JPS5848302B2 - Control method for outer diameter machining of workpiece - Google Patents

Control method for outer diameter machining of workpiece

Info

Publication number
JPS5848302B2
JPS5848302B2 JP51065949A JP6594976A JPS5848302B2 JP S5848302 B2 JPS5848302 B2 JP S5848302B2 JP 51065949 A JP51065949 A JP 51065949A JP 6594976 A JP6594976 A JP 6594976A JP S5848302 B2 JPS5848302 B2 JP S5848302B2
Authority
JP
Japan
Prior art keywords
workpiece
shoe
outer diameter
detector
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51065949A
Other languages
Japanese (ja)
Other versions
JPS52148890A (en
Inventor
建彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP51065949A priority Critical patent/JPS5848302B2/en
Publication of JPS52148890A publication Critical patent/JPS52148890A/en
Publication of JPS5848302B2 publication Critical patent/JPS5848302B2/en
Expired legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

【発明の詳細な説明】 この発明は、工作物の外径加工寸法制御方法に関する。[Detailed description of the invention] The present invention relates to a method for controlling the outer diameter machining size of a workpiece.

円形状工作物の加工は、一般に、第1図乃至第3図に示
す如く、工作物1を2ヶのシュー2,3上に乗せ、背面
をパッキングプレート4に押しつけ、このパッキングプ
レート4を適当な手段で回転させ、これにより工作物1
を回転させ、外径面を研削砥石5で研削加工する方法が
採用されている。
Generally, when machining a circular workpiece, as shown in FIGS. 1 to 3, the workpiece 1 is placed on two shoes 2 and 3, the back surface is pressed against the packing plate 4, and the packing plate 4 is placed in an appropriate position. The workpiece 1 is rotated by a suitable means.
A method is adopted in which the outer diameter surface is ground using a grinding wheel 5.

そして、この場合、シュー2,3は、一点を中心に或る
角度の範囲で回転できるフローテイングシューが多く使
われている。
In this case, the shoes 2 and 3 are often floating shoes that can rotate within a certain angle range around one point.

その理由は、シュー2,3を共に完全に鵬定して工作物
1を研削加工すると、工作物1の外周面の加工後の真田
寒が良くないことが経験的に知られているためである。
The reason for this is that it is known from experience that if the workpiece 1 is ground with both shoes 2 and 3 completely set, the Sanada cold after machining of the outer peripheral surface of the workpiece 1 is not good. be.

現場的に多く実用化されている方式は、研削砥石5に近
い方のシュー2は完全固定方式とし、研削砥石5から遠
い方のシュー3をフローテイング方式としたもので、こ
の場合、フローテイングシュ−3の形状は2種類ある。
The method that is most commonly put into practical use in the field is to use a completely fixed shoe 2, which is closer to the grinding wheel 5, and a floating shoe 3, which is farther from the grinding wheel 5. There are two types of shoe 3 shapes.

第1の方式は、第4図に示す如く、■形状のフローテイ
ングシューで、シュー3は2点で工作物1と接触する形
式である。
The first method, as shown in FIG. 4, is a floating shoe in the shape of a square, in which the shoe 3 contacts the workpiece 1 at two points.

第2の方式は、第5図に示す如く、フローテイングシュ
−3の曲率を工作物1の曲率に合せておく形式である。
The second method is to match the curvature of the floating shoe 3 to the curvature of the workpiece 1, as shown in FIG.

そして、第4図或は第5図の状態で工作物1を加工し、
工作物1のIAlff面の寸法を揃える必要がある場合
は、工作物1の寸法を加工中別に設置する電気マイクロ
メータ、その他適当な検出器で監視し、その寸法が所定
値に達した時研削砥石5の切込を停止し、研削砥石5を
後退させる。
Then, process the workpiece 1 in the state shown in FIG. 4 or 5,
If it is necessary to align the dimensions of the IAlff surface of workpiece 1, monitor the dimensions of workpiece 1 with an electric micrometer or other suitable detector installed separately during machining, and grind when the dimensions reach a predetermined value. The cutting of the grindstone 5 is stopped and the grinding wheel 5 is moved backward.

