JPS584800B2 - Shielding structure for high temperature fluids - Google Patents

Shielding structure for high temperature fluids

Info

Publication number
JPS584800B2
JPS584800B2 JP51103133A JP10313376A JPS584800B2 JP S584800 B2 JPS584800 B2 JP S584800B2 JP 51103133 A JP51103133 A JP 51103133A JP 10313376 A JP10313376 A JP 10313376A JP S584800 B2 JPS584800 B2 JP S584800B2
Authority
JP
Japan
Prior art keywords
bellows
taken along
expansion
cross
thermal displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51103133A
Other languages
Japanese (ja)
Other versions
JPS5329496A (en
Inventor
増渕三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP51103133A priority Critical patent/JPS584800B2/en
Publication of JPS5329496A publication Critical patent/JPS5329496A/en
Publication of JPS584800B2 publication Critical patent/JPS584800B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)

Description

【発明の詳細な説明】 本発明は原子カプラント又は一般プラントの構造物を高
温から保護する高温流体用遮蔽構造に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high temperature fluid shielding structure for protecting structures of an atomic couplant or a general plant from high temperatures.

第1a,1b,Ic図及び第2図に示すのは従来の高温
流体用遮蔽構造で第1a図は平面的なものを、第2図は
立体的な場合のコーナ一部を示す略図であり、第1b図
は第1a図におけるA−A線矢視の断面図、第1c図は
第1a図におけるB一B線矢視の断面図である。
Figures 1a, 1b, Ic, and 2 are conventional shielding structures for high-temperature fluids. Figure 1a is a plan view, and Figure 2 is a schematic diagram showing a part of a three-dimensional corner. , FIG. 1b is a sectional view taken along line A--A in FIG. 1a, and FIG. 1c is a sectional view taken along line B--B in FIG. 1a.

第1a,Ib図及び第1c図において、符号4は構造物
(または容器)、2は板、3は板2の支持材である。
In FIGS. 1a, 1b, and 1c, reference numeral 4 represents a structure (or container), 2 represents a plate, and 3 represents a support member for the plate 2.

内側スペース6は高温であるため前記構造物4を高温か
ら保護する目的で、スペース5には冷却流体を通すか、
または断熱材を充填する。
Since the inner space 6 is at a high temperature, in order to protect the structure 4 from the high temperature, a cooling fluid may be passed through the space 5, or
Or fill with insulation.

板2は構造物4より高温になり、熱膨張により熱応力を
生ずるので、これを緩和し、かつスペース5、内側スペ
ース6を無漏洩に隔離する目的で、ベローズ状の伸縮継
手1X,1yが互いに十字状に設けられている。
Since the plate 2 becomes hotter than the structure 4 and generates thermal stress due to thermal expansion, bellows-shaped expansion joints 1X and 1y are used to alleviate this and isolate the space 5 and inner space 6 without leakage. They are arranged in a cross shape with each other.

このように配置された伸縮継手では、伸縮継手から離れ
た点例えば第1a図のa点では縦・横両方向の熱膨張は
夫々1y,lxの伸縮継手で吸収できるが、伸縮継手中
心線上の点b,またはC点,(ならびにb,c点近くの
位置)では、縦または横方向のいずれか一方の熱膨張が
吸収できず、ベローズの交点に無理がかかると言う欠点
がある、以上のことは第2図の立体的な場合でも同様で
ある。
In an expansion joint arranged in this way, at a point away from the expansion joint, for example at point a in Figure 1a, thermal expansion in both the vertical and horizontal directions can be absorbed by the expansion joint of 1y and lx, respectively, but at a point on the center line of the expansion joint At points b or C (as well as positions near points b and c), thermal expansion in either the vertical or horizontal direction cannot be absorbed, and there is a disadvantage that strain is applied to the intersection of the bellows. The same holds true for the three-dimensional case shown in FIG.

