turned on again, more powder is added, and if the lower limit switch is turned on again, the lower limit of the Tween-14 When the Tween-14 comes into contact with the deposition level of the raw material powder, the Tween-14 rises and stops at the upper limit position after the timer expires, and no additional powder is added.

以上の方法により原料粉末の堆積準位は、定位置に維持
される。
By the above method, the deposition level of the raw material powder is maintained at a fixed position.

かくしてシャフト炉の内部で下向きに順次に伸長するP
ケーキの内部には、高周波炉2における一次コイル7の
上端部を底点とした下向きに凸の放物面状の焼結−未焼
結界面、すなわち焼結前線が形成される。
Thus, P sequentially extends downward inside the shaft furnace.
Inside the cake, a downwardly convex parabolic sintered-unsintered interface, ie, a sintering front, is formed with the bottom point at the upper end of the primary coil 7 in the high-frequency furnace 2.

この焼結前線が、高周波炉2の加熱帯直上に到達したの
ちに、その高周波入力を漸増しつゝPケーキを前述■ケ
ーキに変成させる。
After this sintering front reaches just above the heating zone of the high frequency furnace 2, the high frequency input is gradually increased to transform the P cake into the aforementioned cake.

この高周波入力の漸増は、上部の設例すなわち外径16
0mmの■ケーキに対してはゞ2KWとびの10分間隔
で、はソ1時間強を費して検数KWに達しさせるような
ステップ方式により好成績が得られた。
This gradual increase in high-frequency input is based on the example above, i.e. the outer diameter 16
For a cake of 0 mm, good results were obtained using a step method in which the number of kilowatts was reached at 10 minute intervals in 2KW increments, and it took a little more than one hour.

その後は、予熱炉1内で生成するPケーキを、遂次に進
めて■ケーキに変成させ、その下端がピンチロール19
のベルに達することは先導ダミ15のステム18により
たとえば検出接点を動作させるようにして容易に検知さ
れ、これによって先導ダミ15上の負荷を、ピンチロー
ル19に肩代り支持させることができ、そこで引続き先
導ダミ15を避譲位置まで急速降下させ、この間にもう
一つの検出接点を動作させるようにして、これによりシ
ュート2を、ピンチロール19およびカッタ20の直下
位置へ、それまでの避譲位置から進出させ、これと同時
に適時反覆駆動を開始するようにしたカッタ20による
粗砕■ケーキを、次次にパケット22内に導くことがで
きる。
After that, the P cake generated in the preheating furnace 1 is successively transformed into a
reaching the bell is easily detected by the stem 18 of the leading dummy 15, for example by actuating a detection contact, thereby allowing the load on the leading dummy 15 to be supported by the pinch roll 19, where Subsequently, the leading dummy 15 is rapidly lowered to the evacuation position, and during this time another detection contact is operated, thereby moving the chute 2 to a position directly below the pinch roll 19 and cutter 20, from the previous evacuation position. The coarsely crushed cakes can be guided into the packet 22 one after another by the cutter 20, which is advanced from the center and at the same time starts repeated driving at an appropriate time.

説明の煩雑をさけて言及をしなかったが、予熱炉1内の
比較的低温域で 2MO+C→2M十002 の反応が主に、そして予熱炉1の高温域から高周波炉2
の加熱帯にかけては、 MO+C→M+CO の反応が、原料鋼粉の含有炭素又は、これに加えた炭素
質材料を還元剤として進行する。
Although I did not mention it to avoid complicating the explanation, the reaction of 2MO+C→2M1002 mainly occurs in the relatively low temperature area of the preheating furnace 1, and from the high temperature area of the preheating furnace 1 to the high frequency furnace 2.
In the heating zone, the reaction MO+C→M+CO proceeds using the carbon contained in the raw steel powder or the carbonaceous material added thereto as a reducing agent.

かような発生ガスを排除して上記の還元反応を促進する
ために、シャフト炉の各部に真空系の配管を行い炉内を
常時に排気することが必要である。
In order to eliminate such generated gas and promote the above-mentioned reduction reaction, it is necessary to provide vacuum system piping to each part of the shaft furnace to constantly exhaust the inside of the furnace.

すなわち、図示例のようにシャフト炉の炉底すに弁Aを
介してたとえばメカニカルブースタMB1とロータリ真
空ポンプRP、を配管し、この弁Aとメカニカルブース
タMB1との間を切出し装置11を内蔵した炉頂tに配
管し、この炉頂tと炉底すとの間に弁Bを設け、そして
炉頂tにはさらに弁りを介してたとえばメカニカルブー
スタMB2とロータリ真空ポンプRP2を配管するとと
もにメカニカルブースタMB2と弁りとの間を、弁Eを
介して炉底すにも配管する。
That is, as shown in the illustrated example, for example, a mechanical booster MB1 and a rotary vacuum pump RP are connected through a valve A at the bottom of a shaft furnace, and a cutting device 11 is built in between the valve A and the mechanical booster MB1. A valve B is provided between the furnace top t and the furnace bottom, and a mechanical booster MB2 and a rotary vacuum pump RP2 are further connected to the furnace top t via the valve valve. Piping is connected between the booster MB2 and the valve via the valve E to the furnace bottom.