この場合、検出器の位置は、工作物1の下方6か、工作
物の左方7か、或は工作物1の上方8及び下方6に直接
当てて直径を測定する方法が採られている。
In this case, the diameter is measured by placing the detector at the bottom 6 of the workpiece 1, the left side 7 of the workpiece 1, or directly applying it to the top 8 and bottom 6 of the workpiece 1. .

ところが、この方法には次の如き欠点がある。However, this method has the following drawbacks.

即ち、第1は、工作物1の表面に検出器6,7又は8に
よる接触痕が残る。
That is, first, contact traces by the detectors 6, 7, or 8 are left on the surface of the workpiece 1.

第2に、検出器6,γ又は8の先端が摩耗するから多数
の工作物を加工すると検出器6,7又は8の寸法信号は
、触針部6,7又は8が摩耗しているときの寸法信号と
異ってくるので補正が必要となる。
Second, the tip of the detector 6, γ or 8 will wear out, so when machining a large number of workpieces, the dimensional signal of the detector 6, 7 or 8 will change when the stylus 6, 7 or 8 is worn. Since it differs from the dimension signal of , correction is required.

第3に、検出器6,γ又は8は、工作物1のすぐ近傍な
ので、研削加工によって生じる研摩カスや工作物1にか
けられるクーラントが検出器6,7又は8の触針部と固
定部との間に入り込み、触針部の機械的動きを悪くし、
更に電気信号にノイズを発生させる要因となる。
Thirdly, since the detector 6, γ or 8 is in the immediate vicinity of the workpiece 1, the abrasive scum generated by the grinding process or the coolant applied to the workpiece 1 may be transferred to the stylus and fixed part of the detector 6, 7 or 8. The mechanical movement of the stylus may be impaired.
Furthermore, it becomes a factor that generates noise in electrical signals.

第4に、検出器6,7又は8は工作物1のすぐ近傍なの
で、工作物1をシュー2,3上にローデイングしたり、
或は工作物1をシュー2,3上からアンローデイングす
る時、工作物1が検出器6,7又は8に衝撃的に当り、
触針部を痛め屈曲する事故が起ることがある。
Fourthly, since the detectors 6, 7 or 8 are in the immediate vicinity of the workpiece 1, loading the workpiece 1 onto the shoes 2, 3 and
Or when unloading the workpiece 1 from above the shoes 2, 3, the workpiece 1 impacts the detector 6, 7 or 8,
Accidents may occur where the stylus is damaged or bent.

尚、検出器6,7又は8として電気マイクロメータの代
りに非接触型の検出器を用いれば、第1から第3の欠点
は解消するが、実際上は、研摩カスやクーラントのため
使用することが出来ない。
Incidentally, if a non-contact type detector is used instead of the electric micrometer as the detector 6, 7 or 8, the first to third disadvantages can be solved, but in reality, it is used for polishing scum and coolant. I can't do that.

この発明は、上記従来の欠点に鑑み之れを開発したもの
で、特にフローテイングシュ一方式の工作物の外径加工
の場合、工作物の外径の曲率の変化にシューが追随する
現象に着目して、フローテイングシューの微小回転変化
量Xを検出し、これを工作物の外径寸法変化量Yに転換
し、工作物の外径加工寸法を制御する方法を提供せんと
するものである。
This invention was developed in view of the above-mentioned drawbacks of the conventional methods.Especially in the case of outer diameter machining of a workpiece using a floating shoe type, the shoe follows the change in the curvature of the outer diameter of the workpiece. The present invention aims to provide a method for controlling the machining dimensions of the outer diameter of a workpiece by detecting the minute rotational change amount X of the floating shoe and converting this into the change amount Y of the outer diameter dimension of the workpiece. be.

以下この発明の構成を第6図に示す実施例に従って説明
すると次の通りである。
The structure of the present invention will be explained below according to the embodiment shown in FIG.

第6図において、2は固定シュー 3は03を中心とし
て回転しうるフローテイング・シューとする。
In FIG. 6, 2 is a fixed shoe, and 3 is a floating shoe that can rotate around 03.

かつシュー3はv型状で2点が工作物1にあたるものと
する。
It is also assumed that the shoe 3 is v-shaped and two points are in contact with the workpiece 1.

工作物1の中心01をとおる直交座標をXX軸、YY軸
と便宜的に名づける。
The orthogonal coordinates passing through the center 01 of the workpiece 1 are conveniently named the XX axis and the YY axis.

