JPS5847571B2 - Hydrostatic bearing device - Google Patents

Hydrostatic bearing device

Info

Publication number
JPS5847571B2
JPS5847571B2 JP4089977A JP4089977A JPS5847571B2 JP S5847571 B2 JPS5847571 B2 JP S5847571B2 JP 4089977 A JP4089977 A JP 4089977A JP 4089977 A JP4089977 A JP 4089977A JP S5847571 B2 JPS5847571 B2 JP S5847571B2
Authority
JP
Japan
Prior art keywords
bearing
bearings
shaft
spring
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4089977A
Other languages
Japanese (ja)
Other versions
JPS53126456A (en
Inventor
興二 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4089977A priority Critical patent/JPS5847571B2/en
Publication of JPS53126456A publication Critical patent/JPS53126456A/en
Publication of JPS5847571B2 publication Critical patent/JPS5847571B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 本発明は静圧気体軸受装置に関する。[Detailed description of the invention] The present invention relates to a hydrostatic gas bearing device.

従来より一般に広く用いられている自成絞り形の静圧気
体軸受を第1図、第2図に示す。
BACKGROUND ART A self-drawn type static pressure gas bearing that has been widely used in the past is shown in FIGS. 1 and 2.

両図において、1′は軸受本体で、2”は摺動面、3′
は給気孔、4′は0 1Jング溝である。
In both figures, 1' is the bearing body, 2'' is the sliding surface, and 3' is the bearing body.
is an air supply hole, and 4' is a 01J groove.

この軸受は給気孔3′に加圧気体を供給し、図示されて
いないが、軸との間に作られる軸受隙間に流体静力学的
なフイルム圧力が発生し、これによって軸との接触を防
止するものである。
This bearing supplies pressurized gas to the air supply hole 3', and although not shown, hydrostatic film pressure is generated in the bearing gap created between the bearing and the shaft, thereby preventing contact with the shaft. It is something to do.

静止軸受の特徴は、外部よりカロ圧気体を供給している
時は、軸の回転に関係なくフイルムが形成され軸との接
触が防止され、半永久的な寿命があり、回転中の摩擦ト
ルクが極めて小さいことがある。
The characteristics of stationary bearings are that when Calorie pressure gas is supplied from the outside, a film is formed regardless of the rotation of the shaft, preventing contact with the shaft, resulting in a semi-permanent life, and reducing friction torque during rotation. It can be extremely small.

゛しかし、第1図、第2図に示す静圧軸受は内面
全周が軸と摺動するいわゆる全周軸受(Fulljou
rnal bearing)であるため、軸の回転が
高くなり軸受隙間内に流体動力学的な圧力が付加され、
これがある程度大きくなってくると、ふれまわりを発生
する。
However, the static pressure bearings shown in Figs. 1 and 2 are so-called full-circumference bearings in which the entire inner circumference slides on the shaft.
rnal bearing), the rotation of the shaft increases and hydrodynamic pressure is applied within the bearing gap.
When this becomes large enough, whirling occurs.

これがこの種の軸受を実用するとき大きな問題となる。This poses a major problem when this type of bearing is put into practical use.

これを防止するため、第1図の4′部に0 1Jング等
弾性部材を入れて、軸受本体1′全体に半径方向に自由
度を持たせて支持するいわゆる弾性支持する方法等が取
られ、十分ではないにしても可或りの効果をあげている
In order to prevent this, a so-called elastic support method has been adopted in which an elastic member such as a 01J ring is inserted into the 4' portion of Fig. 1 to support the entire bearing body 1' with a degree of freedom in the radial direction. Although it is not sufficient, it has had some effect.

一方、第3図、第4図はふれまわりに対し非常に安定が
良いといわれているチルチングパッド形軸受である。
On the other hand, FIGS. 3 and 4 show tilting pad type bearings that are said to be extremely stable against whirling.

なお第4図は第3図のB−B矢視断面図である。Note that FIG. 4 is a sectional view taken along the line BB in FIG. 3.

1”はパッド、2′′はピポット、3”は軸愛本体、4
”は上部パッド用の調整可能なピポット、5”は上部ピ
ポットの止めねじである。
1" is the pad, 2'' is the pivot, 3" is the shaft body, 4
” is the adjustable pivot for the top pad, and 5” is the set screw for the top pivot.

この軸受は軸の回転によってフイルム圧力を生じせしめ
、これによってパッド1″と軸の接触を防止する流体動
力学的軸受であり、回転が十分に高くないときは、パツ
ド1”と軸は接触する。
This bearing is a hydrodynamic bearing that generates film pressure as the shaft rotates, thereby preventing pad 1" from coming into contact with the shaft. If the rotation is not high enough, pad 1" and the shaft will come into contact. .

