JPS5847816A - Regulator for axial force - Google Patents

Regulator for axial force

Info

Publication number
JPS5847816A
JPS5847816A JP14544481A JP14544481A JPS5847816A JP S5847816 A JPS5847816 A JP S5847816A JP 14544481 A JP14544481 A JP 14544481A JP 14544481 A JP14544481 A JP 14544481A JP S5847816 A JPS5847816 A JP S5847816A
Authority
JP
Japan
Prior art keywords
cylinder
hydraulic fluid
barge
leg
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14544481A
Other languages
Japanese (ja)
Other versions
JPS5848686B2 (en
Inventor
Shigemi Ando
安東重美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP14544481A priority Critical patent/JPS5848686B2/en
Publication of JPS5847816A publication Critical patent/JPS5847816A/en
Publication of JPS5848686B2 publication Critical patent/JPS5848686B2/en
Expired legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • E02B17/021Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto with relative movement between supporting construction and platform
    • E02B17/024Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto with relative movement between supporting construction and platform shock absorbing means for the supporting construction

Abstract

PURPOSE:To prevent the occurrence of out-of-plane movement of a work platform against tidal wave as well as make uniform pressure to legs at the ebb and flow by a method in which orifice is provided between a cylinder and a working liquid container and the size of a pressure gas container is made sufficiently larger than that of the working liquid container. CONSTITUTION:A piston 13 is povided to the leg 12 of a base ship 11, a cylinder 14 is fixed to the work platform 11, and the cylinder 14 is connected to a working liquid container 15 with a working liquid 20 through a communication tube 17 and an orifice 19. The working liquid container 15 is led to a pressure gas container 16 with a pressure gas 21 through a communication tube 18. Since the volume of the pressure gas container is made sufficiently larger than that of the working liquid container 15, no change in the pressure of the pressure gas 21 with change in long-period water level of tidal wave occurs and therefore, constant axial force is always applied to the leg 12. With changes in the short-period water level of tidal wave, the orifice 19 becomes nearly closed, and therefore, no displacement occurs in the piston 13 and the cylinder 14 and also no out of plane movement of the platform 11 takes place.

Description

【発明の詳細な説明】 本発明は半ジヤツキアップ型台船の脚部、または緊張係
留型浮体の係留脚の軸力調整装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an axial force adjustment device for a leg of a semi-jerker-up barge or a mooring leg of a tension-moored floating body.

第1図に示すように、一般に、半ジヤツキアップ型台船
1は脚柱2の下端のフーティング4を海底に圧着し、ジ
ヤツキアップ装置3により台船1を自由浮揚吃水状態よ
り幾分上方にジヤツキアップし、仮に、静止水面(波浪
のないときの水面、または波浪があるときの平均水面)
6の波浪が弗り、いずれかの脚柱2の近傍に波の峰がき
て、その付近の浮力が冷加しても脚柱2の軸力は成る程
度の圧縮力が残存し、波浪中であっても台船10周助的
面外変位、即ち、ローリング、ピッチング、ヒービング
がなく、各種の作業を揺れのない台船面上で行わんとす
るものである。
As shown in FIG. 1, in general, a semi-jerker-up type barge 1 has a footing 4 at the lower end of a pedestal 2 pressed against the seabed, and a jack-up device 3 jacks the barge 1 up to a position slightly above the free-floating, swamping state. However, if the still water surface (the water surface when there are no waves or the average water surface when there are waves)
When the wave 6 breaks, a peak of the wave appears near one of the pillars 2, and even if the buoyant force in that area cools, a compressive force remains that maintains the axial force of the pillar 2, and during the waves. Even so, there is no out-of-plane displacement around the barge, that is, rolling, pitching, heaving, and various operations can be performed on the barge surface without shaking.

また、第2図に示す緊張係留型浮体7は油圧等により係
止端位置をいくらか調整出来る係止装置9に連結させた
緊張係留脚8f:海底5上のアンカー10に結合し、浮
体7を、その自由浮揚吃水状態より幾分下方に引きつけ
て、仮に、静止水面6に波浪があって、いずれかの脚の
近傍に波の谷がきて、その付近の浮力が減っても係留脚
8の軸力は成る程度の張力が残存し、もって、波浪中で
も浮体7の周期的変位がなく、各種作業を揺れのない浮
体上で行わんとするものである。
In addition, the tension mooring type floating body 7 shown in FIG. , and if there are waves on the still water surface 6 and a wave trough appears near one of the legs, and the buoyancy in that area decreases, the mooring legs 8 A certain amount of axial tension remains, so that there is no periodic displacement of the floating body 7 even in waves, and various operations can be performed on the floating body without shaking.

上記の如き考えに立てば、半ジヤツキアップ型台船の脚
柱の圧縮軸力または緊張係留型浮体の係留脚の張力軸力
は、予め、操業時の波浪による浮力変動の最大量、水位
差表現では波高に対応するものの約H’<付与しておけ
ばよいことになる。
Based on the above idea, the compressive axial force of the leg of a half-jerker-up type barge or the tension axial force of the mooring leg of a tension-moored floating body is determined in advance by the maximum amount of buoyancy fluctuation due to waves during operation, and the water level difference expression. Then, it is sufficient to give a value corresponding to the wave height of approximately H'<.