工作物1は次の3つの力で常にシュー2と3に押しつけ
られる。
Workpiece 1 is constantly pressed against shoes 2 and 3 by the following three forces:

即ちYY軸が地球の重心にむかう成分があるときは工作
物1の重量によって押しつける。
That is, when there is a component in which the YY axis is directed toward the center of gravity of the earth, it is pressed by the weight of the workpiece 1.

第3図に示すように工作物1の中心01はパッキングプ
レート4の中心04に対し偏心するようにシュー2,3
を配置tるので、パッキングプレート4が工作物1をシ
ュー2,3に押しつける力によって押しつける。
As shown in FIG. 3, the center 01 of the workpiece 1 is eccentric to the center 04 of the packing plate 4.
are arranged so that the packing plate 4 presses the workpiece 1 against the shoes 2 and 3 with a pressing force.

又は工作物1をパッキングプレート4に押しつける手段
として磁気を用いかつその磁気の磁束がシュー2,3に
も流れる構造の場合、工作物1とシュー2,3の間に働
く磁気吸引力によって押しつける。
Alternatively, in the case of a structure in which magnetism is used as means for pressing the workpiece 1 against the packing plate 4 and the magnetic flux flows also to the shoes 2 and 3, the workpiece 1 is pressed by the magnetic attraction force acting between the shoes 2 and 3.

従って工作物1は常にシュー2,3に押しつけられ工作
物1の外周半径rがrとなり工作物1が1′の位置にく
ると3のフローテイング・シュ**一は03を中心に2
点が工作物1ないし1′にあたるように回転していく。
Therefore, the workpiece 1 is always pressed against the shoes 2 and 3, and when the outer radius r of the workpiece 1 becomes r and the workpiece 1 comes to the position 1', the floating shoes **1 of 3 are 2 with 03 as the center.
It rotates so that the point hits workpiece 1 or 1'.

そして一方で別に設置された検出器9をシュー3に尚で
てシュー3の回転変化を測る。
On the other hand, a separately installed detector 9 is exposed to the shoe 3 to measure rotational changes of the shoe 3.

即ち、工作物1の外周半径rがr′となって工作物1が
1′の位置となり1′の中心が0、となった結果、シュ
ー3が03に対し角変α傾いて、3になったときαはど
んな値になるか算出してみる。
That is, the outer radius r of the workpiece 1 becomes r', the workpiece 1 is at the position 1', and the center of 1' is 0. As a result, the shoe 3 is tilted by an angle α relative to 03, and the shoe 3 is tilted to 3. Let's calculate what value α will be when this happens.

ここでは研削砥石5は工作物1の右方から削るものとし
てみる。
Here, it is assumed that the grinding wheel 5 grinds the workpiece 1 from the right side.

この場合、工作物1に対するシュー2,3の位置は実際
にはさまざまであるが、ここではシュー2は01に対し
XX軸から07下方とし、一方シュー3は、0,に対し
XX軸から角寒θ;下方とする。
In this case, the positions of shoes 2 and 3 with respect to workpiece 1 actually vary, but here shoe 2 is located 07 below from the XX axis relative to 01, while shoe 3 is located at an angle from the XX axis relative to 0. Cold θ: Lower.

θ,は30°〜600θ2は0°〜45°程度が実用的
に使われる。
θ, is 30° to 600°, and θ2 is approximately 0° to 45°, which is practically used.

一例としてθ1二45°固定とし一方θ2はげ冫 θ2
−0° (0) θ2=15°e) θ2=30°
(ニ) θ2−45°の4種について考えてみる。
As an example, let θ1 be fixed at 45°, and on the other hand, if θ2 is bald, θ2
-0° (0) θ2=15°e) θ2=30°
(d) Let's consider four types of θ2-45°.

第6図は上記f刃即ちθ2=30°の場合である。FIG. 6 shows the case of the f-blade, that is, θ2=30°.

又シュー3の■形状のV角度は180°以下であればい
くらでも良いが、便宜的によく用いられる150°を採
用する。
Further, the V angle of the ■-shape of the shoe 3 may be any value as long as it is 180 degrees or less, but 150 degrees, which is often used, is used for convenience.