本発明は前記の欠点を排除して、縦横両方向の熱変位の
吸収を可能ならしめ信頼性を必要とする主要個所に使用
するもので、そのため本発明においては、ベローズを直
交配置し、交叉位置において一つのべローズは伸縮機能
を損うことのないよう貫通させ、全体としてあらゆる位
置において縦横両方向の熱変位を吸収可能にしたもので
ある。
The present invention eliminates the above-mentioned drawbacks, makes it possible to absorb thermal displacement in both vertical and horizontal directions, and is used in key locations that require reliability. Therefore, in the present invention, the bellows are orthogonally arranged and In this case, one bellows is penetrated so as not to impair the expansion and contraction function, and as a whole, it is possible to absorb thermal displacement in both vertical and horizontal directions at any position.

以下本発明の実症例について、添付図面を参照して詳細
に説明する。
Hereinafter, actual examples of the present invention will be explained in detail with reference to the accompanying drawings.

第3a図は本発明の高温流体用遮蔽構造の構成を示す平
面図で、第3b図は第3a図におけるA一A線矢視の断
面図、第3c図は第3a図におけるB−B線矢視の断面
図である。
Fig. 3a is a plan view showing the structure of the high temperature fluid shielding structure of the present invention, Fig. 3b is a sectional view taken along the line A-A in Fig. 3a, and Fig. 3c is a sectional view taken along the line B-B in Fig. 3a. FIG.

図において、符号1X及び1yはベローズ(伸縮継手)
、2は板(シール板)、3は支持材、4は構造物(また
は容器)、5はスペース(冷却流体パスまたは断熱材ス
ペース)、6は内側スペース(例えば原子炉容器室)で
ある。
In the figure, symbols 1X and 1y are bellows (expansion joints)
, 2 is a plate (seal plate), 3 is a support material, 4 is a structure (or vessel), 5 is a space (cooling fluid path or insulation material space), and 6 is an inner space (for example, a reactor vessel chamber).

内側スペース6は一般に高温であり、耐熱性に欠ける構
造物(または容器)4を高温から保護するため、冷却流
体パス(または断熱材スペース)5が設けられている。
The inner space 6 is generally at a high temperature and a cooling fluid path (or insulation space) 5 is provided to protect the less heat resistant structure (or container) 4 from high temperatures.

前記スペース5と内側スペース6を互いに気密に隔離す
るため板2が設けられている。
A plate 2 is provided to airtightly separate the space 5 and the inner space 6 from each other.

この板2は内圧または外圧、および重力、地震等の外力
に対し安全であるよう支持材3で支持されている。
This plate 2 is supported by a support member 3 so as to be safe against internal or external pressure and external forces such as gravity and earthquakes.

ただし冷却流体を通して強制冷却を行う場合は、支持材
3は圧力損失の少ない、冷却パスに適した構造とする。
However, when forced cooling is performed through cooling fluid, the support material 3 should have a structure suitable for a cooling path with little pressure loss.

板2は構造物4より高温であるため熱膨張による熱応力
を生ずる。
Since the plate 2 is at a higher temperature than the structure 4, thermal stress is generated due to thermal expansion.

ベローズ1x,1yは第3a図に示すように縦横方向に
配置されており、その交叉位置においては一方向のべロ
ーズ、例えばd位置におけるべローズ1Xは交叉位置に
おいても、本来のxx方向伸縮吸収機能を有するよう貫
通している。
The bellows 1x, 1y are arranged in the vertical and horizontal directions as shown in Fig. 3a, and the bellows 1X in one direction at the crossing position, for example, the bellows 1X at the d position, absorbs the original expansion and contraction in the xx direction even in the crossing position. It penetrates so that it has a function.

他方これと直角方向のべローズ1yは、1Xにより2つ
に分断され、その端末は漏洩のないよう閉じた構造とな
っている。
On the other hand, the bellows 1y in the direction perpendicular to this is divided into two by 1X, and its terminals have a closed structure to prevent leakage.