換言すれば、半ジヤツキアップ型台船の場合は、複数の
波に台船がのることによる平準化効果と幾分かの船底に
働く打消し方向の流体力により、また、緊張係留型浮体
の場合は、支持浮体下面およびロワーハルに働く打消し
方向の流体力により前記の数値よりかなり減少して、更
にいのオーダーになる。
In other words, in the case of a semi-jerker-up type barge, the leveling effect caused by the barge riding on multiple waves and the countervailing fluid force acting on the bottom of the ship, and the tension mooring type floating body. In this case, due to the countervailing fluid force acting on the lower surface of the supporting floating body and the lower hull, the value is considerably reduced to an order of magnitude more than the above value.

このように考えると、軸力の最大値は、半ジヤツキアッ
プ型台船の場合は脚の近傍に波底が来たときに発生し、
その値は水位差表現では波高のV2のオーダーになる(
第3図(5)参照)。
Considering this, the maximum value of the axial force occurs when the bottom of the wave comes near the legs in the case of a half-jerker-up type barge.
Its value is on the order of wave height V2 in water level difference expression (
(See Figure 3 (5)).

また、緊張係留型浮体の場合は脚の近傍に波峰が来たと
きに発生し、その値は水位差表現では波高のV2のオー
ダーとなる(第4図(イ)参照)。
In addition, in the case of a tension-moored floating body, this occurs when a wave crest comes near the legs, and its value is on the order of the wave height V2 when expressed as a water level difference (see Figure 4 (a)).

以上は、潮位の干満、低気圧通過時の高潮、沖合地震発
生時の津波による水面上昇などの長周期の水位変動がな
い地点に設置する場合であるが、設置地点に、これら長
周期変動が考えられるときは、(例えば、表日本沿岸で
は、潮位の高極と低極の差は5m位を想定する要あり)
半ジヤツキアップ型台船の場合、長周期水位変動の高水
位時点で、ある脚の近傍に波峰が来たときも脚の軸圧縮
力が残存し、もってフーティングが海底を離れて台船が
面外に動揺することのないようにしようと思えば、長周
期水位変動の低水位時点では、長周期水位変動の水位差
に対応する台船の浮力六動の1脚当りの分だけが第3図
0に重畳し、第3図0の如くなる。
The above is for installation at a location where there are no long-term water level fluctuations such as ebb and flow of tides, high tides when low pressure passes, and water level rise due to tsunamis when offshore earthquakes occur. If possible, (for example, on the coast of Japan, it is necessary to assume that the difference between the high and low tide levels is about 5 m)
In the case of a half-jerker-up type barge, even when a wave crest comes near a certain leg at a high water level during long-term water level fluctuations, the axial compressive force of the leg remains, causing the footing to leave the seabed and the barge to rise flat. If we want to prevent external movement, at the low water level of long-period water level fluctuations, only the amount of buoyancy per leg of the barge that corresponds to the water level difference of long-period water level fluctuations is It is superimposed on FIG. 0 and becomes as shown in FIG. 3.

緊張停台型浮体の場合、長周期水位変動の低水位時点で
、ある脚の近傍に波底が来たときも脚の軸張力が残存し
、もって係留脚がたるんで台船が面外に動揺することの
ないようにしようと思えば長周期水位変動の高水位時点
では長周期水位変動の水位差に対応する台船の浮力変動
の1脚当りの分だけが第4図(ト)に重畳し、第4図(
Qの如くなる。
In the case of a tension platform-type floating body, even when the bottom of a wave comes near a certain leg at low water levels during long-term water level fluctuations, the axial tension of the leg remains, causing the mooring leg to sag and the barge to go out of plane. If we want to avoid shaking, at the high water level of long-period water level fluctuations, only the buoyancy fluctuation per leg of the barge corresponding to the water level difference of long-period water level fluctuations is shown in Figure 4 (G). Superimpose the image in Figure 4 (
It becomes like Q.

即ち、半ジヤツキアップ型台船であれ、緊張係留型浮体
であれ、これらを長周期水位変動がない、又はあっても
比較的小さい海域に設置する場合、脚の軸力はかりに波
高10’″のとき、平均で2.57″、最大で5″′の
オーダーの吃水差に匹敵するものとなる。
In other words, whether it is a semi-jerker-up type barge or a tension-moored type floating body, when these are installed in sea areas where there is no long-term water level fluctuation, or even if there is, it is relatively small, a wave height of 10''' is measured on the axial force scale of the leg. This corresponds to a hiccup difference of the order of 2.57″ on average and 5″′ at maximum.