0103をむすぶ線の長さをr+L O103をむすぶ線の長さをr+L とし0,01の距離をlとする。The length of the line connecting 0103 is r + L The length of the line connecting O103 is r + L Let the distance between 0 and 01 be l.

そして0.03とXX軸のなす角をβとすると、機伺学
的に次の4つの式が成立する。
If the angle between 0.03 and the XX axis is β, the following four formulas hold mechanically.

となる。becomes.

L=10Mの場合について工作物1の外周半径r二50
7ta、25顛、5嗣の3種につきαを算出し検出器9
で検出される変位量をしらべると次のようになる。
For the case of L=10M, the outer radius of workpiece 1 is r250
Calculate α for the three types of 7ta, 25th grade, and 5th grade and use detector 9
The amount of displacement detected by is as follows.

まず検出器9の触針先端のシュー3との接触点を04と
なずけて、第6図に示すごとく、検出器9を0,03に
平行にあててかつ0304が長さRならば、αをラジア
ン単位であらわすと、検出器9で測定される04の変化
量y=Rα・・・・・・(6)と工作物1の寸法変化量
X””r r’・・・・・・(7)との関係はR二1
0wItのとき第1図のごとくなり、次の2つの事実が
わかる。
First, if the contact point of the tip of the stylus of the detector 9 with the shoe 3 is 04, and the detector 9 is placed parallel to 0 and 03 as shown in Fig. 6, and 0304 is the length R, then , α is expressed in radians, the amount of change in 04 measured by the detector 9 y=Rα (6) and the amount of dimensional change in the workpiece 1 X""r r'... ...The relationship with (7) is R21
When it is 0 wIt, it becomes as shown in Figure 1, and the following two facts can be understood.

第1は、yとXの関係はほとんど一次比例である。First, the relationship between y and X is almost linearly proportional.

そしてこのyとXの関係がほとんど一次比例であること
は数学的にも次のごとく証明しうる。
And it can be proved mathematically as follows that the relationship between y and X is almost linearly proportional.

式(5)(6X7)より 式(9)において取代x=r−r’に比しr+Lは圧倒
的に大きいので(9)は dy 1゜3°4Roo) dx r+L となって定数化する。
From Equations (5) and (6X7), in Equation (9), r+L is overwhelmingly larger than machining allowance x=rr', so (9) becomes dy 1° 3° 4Roo) dx r+L and is made into a constant.

dy 取代がrに比し小さい時はーは一定値に近く、dx yとXの関係は一次比例といえる。dy When the machining allowance is small compared to r, - is close to a constant value, and dx The relationship between y and X can be said to be linear proportionality.

第2は、yの個の大きさはXの値の大きさと同じぐらい
に出来る。
Second, the size of y can be about the same as the value of x.

yの大きさはR次第であるが第7図で採用したR=10
ffの値は実際的にも十分採用しつるぐらいの大きさで
ある。
The size of y depends on R, but R = 10 adopted in Figure 7
The value of ff is large enough to be used practically.

第7図はθ2−300とした場合であるがθ2一〇°
15° 45°に対していずれもr−25、R=1
0,L二10として、yとXを算出すると第8図のごと
くなり、これから (1) θ2がどの角度でもyとXは一次比例の関係
にある。
Figure 7 shows the case where θ2-300, but θ210°
Both r-25 for 15° and 45°, R=1
0, L2 and 10, y and X are calculated as shown in Figure 8, and from this (1) No matter what angle θ2 is, y and X are linearly proportional.

(2) θ2が太きいほどV=Rαの値は小さくなる
が、Rの大きさを適当に選べば実用上必要なyの値を得
ることができる。
(2) The thicker θ2, the smaller the value of V=Rα, but if the size of R is appropriately selected, a practically necessary value of y can be obtained.

θ2を600以上に探ることは机上は可能であるが、そ
の場合は砥石5が工作物1に加える研削力により工作物
1がシュー3からもつと左方にとびだす危険が大きいた
め実際的ではないので算出しない。
Although it is theoretically possible to search for θ2 of 600 or more, in that case, it is not practical because there is a great danger that the workpiece 1 will jump out to the left if it is held from the shoe 3 due to the grinding force that the grindstone 5 applies to the workpiece 1. Therefore, it is not calculated.