すなわちベローズ1yはベローズ1Xの近接部まで延び
るが、両ベローズの交差部においてベローズ1yはベロ
ーズ1Xのべロー伸縮機能を有する部分(すなわちベロ
ーの腹部および頂部)と接続しない。
That is, although the bellows 1y extends to the vicinity of the bellows 1X, the bellows 1y does not connect with the portion of the bellows 1X having a bellows expansion/contraction function (ie, the abdomen and top of the bellows) at the intersection of both bellows.

dの対角位置gでは、前記d位置と同様にべ口−ズlx
,1yが配置されている。
At the diagonal position g of d, the angle lx is similar to the position d.
, 1y are arranged.

次に、dに隣接するe1およびf位置では、yy方向の
伸縮吸収機能を有するよう、ベローズ1yが貫通配置さ
れ、これと直角方向のべローズ1Xは、ベローズ1yに
より2つに分断され、べローズ1xの端末は漏洩のない
よう閉じた構造になっている。
Next, at the e1 and f positions adjacent to d, a bellows 1y is arranged to penetrate so as to have an expansion/contraction absorbing function in the yy direction, and the bellows 1X in the direction perpendicular to this is divided into two by the bellows 1y. The Rose 1x terminal has a closed structure to prevent leakage.

第3a図、第3b図及び第3c図では、ベローズの山数
は1山の場合を示しているが、伸縮量の大きい場合は通
常のべローズにおけると同様、複数山数のべローズを使
用する。
Figures 3a, 3b, and 3c show the case where the number of bellows is one, but if the amount of expansion and contraction is large, a bellows with multiple numbers of threads is used as in a normal bellows. do.

その一例として、第4a図に2山のべローズを使用した
場合の断面を示す。
As an example, FIG. 4a shows a cross section when two bellows are used.

第4b図は縦・横両ベローズの交叉接続部の構造を変え
たものである。
FIG. 4b shows a modified structure of the cross-connections of both the vertical and horizontal bellows.

第4c図は、複数枚重ねのべローズの一例として、2枚
重ねベローズを使用した場合の断面を示す。
FIG. 4c shows a cross section when a two-ply bellows is used as an example of a plurality of bellows.

第5図、第6a,6b,6c図は、立体的に配置した場
合の一例で、第6a図は第5図のA−A線矢視の断面、
第6b図は第5図のB−B線矢視の断面、第6c図は第
5図のC−C線矢視の断面を示す。
5, 6a, 6b, and 6c are examples of three-dimensional arrangement, and FIG. 6a is a cross section taken along line A-A in FIG.
6b shows a cross section taken along line B-B in FIG. 5, and FIG. 6c shows a cross section taken along line C-C in FIG.

第7a図も立体配置の場合であるが、コーナ一部にはコ
ーナー専用のべローズを使用している。
FIG. 7a also shows the case of a three-dimensional arrangement, but a bellows dedicated to the corner is used at a part of the corner.

第7b図は第7a図のA−A線矢視の断面を示す。FIG. 7b shows a cross section taken along line A--A in FIG. 7a.

第8a図は縦横のべローズをT型に配置した一例で、第
8b図は第8a図のA−A線矢視の断面を示す。
Fig. 8a shows an example in which vertical and horizontal bellows are arranged in a T-shape, and Fig. 8b shows a cross section taken along line A--A in Fig. 8a.

次に本発明の作用について説明する。Next, the operation of the present invention will be explained.

第3a図、第3b図および第3c図において、板2には
縦方向(yy方向)および横方向(xx方向)の熱変位
を生じるが、この熱変位は、板2の代表的な位置におい
て次のように、ベローズに吸収される。
3a, 3b, and 3c, plate 2 undergoes longitudinal (yy direction) and lateral (xx direction) thermal displacement, and this thermal displacement occurs at representative positions of plate 2. It is absorbed by the bellows as follows.

(1)ベローズから離れた任意の位置aにおいて:xx
方向、yy方向の熱変位は、それぞれべ口−ズ1x,l
yに吸収される。
(1) At any position a away from the bellows: xx
The thermal displacement in the direction and the yy direction are respectively 1x and l.
It is absorbed by y.