これに対し、これらを長周期水位変動がある海域に設置
する場合、脚の軸力は、かりに例えば、表日本海域で想
定するを要する5m干満差があって、これに波高10r
11の波を想定するとき、平均テ5″I+ 2.5WL
= 7.5rr′・旧・・(1)最大テ5”+ 5”=
 10rn、・−・・・・(2)の吃水差に匹敵するも
のとなり、前者に比し、平均値で3倍、最大値で2倍の
軸力となる。
On the other hand, when these are installed in sea areas where there are long-term water level fluctuations, the axial force of the legs is, for example, the 5 m tidal difference that is expected in the Japanese sea area, and the wave height is 10 r.
When assuming 11 waves, the average Te5″I+2.5WL
= 7.5rr'・Old...(1) Maximum Te5"+5"=
10rn, --- This is comparable to the stuttering difference in (2), and compared to the former, the axial force is three times the average value and twice the maximum value.

したがって、上記の如き長周期水位変動のある海域にて
操業する半ジヤツキアップ型台船、又は緊張係留型浮体
を計画するときは長周期水位変動のないときの脚柱の圧
縮強度、フーティングの海底地盤耐力よりぐる受圧面積
、緊張係留脚の断面積、アンカーの重量は平均値で3倍
、最大値で2倍のオーダーとなり、装置製作コスト、設
置コストは増大する。又、特に、半ジヤツキアップ型台
船の場合、低水位時に台船の面外荷重(重力マイナス浮
力)分布と脚柱軸力が大となり、台船の面外的げおよび
剪断に対応する構造寸法が増大する。
Therefore, when planning a semi-jacketed barge or a tension-moored floating body that operates in sea areas with long-term water level fluctuations such as those mentioned above, it is necessary to The pressure-receiving area, the cross-sectional area of the tension mooring legs, and the weight of the anchor are on the order of three times the average value and twice the maximum value than the ground bearing capacity, which increases the device manufacturing cost and installation cost. In addition, especially in the case of semi-jerker-up type barges, the out-of-plane load (gravity minus buoyancy) distribution and column axial force of the barge are large at low water levels, and the structural dimensions to accommodate out-of-plane shearing and shearing of the barge are large. increases.

ところで、コンスタントテンショナ、または非常に長い
金属バネ、或いは空気バネ等の一定張力装置を脚上端の
台船または浮体との結合に用いれば長周期水位変動によ
る軸力変動を避けられるが、同時に短周期浮力変動にも
対応するために台船または浮体が上下に揺れ波による面
外変動をなくしたいという本発明の目的を達成すること
ができない。
Incidentally, if a constant tension device such as a constant tensioner, a very long metal spring, or an air spring is used to connect the upper end of the leg to the barge or floating body, axial force fluctuations due to long-period water level fluctuations can be avoided, but at the same time The object of the present invention, which is to eliminate out-of-plane fluctuations caused by vertical waves of the barge or floating body in order to cope with buoyancy fluctuations, cannot be achieved.

本発明は長周期水位変動による軸力変動を発生せしめな
いようにし、かつ、短周期水位変動による軸力変動を温
存させ、もって、これら構造物の目的である波浪中で面
外動揺のない特性は温存しながら軽量で設置容易であり
、もってコストの安い半ジヤツキアップ型台船または緊
張係留型浮体の提供を可能にする−ことを目的とする。
The present invention prevents the occurrence of axial force fluctuations due to long-period water level fluctuations, and preserves the axial force fluctuations due to short-period water level fluctuations, thereby achieving the characteristic of preventing out-of-plane motion in waves, which is the purpose of these structures. The object of the present invention is to make it possible to provide a semi-jack-up type barge or a tension moored type floating body that is lightweight and easy to install while preserving the same characteristics, and is therefore inexpensive.

すなわち、本発明の軸力調整装置の一つは半ジヤツキア
ップ型台船の脚部、または緊張係留型浮体の係留脚等の
脚部に流体シリンダのピストン部を設けると共に、前記
台船または浮体等に流体シリンダのシリンダ部全固定し
、流体シリンダの作動液を貯留する作動液貯留容器と前
記流体シリンダとを連通管で連通し、該連通管に流体通
過抵抗の大きいオリフィスまたはチョーク弁等の流通制
御器を設け、かつ、前記作動液貯留容器内の作動液に高
圧を付勢する圧力付勢装置を設けたこと全特徴とする。
That is, one of the axial force adjusting devices of the present invention is to provide a piston portion of a fluid cylinder in a leg portion of a semi-jacketed barge or a mooring leg of a tension moored type floating body, and to provide a piston portion of a fluid cylinder in a leg portion of a semi-jacketed barge or a mooring leg of a tension moored type floating body. The cylinder part of the fluid cylinder is completely fixed, and a hydraulic fluid storage container for storing the hydraulic fluid of the fluid cylinder is communicated with the fluid cylinder through a communication pipe, and an orifice or choke valve or the like with large fluid passage resistance is connected to the communication pipe. The present invention is characterized in that it includes a controller and a pressure urging device that applies high pressure to the hydraulic fluid in the hydraulic fluid storage container.