又、ここではシュー2のXX軸となす角θ1を300固
定としたけれども、実際にはシュー2,3は研削加工上
トラブルの生じない範囲内において工作物1の寸法変化
がαの変化としてもつとも大きくでてくる位置に定めれ
ば、αによって工作物1の寸法変化を検出しつる。
In addition, here, the angle θ1 between the shoe 2 and the XX axis is fixed at 300, but in reality, the shoes 2 and 3 can be used as dimensional changes of the workpiece 1 as changes in α within a range that does not cause trouble during grinding. If it is set at a position where it becomes large, changes in the dimensions of the workpiece 1 can be detected by α.

又シュー2,3ともにフローテイング・シューとしシュ
ー2,3いずれかに検出器をあてても工作物1の寸法変
化を検出できる。
Also, since both shoes 2 and 3 are floating shoes, dimensional changes in the workpiece 1 can be detected by applying a detector to either of the shoes 2 or 3.

以上説明したように、この発明はフローテイングシュ一
方式の工作物の外径加工に於いて、加工の進行につれて
工作物の外径が次第に小さくなり且つその曲率の変化に
フローテイングシューが追随する現象を利用して、フロ
ーテイングシューの微小回転変化量Xを電気マイクロメ
ータ等の検出器で検出し、検出した変化量Xを工作物の
外径寸法変化量Yに転換して検出することを特徴とする
工作物の外径加工寸法制御方法に係り、従って、加工中
の工作物の外径寸法変化を検出する必要のあるとき、検
出器を直接工作物にあてることなく、工作物の寸法変化
によりフローテイングシューが回転してい←事実を利用
し、フローテイング・シューに検出器をあてることによ
り寸法変化を検出する方法を採用すれば、工作物に検出
器の接触痕がつかず、史に検出器は回転物体に接触しな
いので摩粍せず多数の工作物を加工しても寸法信号に補
正を必要としない。
As explained above, in the outer diameter machining of a workpiece using a floating shoe, the outer diameter of the workpiece gradually becomes smaller as the machining progresses, and the floating shoe follows the change in curvature. Utilizing this phenomenon, the minute rotational change amount X of the floating shoe is detected with a detector such as an electric micrometer, and the detected change amount X is converted into the outer diameter dimension change amount Y of the workpiece. The feature is a method for controlling the outer diameter machining dimensions of a workpiece, and therefore, when it is necessary to detect changes in the outer diameter dimension of the workpiece during machining, it is possible to detect the dimensions of the workpiece without directly applying the detector to the workpiece. If we use the fact that the floating shoe rotates due to the change and adopt a method of detecting dimensional changes by applying a detector to the floating shoe, there will be no contact traces of the detector on the workpiece, and the history will be reduced. Since the detector does not come into contact with rotating objects, the dimensional signal does not require correction even if many workpieces are machined without wear.

又検出器を工作物から遠くにはなせるため研磨カスやク
ラントがかからないから検出器に機械的トラブルや電気
的ノイズが発生しない。
Furthermore, since the detector can be moved far away from the workpiece, it is not exposed to polishing scum or clumps, so mechanical trouble or electrical noise does not occur to the detector.

又検出器を工作物から遠くにはなせるため研磨カスやク
ーラントがかからないから非接触型検出器を用いること
も可能となる。
Furthermore, since the detector can be placed far from the workpiece, it is not exposed to polishing scum or coolant, making it possible to use a non-contact type detector.

又工作物のローデイング、アンローデイングの際に工作
物が検出器にあたり検出器を痛める危険がない。
Furthermore, there is no danger of the workpiece hitting the detector and damaging the detector during loading and unloading of the workpiece.