この真空系は、上述したシャフト炉のスタートの際およ
び定常運転の際に、次のような弁操作を行う。
This vacuum system performs the following valve operations at the time of starting and steady operation of the above-mentioned shaft furnace.

こゝにスタート運転の際に弁Cを半開にすることにより
炉底すまたは摺動フランジ継手8における中引き部Mか
ら、予熱炉1の炉心管3の下端附近における減圧度を、
炉頂tでのそれよりもわずかに弱目にすることによって
、炉心管3の上下圧力差がときとしてPケーキの生成前
に原料鋼粉の柱状堆積を吹き破って生粉の流下を生じる
原因となるのを完封するためである。
By opening the valve C halfway during the start operation, the degree of depressurization near the lower end of the core tube 3 of the preheating furnace 1 can be determined from the hollow part M in the furnace bottom or the sliding flange joint 8.
By making the pressure slightly weaker than that at the top of the furnace t, the difference in pressure between the upper and lower sides of the furnace core tube 3 can sometimes cause the columnar pile of raw steel powder to be blown away before the P cake is formed, causing the raw powder to flow down. This is to complete the situation.

そして定常運転1において炉底すおよび炉頂tに対する
真空系統を独立させ、同2においてはさらに炉底すにお
ける減圧度を強化するのは炉底すで、降温■ケーキの表
面における2CO→C+C02の反応を通じたCO2に
よる■ケーキ表面層の再酸化が生じるおそれを回避する
ためである。
In steady operation 1, the vacuum systems for the furnace bottom and furnace top T are made independent, and in steady operation 2, it is the furnace bottom that further strengthens the degree of depressurization at the furnace bottom. This is to avoid the risk of re-oxidation of the cake surface layer due to CO2 during the reaction.

かくして確実なPおよび1ケーキの連続的な生成を有利
に導くことができるわけであるが、予熱炉1内では、主
としてFeOの先行還元が、また高周波炉加熱帯の12
00〜1400℃域では主としてMnO,Cr2O3な
どの後続還元がそれぞれ有利に進行し、かような還元反
応を継続させるためには、■ケーキひいてはPケーキの
降下速度の選択が重要であり、その決定要因は、発明者
らのあまた実験と試行錯誤の反覆の結果を綜合して、前
述焼結前線が、高周波炉の加熱帯の直上においてすでに
消失しているような降下速度を選ぶことの肝要さがだし
かめられた。
In this way, it is possible to advantageously lead to reliable continuous production of P and 1 cake, but in the preheating furnace 1, the preliminary reduction of FeO is mainly carried out, and also in the high frequency furnace heating zone 12.
In the 00 to 1400°C range, the subsequent reductions of MnO, Cr2O3, etc. proceed favorably, and in order to continue such reduction reactions, it is important to select the rate of descent of the cake and ultimately the P cake. The reason for this is the importance of selecting a rate of descent such that the sintering front has already disappeared just above the heating zone of the high frequency furnace, based on the results of the inventors' numerous experiments and repeated trial and error. I was scowled.

それというのは高周波加熱帯に焼結前線が侵入したとき
、未焼結域に対する焼結反応のために高周波コイルのパ
ワーがくわれて還元反応が不完全となるからである。
This is because when the sintering front enters the high-frequency heating zone, the power of the high-frequency coil is lost due to the sintering reaction in the unsintered region, making the reduction reaction incomplete.

上述のようにしてこの発明によれば、鋼粉の能率的な焼
結還元に供されるシャフト炉への原料鋼粉の最初の装入
に際してとくに問題となるシャフト炉固有の問題点とし
ての原料粉末の先導ダミの制御による支持の下での焼結
および還元反応を有利に導き、しかも簡便確実な炉操業
が実現できるのである。
As described above, according to the present invention, the raw material as a problem peculiar to a shaft furnace, which is a particular problem when initially charging raw steel powder into a shaft furnace for efficient sintering reduction of steel powder. Sintering and reduction reactions can be advantageously carried out under the control of the leading clumps of the powder, and moreover, simple and reliable furnace operation can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施能様を示すシャフト炉の縦断面
図である。 1・・・・・・予熱炉、2・・・・・・高周波炉、3・
・・・・・炉心管、15・・・・・・先導ダミ。
FIG. 1 is a longitudinal sectional view of a shaft furnace showing how the present invention can be implemented. 1...Preheating furnace, 2...High frequency furnace, 3.
... Core tube, 15 ... Leading dummy.