他の一つは、半ジヤツキアップ型台船の脚部、または緊
張係留型浮体の係留脚等の脚部に流体シリンダのピスト
ン部を設けると共に、前記台船または浮体等に流体シリ
ンダのシリンダ部を固定し、流体シリンダの作動液を貯
留する作動液貯留容器と前記液体シリンダとを連通管で
連通し、かつ、前記作動液貯留容器内に作動液の圧力変
動に応じて作動するピストン装置を設けたことを特徴と
する。
The other method is to provide a piston portion of a fluid cylinder in a leg portion of a semi-jacketed barge or a mooring leg of a tension-moored floating body, and to attach a cylinder portion of a fluid cylinder to the barge or floating body. A hydraulic fluid storage container that is fixed and stores the hydraulic fluid of the fluid cylinder is connected to the liquid cylinder through a communication pipe, and a piston device is provided in the hydraulic fluid storage container that operates according to pressure fluctuations of the hydraulic fluid. It is characterized by:

更に、他の一つは半ジヤツキアップ型台船の脚部、また
は緊張係留型浮体の係留脚等の脚部に流体シリンダのピ
ストン部を設けると共に、前記台船または浮体等に流体
シリンダのシリンダ部を固定し、流体シリンダの作動液
を貯留する作動液貯留容器と前記流体シリンダとを連通
管で連通し、かつ、該連通管に作動液の変動に応じて作
動するポンプと開閉弁を設けたことを特徴とする。
Furthermore, another method is to provide a piston portion of a fluid cylinder in a leg portion of a semi-jacketed barge or a mooring leg of a tension-moored floating body, and to install a piston portion of a fluid cylinder in the barge or floating body. A hydraulic fluid storage container for storing the hydraulic fluid of the fluid cylinder is connected to the fluid cylinder through a communication pipe, and the communication pipe is provided with a pump and an on-off valve that operate according to fluctuations in the hydraulic fluid. It is characterized by

以下、本発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.

第5図および第6図は本発明の軸力調整装置を半ジャッ
キアッグ台船に採用した例であり、第5図は満潮時等、
長周期水位が最高位にあるときの各装置の相対位置関係
を示し、第6図は干潮時等、長周期水位が最低位にある
ときの各装置の相対位置関係を示す。
Figures 5 and 6 show an example in which the axial force adjustment device of the present invention is applied to a semi-jack barge.
The relative positional relationship of each device is shown when the long-period water level is at its highest level, and FIG. 6 shows the relative positional relationship of each device when the long-period water level is at its lowest level, such as during low tide.

第5図、第6図において、台船11は脚柱12により自
由浮揚状態より幾分上方に持上げられているが、台船1
1ヲ係止するため脚柱12の先端に設けたピストン13
が台船11に固定したシリンダ14の中に嵌入し、この
シリンダ14内の高圧作動液20で位置保持されている
。実際上、台船は水深の深様にかかわらず使用可能とす
るために脚柱に予長を要するが、本発明装置の理解を助
けるためにピストンを脚柱上端に設けた場合について説
明を行うものとする。
In FIGS. 5 and 6, the barge 11 is lifted up by the pillars 12 somewhat above the free floating state, but the barge 11
A piston 13 provided at the tip of the pillar 12 to lock the piston 13
is fitted into a cylinder 14 fixed to the barge 11, and is held in position by high pressure hydraulic fluid 20 within the cylinder 14. Practically speaking, a barge requires pre-length in its pedestal in order to be usable regardless of the depth of the water, but in order to help understand the device of the present invention, we will explain the case where a piston is provided at the top end of the pedestal. shall be taken as a thing.

また、台船11には作動液貯留容器15と加圧気体貯留
容器16とを備える。前記シリンダ14の頂部と作動液
貯留容器15の底部とは連通管17によって連通し、こ
の連通管17に通過抵抗の大きいオリフィス、またはチ
ョーク弁等の流通制御器19ヲ設ける。この流通制御器
19は閉塞に近い状態に絞り潮の干満等の長周期水位変
動に対してのみ作動液が流動するようにセットしておく
ものである。また、作動液貯留容器15と加圧気体貯留
容器16とは連結管18ニより連通ずる。作動液貯留容
器15の容積は前記シリンダ14とほぼ同様とし、加圧
気体貯留容器16の容積は作動液貯留容器15に対して
充分な大きさ験する。
Further, the barge 11 is equipped with a hydraulic fluid storage container 15 and a pressurized gas storage container 16. The top of the cylinder 14 and the bottom of the hydraulic fluid storage container 15 communicate with each other through a communication pipe 17, and the communication pipe 17 is provided with a flow controller 19 such as an orifice with large passage resistance or a choke valve. This flow controller 19 is set in a state close to blockage so that the hydraulic fluid flows only in response to long-period water level fluctuations such as the ebb and flow of the tide. Further, the hydraulic fluid storage container 15 and the pressurized gas storage container 16 communicate with each other through a connecting pipe 18. The volume of the hydraulic fluid storage container 15 is approximately the same as that of the cylinder 14, and the volume of the pressurized gas storage container 16 is sufficiently large for the hydraulic fluid storage container 15.