(2)両ベローズから近い任意の位置hにおいて:xx
方向熱変位は、hに近いベローズ1Xは端が閉されてお
り、伸縮吸収機能が無いので、第3a図右側のgを通る
ベローズ1Xにより吸収される。
(2) At any position h close to both bellows: xx
The directional thermal displacement is absorbed by the bellows 1X passing through g on the right side of Fig. 3a, since the end of the bellows 1X near h is closed and has no expansion/contraction absorbing function.

yy方向の熱変位は、hに近いfを貫通するベローズ1
yにより吸収される。
The thermal displacement in the yy direction is caused by the bellows 1 passing through f close to h.
absorbed by y.

(3)ベローズ1Xの中心線上の任意の位置bにおいて
: xx方向の熱変位はbを通る1Xにより吸収される。
(3) At any position b on the center line of the bellows 1X: Thermal displacement in the xx direction is absorbed by 1X passing through b.

yy方向の熱変位は交点eをxx方向に貫通するベロー
ズ1yにより吸収される。
Thermal displacement in the yy direction is absorbed by the bellows 1y passing through the intersection e in the xx direction.

(4)ベローズ1yの中心線上の任意の位置Cにおいて
: yy方向の熱変位はCを通るベローズ1yにより吸収さ
れる。
(4) At any position C on the center line of the bellows 1y: Thermal displacement in the yy direction is absorbed by the bellows 1y passing through C.

xx方向の熱変位は交点dをyy方向に貫通するベロー
ズ1Xにより吸収される。
Thermal displacement in the xx direction is absorbed by the bellows 1X passing through the intersection d in the yy direction.

(5)ベローズの交点d,e,f,gにおいて:d位置
においては、xX方向の熱変位はdをyy方向に貫通す
るベローズ1Xにより吸収される。
(5) At intersections d, e, f, and g of bellows: At position d, thermal displacement in the xX direction is absorbed by the bellows 1X passing through d in the yy direction.

yy方向の熱変位は、前記ベローズ1Xと直交し、隣接
交点fを貫通するベローズ1yにより吸収される。
Thermal displacement in the yy direction is absorbed by the bellows 1y, which is perpendicular to the bellows 1X and passes through the adjacent intersection f.

他の交点e,f,gにおいてもdと同様に、XX,yy
両方向の熱変位を吸収する。
At other intersections e, f, and g, XX, yy
Absorbs thermal displacement in both directions.

以上のように代表的な位置a,b,c,d,e,f,g
,hにおいて縦横方向の熱変位を吸収可能であるので、
あらゆる位置において熱変位を吸収し、熱応力を緩和す
ることができる。
As mentioned above, typical positions a, b, c, d, e, f, g
, h, it is possible to absorb the thermal displacement in the longitudinal and lateral directions.
It can absorb thermal displacement and relieve thermal stress at any position.

第4a図以降第8b図迄は、第3a図の組合せ、および
応用である故、同図面においてもあらゆる位置で縦横方
向の熱変位を吸収可能である。
4a to 8b are combinations and applications of FIG. 3a, so thermal displacement in the longitudinal and lateral directions can be absorbed at any position in the drawings as well.