Claims (1)

【特許請求の範囲】[Claims] 1 予熱炉及び高周波炉の順次たて配列になるシャフト
炉の炉底から、高周波炉を通り抜けて予熱炉の炉心管内
に達する間に昇降し、該炉心管の底端でその上端より逐
次に切出し装入される炭素を内装せる原料粉末を、予熱
炉心管の内周に関して封止する先導ダミを予熱炉心管の
外部加熱による装入原料粉末の減圧雰囲気における筒穀
状焼結域の肥厚化の進行に応じて降下させる段階と、と
の筒穀状焼結域内における未焼結粉末界面のはゞ放物面
状をなす焼結前線あ直下における焼結域に対する減圧下
の高周波誘導加熱による焼結粒子の個個に生じる還元反
応の進行に応じて先導ダミを継続的に降下させる段階と
を、両段階を通じ、先導ダミの降下による予熱炉の炉心
管内における原料粉末の堆積準位低下を検出しこれを一
定準位に保持する原料粉末の補充切出し装入を、該準位
の低下に応じて逐次に行う工程に組合わせたことを特徴
とする銅粉の連続焼結還元用シャフト炉の始動制御法。
1. From the bottom of the shaft furnace in which the preheating furnace and high frequency furnace are arranged vertically, the material is raised and lowered while passing through the high frequency furnace and reaching the core tube of the preheating furnace, and is sequentially cut out from the top end at the bottom end of the core tube. A guide dummy sealing the raw material powder to be charged with carbon on the inner periphery of the preheating furnace tube is used to prevent thickening of the cylindrical sintered region of the charged raw material powder in a reduced pressure atmosphere by external heating of the preheating furnace tube. The sintering process is performed by high-frequency induction heating under reduced pressure on the sintering area directly below the sintering front, which has a parabolic shape at the interface of the unsintered powder in the cylindrical sintered area. A step in which the leading dummy is continuously lowered in accordance with the progress of the reduction reaction occurring in individual particles, and a drop in the deposition level of the raw material powder in the core tube of the preheating furnace due to the lowering of the leading dummy is detected through both stages. A shaft furnace for continuous sintering and reduction of copper powder, characterized in that the replenishment and cutting and charging of raw material powder to maintain the raw material powder at a constant level is combined with a process that is performed sequentially according to the decrease in the level. Starting control method.
JP52108358A 1977-09-10 1977-09-10 Start-up control method for shaft furnace for continuous sintering and reduction of steel powder Expired JPS58485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52108358A JPS58485B2 (en) 1977-09-10 1977-09-10 Start-up control method for shaft furnace for continuous sintering and reduction of steel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52108358A JPS58485B2 (en) 1977-09-10 1977-09-10 Start-up control method for shaft furnace for continuous sintering and reduction of steel powder

Publications (2)

Publication Number Publication Date
JPS5442316A JPS5442316A (en) 1979-04-04
JPS58485B2 true JPS58485B2 (en) 1983-01-06

Family

ID=14482692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52108358A Expired JPS58485B2 (en) 1977-09-10 1977-09-10 Start-up control method for shaft furnace for continuous sintering and reduction of steel powder

Country Status (1)

Country Link
JP (1) JPS58485B2 (en)

Also Published As

Publication number Publication date
JPS5442316A (en) 1979-04-04

Similar Documents

Publication Publication Date Title
US6152983A (en) Method of producing reduced iron pellets
KR100392801B1 (en) Method for operating moving hearth reducing furnace
KR100660659B1 (en) Method for producing metallic iron
RU2001115052A (en) METHOD FOR PRODUCING METAL IRON AND DEVICE FOR ITS IMPLEMENTATION
KR20010110174A (en) Method of and apparatus for manufacturing the metal iron
JPS58485B2 (en) Start-up control method for shaft furnace for continuous sintering and reduction of steel powder
US4223874A (en) Shaft furnace for producing low-oxygen iron-base metallic powder for powder metallurgy
JP2003028575A (en) Shifting floor type heating furnace and method for manufacturing reduced metal briquette
JPS589807B2 (en) Sintering reduction method of steel powder using shaft furnace
RU2215050C1 (en) Method of refining ore raw material and device for realization of this method
JP2003532796A (en) Metal recovery method and apparatus
JPS58484B2 (en) Start-up control method and device for shaft furnace for continuous sintering and reduction of steel powder
EP0375245B1 (en) Method and apparatus for making highly oxidized lead powder
US20020011132A1 (en) Process to preheat and carburate directly reduced iron (DRI) to be fed to an electric arc furnace (EAF)
RU2465361C1 (en) Aluminothermic method for obtaining metals, and melting furnace for its implementation
JP2000034526A (en) Production of reduced iron pellet
US3096174A (en) Methods of reducing a metal oxide by a carbonaceous material at sub-atmospheric pressures
Yan Effects of Physical, Chemical, and Kinetic Factors on Ceramic Sintering.(Retroactive Coverage)
KR101714995B1 (en) Method and facility for producing reduced iron
US2596877A (en) Process for producing sponge metal
JP2000144225A (en) Operation of movable hearth type reduction furnace
SU1691412A1 (en) Method of roasting sulfur containing ores and concentrates
JPH033732B2 (en)
JPH0633153A (en) Production of sintered ore
CN113739562A (en) Self-propagating method high-temperature high-pressure silicon nitride powder preparation device