したがって、加圧気体貯留容器16内の気体容積は第5
図の満潮時の状態から第6図の干潮時の状態に変化して
も(又は、その逆)気体21の総容積の変化は比率的に
は殆んどなく、したがつって、圧力も実質的に殆んど変
らない。この圧力はシリンダ14及び作動液貯留容器1
5内の作動液20の平均圧力であり、潮の干満等の長周
期水位変動に関係なく、常に、設定した一定の平均軸力
を脚柱にかけることができる。他方、波浪による短周期
水位変動に対応して圧力変動が生じるが流通制御器19
が閉塞に近い状態に絞られているので、ピストン13と
シリンダ14との相対位置は変らない。すなわち、台船
11の面外動揺は生じないのである。
Therefore, the gas volume in the pressurized gas storage container 16 is
Even if the state at high tide shown in the figure changes to the state at low tide shown in FIG. Virtually nothing has changed. This pressure is applied to the cylinder 14 and the hydraulic fluid storage container 1.
This is the average pressure of the hydraulic fluid 20 in the column 5, and a set average axial force can always be applied to the pillar regardless of long-term water level fluctuations such as ebb and flow of the tide. On the other hand, pressure fluctuations occur in response to short-period water level fluctuations caused by waves, but the flow controller 19
Since the piston 13 and the cylinder 14 are constricted to a state close to being closed, the relative positions of the piston 13 and the cylinder 14 do not change. In other words, no out-of-plane movement of the barge 11 occurs.

しかして、第5図に示す満潮時の状態から次第に潮位が
下がると台船11の重量がシリンダ14内の作動液20
に加わるのでシリンダ14内の作動液20は加圧気体2
1の圧力に抗して流動制御器19ヲ通過して徐々に作動
液貯留容器15内に戻り、干潮時には第6図に示すよう
になる。
As the tide level gradually decreases from the high tide state shown in FIG.
Since the hydraulic fluid 20 in the cylinder 14 is added to the pressurized gas 2
It passes through the flow controller 19 against the pressure of 1 and gradually returns to the working fluid storage container 15, and at low tide it becomes as shown in FIG.

これとは逆に、第6図に示す干潮時の状態から次第に潮
位が増すと、台船11に過剰な浮力が生じるので、加圧
気体21の圧力により容器15内の作動液が流通制御器
19ヲ通って徐々にシリンダ14内に流入し、満潮時に
は第5図に示す状態になる。
On the contrary, when the tide level gradually increases from the low tide state shown in FIG. 19 and gradually flows into the cylinder 14, and at high tide it reaches the state shown in FIG.

第7図は実用に適した例を示すものであり、第5図およ
び第6図の例と同一部材には同一符号を付した。第5図
、第6図の例と最つとも箱違する点はシリンダ14ヲ脚
柱12が貫通し、この脚柱12の中間部にピストン13
を設けたことである。即ち、第7図の例は脚柱12に予
長があるので、水深の浅い所でも深いところでも使用可
能となる。22は開閉弁23ヲもつ管24によりシリン
ダ14と連通ずる予備タンクであり、このタンク22内
の作動液20をシリンダ14内に供給したり、またはシ
リンダ14内の作動液20ヲタンク22内に戻したりす
ることにより台船11の位置を水深に合わせて、予め、
設置することができる。
FIG. 7 shows an example suitable for practical use, and the same members as in the examples of FIGS. 5 and 6 are given the same reference numerals. The biggest difference from the examples shown in FIGS. 5 and 6 is that the pillar 12 passes through the cylinder 14, and the piston 13 is located in the middle of the pillar 12.
This is because we have established the following. That is, in the example shown in FIG. 7, since the pedestal 12 has a pre-length, it can be used both in shallow and deep water. Reference numeral 22 denotes a reserve tank that communicates with the cylinder 14 through a pipe 24 having an on-off valve 23, and is used to supply the hydraulic fluid 20 in the tank 22 into the cylinder 14, or to return the hydraulic fluid 20 in the cylinder 14 to the tank 22. By adjusting the position of the barge 11 according to the water depth,
can be installed.

第8図及び第9図は本発明の軸力調整装置を緊張係留型
浮体d係留脚の引張装置として使用した例であり、第8
図は満潮時など長周期−水位が高いとき、第9図は干潮
時など長周期水位が低いときの状態を示し、液体27を
引張力により係止する係留脚28はピストン13の下端
に連結される。なお、係留脚28ヲ水深に合わせて、予
め、調節することによって水深の浅い所でも深いところ
でも使用できることは営造もない。また、作動液貯留容
器15、加圧気体貯留装置16、連通管17.18、流
通制御器19ヲ備えることは第5図に示す例と全く同様
である。
FIGS. 8 and 9 show examples in which the axial force adjustment device of the present invention is used as a tensioning device for a tension mooring type floating body d mooring leg.
The figure shows the state when the water level is high for a long period such as at high tide, and FIG. be done. There is no possibility that the mooring legs 28 can be used in shallow or deep water by adjusting them in advance according to the water depth. Further, the provision of a hydraulic fluid storage container 15, a pressurized gas storage device 16, communication pipes 17, 18, and a flow controller 19 is exactly the same as the example shown in FIG.