更にR、θ、Lなどの値を適当にえらべば、工作物の寸
法変化を実際以上に大きく、実際以下に小さく検出しつ
る等の、利点を有する。
Furthermore, if the values of R, θ, L, etc. are appropriately selected, there are advantages such as detecting the dimensional change of the workpiece to be larger than the actual value or smaller than the actual value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は従来のシュー支持方式を示す図面、
第4図及び第5図は、それぞれ従来のシュー支持方式と
工作物寸法の検出方法を示す図面、第6図は、この発明
に係る方法による工作物寸法の制御方法を示す図面、そ
して第7図及び第8図は、それぞれ、この発明を適用す
る場合の具体例を数値的に表わした図面である。 1・・・・・・工作物、2,3・・・・・・シュー、5
・・・・・・研削砥石、9・・・・・・検出器。
Figures 1 to 3 are drawings showing the conventional shoe support system;
4 and 5 are drawings showing a conventional shoe support method and a method for detecting workpiece dimensions, respectively, FIG. 6 is a drawing showing a method for controlling workpiece dimensions by the method according to the present invention, and FIG. 8 and 8 are drawings each numerically representing a specific example in which the present invention is applied. 1... Workpiece, 2, 3... Shoe, 5
...Grinding wheel, 9...Detector.

Claims (1)

【特許請求の範囲】[Claims] 1 フローテイングシュ一方式の工作物の外径加工に於
いて、加工の進行につれて工作物の外径が次第に小さく
なり且つその曲率の変化にフローテイングシューが追随
する現象を利用して、フローテイングシューの微小回転
変化量Xを電気マイクロメータ等の検出器で検出し、検
出した変化量Xを工作物の外径寸法変化量Yに転換して
検出することを特徴とする工作物の外径加工寸法制御方
法。
1. When machining the outer diameter of a workpiece using a floating shoe, the outer diameter of the workpiece gradually becomes smaller as the machining progresses, and the floating shoe follows the change in curvature. The outer diameter of a workpiece, characterized in that the minute rotational change amount X of the shoe is detected by a detector such as an electric micrometer, and the detected change amount X is converted into the outer diameter dimension change amount Y of the workpiece. Machining dimension control method.
JP51065949A 1976-06-04 1976-06-04 Control method for outer diameter machining of workpiece Expired JPS5848302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51065949A JPS5848302B2 (en) 1976-06-04 1976-06-04 Control method for outer diameter machining of workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51065949A JPS5848302B2 (en) 1976-06-04 1976-06-04 Control method for outer diameter machining of workpiece

Publications (2)

Publication Number Publication Date
JPS52148890A JPS52148890A (en) 1977-12-10
JPS5848302B2 true JPS5848302B2 (en) 1983-10-27

Family

ID=13301725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51065949A Expired JPS5848302B2 (en) 1976-06-04 1976-06-04 Control method for outer diameter machining of workpiece

Country Status (1)

Country Link
JP (1) JPS5848302B2 (en)

Also Published As

Publication number Publication date
JPS52148890A (en) 1977-12-10

Similar Documents

Publication Publication Date Title
US2478607A (en) Grinding machine
CN104002239B (en) Preparation method, the preparation method and lapping device of sliding vector distribution of sliding distance distribution of the dresser on grinding component
JP3166146B2 (en) Surface grinding method and apparatus
JPH0480784B2 (en)
JP6274561B2 (en) Rotary grinding wheel dressing apparatus and method
EP0512988A1 (en) Optical surface quality improving arrangement.
JPS6362675A (en) Method of automatically grinding workpiece
JP6674426B2 (en) Centerless grinding apparatus and grinding state monitoring method for workpiece
Shibata et al. Characteristics of air flow around a grinding wheel and their availability for assessing the wheel wear
US2515214A (en) Method of measuring out-of-roundness of machined parts
JPS5848302B2 (en) Control method for outer diameter machining of workpiece
JPH01171761A (en) Abrasion compensation of abraded tool
JP7068096B2 (en) Grinding method for workpieces
JP2011189417A (en) Processing robot and gravity compensating method thereof
CN111716251B (en) Method for optimizing finishing process of precision bearing grinding diamond roller
Kunieda et al. Robot-polishing of curved surface with magneto-pressed tool and magnetic force sensor
JP3937669B2 (en) Spherical measurement method
JPS6130681B2 (en)
US20190210183A1 (en) Method for checking a grinding tool and corresponding device
US4332109A (en) Grinding apparatus for a flank of an end mill point
JPS629867A (en) Grinder
CN114952433B (en) Polishing method and polishing system
GB1601571A (en) Measuring apparatus for use in a machine tool
CN1196994A (en) Method and appts. for plane super-precision grinding and polishing optical glass
RU2100795C1 (en) Process determining wear-out of grinding wheel