これを防ぐため構造が複雑になるが、ピポット2”を通
して予備的な給気孔を設け、外部より加圧気体を送って
リフトアップする方法がとられることもある。
In order to prevent this, the structure becomes complicated, but sometimes a preliminary air supply hole is provided through the pivot 2'' and pressurized gas is sent from the outside to lift it up.

チルチングパッド軸受の狙いは、ピボット2”を支点に
パツド1”が限られた範囲ではあるが、回転し得るため
、パツド1”の摺動面に発生する流体動力学的な圧力を
積分して得られる力の作用点が、ピボット2”の上にあ
り同時にその方向は軸の中心に向っているため、軸に対
しふれまわり力を生じさせない点にある。
The purpose of the tilting pad bearing is to integrate the hydrodynamic pressure generated on the sliding surface of pad 1", since pad 1" can rotate around pivot 2", albeit within a limited range. The point of application of the resulting force is above the pivot 2'' and at the same time its direction is toward the center of the shaft, so it is at a point that does not produce any whirling force on the shaft.

しかし、チルチングパッド軸受は流体動力学的軸受であ
るため、軸の回転が相当高いものでも、フイルム圧力が
小さく、フイルムの剛性が小さい。
However, since the tilting pad bearing is a hydrodynamic bearing, even if the rotation of the shaft is considerably high, the film pressure is small and the film rigidity is small.

起動、停止時に外部より高圧ガスを供給する構造のもの
では、構造が複雑になる一方で、チルチングパッド軸受
では寸法精度の要求が厳しいという欠点がある。
Those with a structure in which high-pressure gas is supplied from the outside at the time of starting and stopping have a complicated structure, while tilting pad bearings have the drawback of strict requirements for dimensional accuracy.

上記のように静圧軸受は高速回転時のふれまわり安定性
に問題があり、チルチングパッド軸受は負荷能力が小さ
い上寸法精度の要求が厳しく、負荷能力が小さい点をピ
ボットを介して外部より高圧ガスを供給して静圧効果を
利用する方法もあるが、構造が複雑になり寸法精度の確
保が困難になる。
As mentioned above, hydrostatic bearings have problems with whirling stability during high-speed rotation, and tilting pad bearings have a small load capacity and strict requirements for dimensional accuracy. Although there is a method of supplying high-pressure gas and utilizing the static pressure effect, the structure becomes complicated and it becomes difficult to ensure dimensional accuracy.

本発明の目的は上記の点に着目し、構造を簡易化し、チ
ルチングパッド軸受の安定性と静圧軸受の負荷能力と併
有する軸受を提供することであり、その特徴とするとこ
ろは、チルチングパッド軸受はパッドを周方向に配置し
ているのに対し、本発明の軸受は軸方向に分割し、リン
グ状の軸受を配置せしめ、1個のリング状の軸受をもっ
て、チルチングバット1個分の作用をせしめるようにし
たことである。
The purpose of the present invention is to focus on the above points, simplify the structure, and provide a bearing that has both the stability of a tilting pad bearing and the load capacity of a hydrostatic bearing. While the tilting pad bearing has pads arranged in the circumferential direction, the bearing of the present invention is divided in the axial direction and has ring-shaped bearings arranged, so that one tilting pad can be used with one ring-shaped bearing. This was done so that the effect of the amount of water could be reduced.

これによって、構造は比較的簡単で、パッドの曲率に相
当する軸受内径の精度が確保しやすくなり、また外部よ
り高圧ガスを供給するいわゆる静圧効果も簡単に利用で
きる。
As a result, the structure is relatively simple, the accuracy of the bearing inner diameter corresponding to the curvature of the pad can be easily ensured, and the so-called static pressure effect of supplying high-pressure gas from the outside can be easily utilized.

本発明は、ヘリウムサーキュレータ、ガス膨張タービン
、高速回転ガス圧縮機、高速回転圧縮機(小型フレオン
タービンコンプレツサ等)等に広く適用できる。
The present invention can be widely applied to helium circulators, gas expansion turbines, high-speed rotation gas compressors, high-speed rotation compressors (small Freon turbine compressors, etc.), and the like.

以下図面を参照して本発明による1実施例につき説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第5図は本発明による1実施例の静圧軸受装置を示す断
面図、第6図は第5図のA−A矢視断面図、第7図は各
軸受を示す断面図である。
FIG. 5 is a sectional view showing a hydrostatic bearing device according to an embodiment of the present invention, FIG. 6 is a sectional view taken along the line A--A in FIG. 5, and FIG. 7 is a sectional view showing each bearing.