ただ、この例の場合は、浮体27の浮力により係留脚2
8ヲ緊張させるので、流通制御器19ヲ備える連通管1
7Fiシリンダ14の底部と作動液貯留容器15の底部
とを連通させる。
However, in this example, due to the buoyancy of the floating body 27, the mooring leg 2
8 is tensioned, the communication pipe 1 is equipped with a flow controller 19.
The bottom of the 7Fi cylinder 14 and the bottom of the hydraulic fluid storage container 15 are communicated with each other.

しかして、満潮時には、第8図に示すように、係留脚2
8f、繰り出し、干潮時には第9図に示すように係留脚
28を引き上げることにより潮の干満に対応するほか、
波浪による短周期水位に対しても第5図、第6図に示す
例と同様に対応する。
However, at high tide, as shown in Figure 8, the mooring legs 2
In addition to responding to the ebb and flow of the tide by pulling up the mooring leg 28 at low tide, as shown in Figure 9,
Short-period water levels caused by waves are also dealt with in the same way as the examples shown in FIGS. 5 and 6.

以上は、純機械的に装置全構成したものであるが、作動
液の圧力変動の平均値(平滑値)の推移を検出し、これ
により作動液の平均圧が一定になるようにノやツシプコ
ントロールするコトによっても目的を達成することがで
きる。第10図および第11図は、その例を示す。第1
0図は半ジヤツキアップ型台船O脚柱の圧縮軸力調整装
置に、また、第11図は緊張係留型浮体の係留脚の引張
軸力調整装置に適用した場合を示し、いづれも長周期水
位が高い場合について示した。
The above is a purely mechanical device configuration, but it detects the transition of the average value (smooth value) of the pressure fluctuation of the hydraulic fluid, and adjusts the flow rate to keep the average pressure of the hydraulic fluid constant. You can also achieve your goals by controlling the process. FIGS. 10 and 11 show examples thereof. 1st
Figure 0 shows the application to a compression axial force adjustment device for the O-pillar of a semi-jerker-up type barge, and Figure 11 shows the application to a tension axial force adjustment device for the mooring leg of a tension-moored floating body. The case where is high is shown.

なお、第10図に示す装置を緊張係留型浮体に、第11
図に示す装置を半ジヤツキアップ型台船に使用できるこ
とは営造もない。
In addition, the device shown in Figure 10 can be used as a tension mooring type floating body.
There is no evidence that the device shown in the figure can be used on a semi-jacketed barge.

すなわち、第1O図に示す例ではシリンダ14の上部に
連通した高圧液体管35内の管内圧力は液圧計36に、
より検出され、この液圧計36の圧力変化の電気信号は
平滑化回路37により平均圧力の信号に変換され、弁3
9の開閉、およびポンプ38の発停命令となって弁39
およびポンプ38に伝達される。しかして、弁39の開
閉、およびポンプ38の発停に伴って台船j1内の一般
高圧液体容器に通じる前記高圧液体管35により作動液
の送受を行い、もって、ピストン14内の作動液の平均
圧を維持する。
That is, in the example shown in FIG.
The electrical signal of the pressure change of the hydraulic pressure gauge 36 is converted into an average pressure signal by the smoothing circuit 37,
9 to open/close, and the pump 38 to start/stop.
and is transmitted to pump 38. As the valve 39 opens and closes and the pump 38 starts and stops, hydraulic fluid is sent and received through the high-pressure liquid pipe 35 communicating with the general high-pressure liquid container in the barge j1, and thus the hydraulic fluid in the piston 14 is Maintain average pressure.

他方、第11図に示す例では、シリンダ状になした作動
油貯留装置15内にピストン41ヲ配設し、このビス“
トン41のロッド42に設けたラック43にピニオン4
4ヲ噛合させ、このピニオン44ヲ駆動する油圧モータ
(図示せず)を平滑化回路37より発した発停信号によ
り制御するようにしている。なお、連通管17の管内圧
力を液圧計36により検出し、この圧力変化の電気信号
を前記平滑化回路37に送ることは第10図に示す例の
場合と同様である。
On the other hand, in the example shown in FIG.
The pinion 4 is attached to the rack 43 provided on the rod 42 of the ton 41.
4 are engaged, and a hydraulic motor (not shown) that drives this pinion 44 is controlled by a start/stop signal issued from a smoothing circuit 37. Note that the internal pressure of the communication pipe 17 is detected by the hydraulic pressure gauge 36, and the electrical signal of this pressure change is sent to the smoothing circuit 37, as in the case of the example shown in FIG.