従来の構造(第1a,1b,1c図)では、ベローズの
中心線上の位置(例えば第1a図のb,C)および中心
線に近い位置(第1a図b,cに近い位置)では、縦横
方向の熱変位のうち何れか一方向の熱変位は吸収できな
いが、本発明により、第3a図に示すように、ベローズ
の交叉位置においては一方向のべローズが交叉位置にお
いても本来の伸縮吸収機能を有するように貫通しており
、他方これを直交する分断嶽ベローズは、その端末を漏
洩のない閉じた構造とすることにより、作用の項で説明
したように、あらゆる位置において、縦横両方向の熱変
位を吸収することが可能であり、かつ無漏洩に維持する
ことができる。
In the conventional structure (Figs. 1a, 1b, and 1c), the bellows has vertical and horizontal positions on the center line (e.g., b, C in Fig. 1a) and near the center line (positions b, c in Fig. 1a). However, according to the present invention, as shown in Fig. 3a, the bellows in one direction can absorb the original expansion and contraction even in the crossing position, as shown in Fig. 3a. The split bellows, which penetrate through the bellows to have a function, and which are perpendicular to the bellows, have a leak-free closed structure at the end, so that the bellows can be used in both vertical and horizontal directions at any position, as explained in the operation section. It is possible to absorb thermal displacement and maintain it without leakage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1a図は従来の高温流体用遮蔽構造の平面的な場合の
略図、第1b図は第1a図におけるA−A線矢視の断面
図、第1c図は第1a図におけるB−B線矢視の断面図
、第2図は同構造の立体的な場合のコーナ一部を示す略
図、第3a図は本発明による高温流体用遮蔽構造の平面
的な場合の略図、第3b図は第3a図におけるA−A線
矢視の断面図、第3c図は第3a図におけるB−B線矢
視の断面図、第4a図は複数山数のべローズを使用した
本発明の例の断面図、第4b図は縦横両ベローズの交又
接点部の構造を変えた場合の断面図、第4c図は複数枚
重ねのべローズの一例として2枚重ねベローズを使用し
た例の断面図、第5図は本発明を立体的に配置した場合
の略図、第6a図は第5図におけるA−A線矢視の断面
図、第6b図は第5図におけるB−B線矢視の断面図、
第6C図は第5図におけるC−C線矢視の断面図、第7
a図は立体配置の場合、コーナ一部にコーナー専用のべ
ローズを使用した状態の略図、第7b図は第7a図にお
けるA−A線矢視の断面図、第8a図は縦横のべローズ
をT型に配置した例の略図、第8b図は第8a図におけ
るA−A線矢視の断面図である。 1x,1y・・・・・・ベローズ(伸縮継手)、2・・
・・・・板(シール板)、3・・・・・・支持材、4・
・・・・・構造物(または容器)、5・・・・・・スペ
ース(冷却流体パスまたハ断熱材スペース)、6・・・
・・内側スペース。
Fig. 1a is a schematic plan view of a conventional high-temperature fluid shielding structure, Fig. 1b is a sectional view taken along the line A-A in Fig. 1a, and Fig. 1c is a cross-sectional view taken along the line B-B in Fig. 1a. 2 is a schematic diagram showing a part of a corner of the same structure in a three-dimensional case, FIG. 3a is a schematic diagram in a planar case of the high-temperature fluid shielding structure according to the present invention, and FIG. 3c is a sectional view taken along line AA in the figure, FIG. 3c is a sectional view taken along line BB in FIG. , Fig. 4b is a cross-sectional view when the structure of the intersection or contact portion of both vertical and horizontal bellows is changed, Fig. 4c is a cross-sectional view of an example in which a two-ply bellows is used as an example of a multi-ply bellows, and Fig. 5 The figure is a schematic diagram when the present invention is arranged three-dimensionally, FIG. 6a is a cross-sectional view taken along the line A-A in FIG. 5, and FIG. 6b is a cross-sectional view taken along the line B-B in FIG. 5.
Figure 6C is a sectional view taken along line C-C in Figure 5;
Figure a is a schematic diagram of a state in which bellows exclusively for corners are used in a part of the corner in the case of a three-dimensional arrangement, Figure 7b is a cross-sectional view taken along the line A-A in Figure 7a, and Figure 8a is a diagram of vertical and horizontal bellows. FIG. 8b is a cross-sectional view taken along line A--A in FIG. 8a. 1x, 1y...Bellows (expansion joint), 2...
...Plate (seal plate), 3...Support material, 4.
... Structure (or container), 5 ... Space (cooling fluid path or insulation material space), 6 ...
・Inner space.