上記のように、本発明は半ジヤツキアップ型台船の脚部
、または緊張係留型浮体の係留脚等の脚部に流体シリン
ダのピストン部を設けると共に、前記台船または浮体等
に流体シリンダのシリンダ部を固定し、流体シリンダの
作動液を貯留する作動液貯留容器と前記流体シリンダと
全連通管で連通し、該連通管に流体通過抵抗の大きいオ
リフィスまたはチョーク弁等の流動制御器を設け、かつ
、前記作動液貯留容器内の作動液に高圧を付勢する圧力
付勢装置を設けたので、半ジヤツキアップ型台船又は緊
張係留型浮体が波浪等の短周期水位の変動に対して面外
揺動することがないばかりでなく、波浪に比べて無視出
来ないほど水位差の大きい潮の干満等の長周期水位に対
応して上下動することとなり、脚柱、フーティング、ア
ンカー、係留脚等の部材強度は従来の約V2〜約いで済
む。
As described above, the present invention provides a piston portion of a fluid cylinder on a leg of a semi-jerker-up type barge or a mooring leg of a tension-moored floating body, and also provides a piston portion of a fluid cylinder on the barge, floating body, etc. A hydraulic fluid storage container for storing the hydraulic fluid of the fluid cylinder is connected to the fluid cylinder through a communication pipe, and the communication pipe is provided with a flow controller such as an orifice or choke valve with a large fluid passage resistance, In addition, since a pressure biasing device is provided that applies high pressure to the hydraulic fluid in the hydraulic fluid storage container, the semi-jacketed barge or the tension moored floating body can be kept out of plane against short-period water level fluctuations such as waves. Not only do they not oscillate, but they also move up and down in response to long-period water levels such as tides, which have large water level differences that cannot be ignored compared to waves. The strength of these members is about V2 to about that of the conventional method.

従って、建造コスト、設置コストが格段に安価になる。Therefore, construction costs and installation costs are significantly reduced.

また、連通管に流体通過抵抗の大きいオリフィスまたは
、チョーク弁等の流通制御器を設ける代りに、作動液貯
容器内に作動液の圧力変動に応じて作動するピストン装
置を設けたり、或いは連通管に作動液の変動に応じて作
動するポンプと開閉弁とを設けても同様の効果が得られ
る。
Furthermore, instead of providing an orifice with large fluid passage resistance or a flow controller such as a choke valve in the communication pipe, a piston device that operates according to pressure fluctuations of the hydraulic fluid may be provided in the hydraulic fluid storage container, or A similar effect can be obtained by providing a pump and an on-off valve that operate according to fluctuations in the hydraulic fluid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は半ジヤツキアップ型台船の概略図、第2図は緊
張係留型浮体の概略図、第3図は従来の半ジヤツキアッ
プ型台船の脚部の圧縮軸力の時間的変動を示す説明図、
第4図は従来の緊張係留型浮体の係留脚の引張軸力の時
間的変動を示す説明図、第5図、第6図、及び第7図は
本発明の装置を半ジヤツキアップ台船に適用した場合を
示す縦断面図、第8図及び第9図は本発明の装置を緊張
係留型浮体に適用した場合を示す縦断面図、第10図お
よび第11図は本発明の他の実施例を示す縦断面図、を
それぞれ示す。 11・・・半ジヤツキアップ台船、12・・・脚部、1
3・・・ピストン、14・・・シリンダ、15・・・作
動液貯留容器、17・・・連通管、19・・・流通制御
器、27・↓・緊張係留型浮体、28・・・係留脚。 代理人 弁理士 小 川 信 − 弁理士 野 口 賢 照 弁理士斎下和彦 第1図 3 @2図 第3図 (A) 第7図 第8図
Fig. 1 is a schematic diagram of a half-judge-up type barge, Fig. 2 is a schematic diagram of a tension-moored floating body, and Fig. 3 is an explanation showing temporal fluctuations in compressive axial force in the legs of a conventional semi-judge-up type barge. figure,
Fig. 4 is an explanatory diagram showing temporal fluctuations in the tensile axial force of the mooring legs of a conventional tension-moored floating body, and Figs. 5, 6, and 7 show the application of the device of the present invention to a semi-jerker-up barge. FIGS. 8 and 9 are longitudinal sectional views showing the case where the device of the present invention is applied to a tension-moored floating body, and FIGS. 10 and 11 are longitudinal sectional views showing other embodiments of the present invention. A vertical cross-sectional view showing the . 11... Half jack up barge, 12... Legs, 1
3...Piston, 14...Cylinder, 15...Working fluid storage container, 17...Communication pipe, 19...Flow controller, 27・↓・Tension mooring type floating body, 28...Mooring leg. Agent: Patent Attorney Shin Ogawa − Patent Attorney Ken Noguchi Teru Patent Attorney Kazuhiko Saishita Figure 1 Figure 3 @ Figure 2 Figure 3 (A) Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、 半ジヤツキアップ型台船の脚部、または緊張係留
型浮体の係留脚等の脚部に流体シリンダのピストン部を
設けると共に、前記台船または浮体等に流体シリンダの
シリンダ部を・固定し、流体シリンダの作動液を貯留す
る作動液貯留容器と前記液体シリンダとを連通管で連通
し、該連通管に流体通過抵抗の大きいオリフィスまたは
チョーク弁等の流通制御器を設け、かつ、前記作動液貯
留容器内の作動液に高圧を付勢する圧力付勢装置を設け
たことf、特徴とする軸力調整装置。 2、 圧力付勢装置が加圧気体を貯留する加圧気体貯留
容器である特許請求の範囲第1項記載のの軸力調整装置
。 3、 半ジャッキアッグ型台船の脚部、または緊張係留
型浮体の係留脚等の脚部に流体シリンダのピストン部を
設けると共に、前記台船または浮体等に流体シリンダの
シリンダ部を固定し、流体シリンダの作動液を貯留する
作動液貯留容器と前記流体シリンダとを連通管で連通し
、かつ、前記作動液貯留容器内に作動液の圧力変動に応
じて作動するピストン装置を設けたことを特徴とする軸
力調整装置。 4、 半ジヤツキアップ型台船の脚部、または緊張係留
型浮体の係留脚等の脚部に流体シリンダのピストン部を
設けると共に、前記台船または浮体等に流体シリンダの
シリンダ部を固定し、流体シリンダの作動液を貯留する
作動液貯留容器と前記流体シリンダとを連通管で連通し
、゛かつ、該連通管に作動液の変動に応じて作動するポ
ンプと開閉弁を設けたことを特徴とする軸力調整装置。
[Scope of Claims] 1. A piston portion of a fluid cylinder is provided in a leg of a semi-jerker-up barge or a mooring leg of a tension-moored floating body, and the cylinder of the fluid cylinder is provided on the barge, floating body, etc. A hydraulic fluid storage container for storing the hydraulic fluid of the fluid cylinder is connected to the liquid cylinder through a communication pipe, and the communication pipe is provided with a flow controller such as an orifice or a choke valve having a large fluid passage resistance. An axial force adjustment device characterized in that, f, a pressure urging device is provided for applying high pressure to the hydraulic fluid in the hydraulic fluid storage container. 2. The axial force adjustment device according to claim 1, wherein the pressure urging device is a pressurized gas storage container that stores pressurized gas. 3. Providing a piston portion of a fluid cylinder on a leg of a semi-jack-ag type barge or a mooring leg of a tension-moored floating body, and fixing the cylinder portion of the fluid cylinder to the barge, floating body, etc.; A hydraulic fluid storage container that stores the hydraulic fluid of the fluid cylinder and the fluid cylinder are connected through a communication pipe, and a piston device that operates according to pressure fluctuations of the hydraulic fluid is provided in the hydraulic fluid storage container. Characteristic axial force adjustment device. 4. A piston portion of a fluid cylinder is provided on a leg portion of a half-jerker-up type barge or a mooring leg of a tension-moored type floating body, and the cylinder portion of the fluid cylinder is fixed to the barge or floating body, etc. A hydraulic fluid storage container for storing the hydraulic fluid of the cylinder is connected to the fluid cylinder through a communication pipe, and the communication pipe is provided with a pump and an on-off valve that operate according to fluctuations in the hydraulic fluid. Axial force adjustment device.
JP14544481A 1981-09-17 1981-09-17 Axial force adjustment device Expired JPS5848686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14544481A JPS5848686B2 (en) 1981-09-17 1981-09-17 Axial force adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14544481A JPS5848686B2 (en) 1981-09-17 1981-09-17 Axial force adjustment device

Publications (2)

Publication Number Publication Date
JPS5847816A true JPS5847816A (en) 1983-03-19
JPS5848686B2 JPS5848686B2 (en) 1983-10-29

Family

ID=15385369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14544481A Expired JPS5848686B2 (en) 1981-09-17 1981-09-17 Axial force adjustment device

Country Status (1)

Country Link
JP (1) JPS5848686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05266756A (en) * 1992-03-18 1993-10-15 Ngk Insulators Ltd Detector for contact failure in disconnector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05266756A (en) * 1992-03-18 1993-10-15 Ngk Insulators Ltd Detector for contact failure in disconnector

Also Published As

Publication number Publication date
JPS5848686B2 (en) 1983-10-29

Similar Documents

Publication Publication Date Title
US4721053A (en) Motion compensators and mooring devices
US4606673A (en) Spar buoy construction having production and oil storage facilities and method of operation
JP5264593B2 (en) Fixing bottom member, tension mooring float system and installation method thereof
US4848967A (en) Load-transfer system for mating an integrated deck with an offshore platform substructure
US4473323A (en) Buoyant arm for maintaining tension on a drilling riser
KR950011773A (en) How to install decks for offshore platforms on offshore support structures
US4622812A (en) Apparatus for deriving energy from variation of the level of a body of fluid
KR19980025071A (en) Low draft floating offshore drilling and production structures
US6431284B1 (en) Gimbaled table riser support system
US4091897A (en) Hydraulic counterweight and shock-absorbing system
US3120106A (en) Off shore moorings
GB2314047A (en) Tethered marine stabilising system
JPS60215912A (en) Flexible ocean platform
WO1996002415A1 (en) Semi-submersible offshore platform with articulated buoyancy
US4471709A (en) Pretensioned catenary free deep sea mooring system
EP0256177A1 (en) Spar buoy construction having production and oil storage facilities and method of operation
JPS5847816A (en) Regulator for axial force
EP0385932A2 (en) Mechanical damper system for a floating structure
NO160069B (en) Marine structures.
GB2349611A (en) Sizing of tension lines for a tension leg platform
CA1205740A (en) Marine riser tensioner
US3839976A (en) Constant force device
NL2031193B1 (en) Marine structure and method
WO2023244121A1 (en) A heave compensated marine vessel, a method of operating the vessel, and a semi-submersible platform
AU2013203528A1 (en) Wave Energy Conversion