Claims (1)

【特許請求の範囲】[Claims] 1 ほぼ同一面上に配置された複数の矩形部片と隣接す
る同部片の相対する周縁間の隙間を塞ぐと共に同部片相
互の接近離遠を弾性許容する複数のべロ一部材よりなり
、互いに交叉方向に延びる前記ベロ一部材の一方を他方
のべロ一部材の近接部迄延ばすが、両ベロ一部材の交差
部において前記一方のべロ一部材が前記他方のべロ一部
材のべ口−伸縮機能を有する部分と接続しないことを特
徴とする高温流体用遮蔽構造。
1 Consisting of a plurality of rectangular pieces arranged on substantially the same plane and a plurality of tongue members that close the gap between the opposing circumferential edges of the adjacent pieces and elastically allow the pieces to approach and separate from each other. , one of the tongue members extending in a direction crossing each other is extended to a close portion of the other tongue member, and at the intersection of both tongue members, the one tongue member is connected to the other tongue member. Begout: A high-temperature fluid shielding structure that is characterized by not being connected to a part that has an expansion and contraction function.
JP51103133A 1976-08-31 1976-08-31 Shielding structure for high temperature fluids Expired JPS584800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51103133A JPS584800B2 (en) 1976-08-31 1976-08-31 Shielding structure for high temperature fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51103133A JPS584800B2 (en) 1976-08-31 1976-08-31 Shielding structure for high temperature fluids

Publications (2)

Publication Number Publication Date
JPS5329496A JPS5329496A (en) 1978-03-18
JPS584800B2 true JPS584800B2 (en) 1983-01-27

Family

ID=14346028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51103133A Expired JPS584800B2 (en) 1976-08-31 1976-08-31 Shielding structure for high temperature fluids

Country Status (1)

Country Link
JP (1) JPS584800B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153492A (en) * 1984-08-24 1986-03-17 Hitachi Ltd Self-pumping-type turbine pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155392U (en) * 1981-03-26 1982-09-29

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150013A (en) * 1974-10-29 1976-05-01 Nippon Kokan Kk TEIONEKI KAGASUTANKUNO MEN PUREN

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150013A (en) * 1974-10-29 1976-05-01 Nippon Kokan Kk TEIONEKI KAGASUTANKUNO MEN PUREN

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153492A (en) * 1984-08-24 1986-03-17 Hitachi Ltd Self-pumping-type turbine pump

Also Published As

Publication number Publication date
JPS5329496A (en) 1978-03-18

Similar Documents

Publication Publication Date Title
US4258521A (en) Metal foil insulation, especially for nuclear reactor installations
WO1986005867A1 (en) Device at a plate heat exchanger
US4125130A (en) Bellows permitting twisting movement
JPS584800B2 (en) Shielding structure for high temperature fluids
US4055464A (en) Heat-insulating structure
JPS6139598B2 (en)
US3848314A (en) An assembly of substantially parallel metallic surfaces
US3488255A (en) Thermal insulation structures and fast reactor having such insulation
US9735333B2 (en) Thermoelectric module
KR100706509B1 (en) Membrance metal panel of insulated cargo thaks of LNG carrier
JPS61180892A (en) Plate type heat exchanger
JPH04266696A (en) Structure for eliminating thermal extention/contraction of vacuum thermal insulation body
US11802661B2 (en) Composite structure
US4091591A (en) Heat-insulating panel
TWM601338U (en) Infrared temperature sensor
JPS63190991A (en) Baffle for limiting fluid flow
Golley et al. Finite strip-elements for the dynamic analysis of orthotropic plate structures
KR890000967B1 (en) Tank for ail-filled electric equipment
JPS60188872A (en) Nuclear fusion device
JPH035915Y2 (en)
JP3648874B2 (en) Tank for electrical equipment
US4033383A (en) Thermal insulation assembly
KR100673939B1 (en) Selaing material and sealing-device utilizing the same
KR20210152834A (en) Metal membrane for liquefied gas storage tank
JPS5939679Y2 (en) Fusion device port