図において、1 ,2.3は軸受、4は軸受ケース、5
はカバー、6は軸受ケース4とカバー5の間の0 1J
ング、7は給気孔、8はばね、9は加圧空気の供給穴、
10はばね8の座穴、11は軸受摺動面に設けられた排
気溝、12は回り止めピン、13は溝、14は軸である
In the figure, 1, 2.3 are bearings, 4 is a bearing case, and 5 is a bearing case.
is the cover, and 6 is the 0 1J between the bearing case 4 and the cover 5.
7 is an air supply hole, 8 is a spring, 9 is a pressurized air supply hole,
10 is a seat hole of the spring 8, 11 is an exhaust groove provided on the sliding surface of the bearing, 12 is a rotation stop pin, 13 is a groove, and 14 is a shaft.

第7図に示すように、3個のリング状の軸受1,2,3
にそれぞれ給気孔7、ばね座穴10、排気溝11を12
0°ずつ位相をずらして形成し、これを第5図、第6図
に示すように、3個の軸受1,2,3が半径方向に自由
に動き得る微小隙間を介して軸受ケース4に組込む。
As shown in Figure 7, three ring-shaped bearings 1, 2, 3
Air supply hole 7, spring seat hole 10, and exhaust groove 11 are installed in 12.
The three bearings 1, 2, and 3 are formed with a phase shift of 0°, and as shown in Figs. Incorporate.

各軸受1,2.3に嵌挿された回り止めピン12は、軸
受ケース4に軸方向に形成された共通の長溝13に先端
部が挿入されているため、運転中にも軸受1 ,2.3
の給気孔7やはね8の相対的位置は変らず、また軸受2
,3のばね8による半径方向、即ち対向側への変位を許
容する程度にピン12の径と溝13の巾との関係を調整
する。
Since the tip of the locking pin 12 fitted into each bearing 1, 2.3 is inserted into a common long groove 13 formed in the axial direction in the bearing case 4, the rotation pin 12 can be inserted into the bearing 1, 2 even during operation. .3
The relative positions of the air supply hole 7 and the spring 8 of the bearing 2 do not change.
The relationship between the diameter of the pin 12 and the width of the groove 13 is adjusted to the extent that displacement of the pins 12 in the radial direction, that is, in the opposite direction by the springs 8 of the pins 12 is permitted.

軸受1,2,3には給気孔7が1個以上任意数設けられ
る。
The bearings 1, 2, and 3 are provided with one or more air supply holes 7 in any number.

ただし、この給気孔7は必ずしも全周等ピッチで設ける
のではなく、本実施例のようにばね8のある方向に偏っ
て設けることができる。
However, the air supply holes 7 are not necessarily provided at equal pitches all around the circumference, but may be provided biased toward the direction of the spring 8 as in this embodiment.

上記構戒の場合の作用、効果について述べる。The functions and effects of the above structure will be described.

外部加圧気体を軸受ケース4の供給穴9より送ると、各
軸受L2,3の外周部に流れ、次に各軸受1,2.3の
給気孔7より軸受面と軸との間の軸受隙間に流れる。
When externally pressurized gas is sent through the supply hole 9 of the bearing case 4, it flows to the outer periphery of each bearing L2, 3, and then flows through the air supply hole 7 of each bearing 1, 2.3 to the bearing between the bearing surface and the shaft. Flows into the gap.

軸受隙間内では、フイルム圧となり雰囲気圧まで減圧さ
れるが、各々の軸受1,2.3にはばね8が入れられ、
それぞれ3つの方向に押し付けられているため、フイル
ム圧力はフイルム厚さが小さいばね8のあるところでは
大きく、その反対側は低く、ほとんど雰囲気圧力になる
In the bearing gap, the pressure becomes film pressure and is reduced to atmospheric pressure, but a spring 8 is inserted into each bearing 1, 2.3,
Since the film is pressed in each of the three directions, the film pressure is high where the film has the small thickness of the spring 8, and is low on the opposite side, almost to atmospheric pressure.

従って、ばね8のあるところの部分のフイルム圧力が軸
受性能を支配するため、軸受1 ,2.3はリング状で
あるが、それぞれがチルチングパッド軸受の1つのパッ
ドと同様の働きをすることになる。
Therefore, since the film pressure in the area where the spring 8 is located governs the bearing performance, although the bearings 1 and 2.3 are ring-shaped, each acts similarly to one pad of the tilting pad bearing. become.

フイルム圧力は軸との隙間が大きくなると小さくなり、
隙間が小さくなると大きくなり、軸受1,2.3と軸と
の間には剛性を有することになる。
The film pressure decreases as the gap with the shaft increases,
As the gap becomes smaller, it becomes larger, and there is rigidity between the bearings 1, 2.3 and the shaft.

そして、1個の軸受1について見ると、ばね8は一方向
に偏って入れてあるため、2個のばね8の合力と直角方
向の反力はほとんどなく、この方向の力を受けることは
できない。
Looking at one bearing 1, since the spring 8 is biased in one direction, there is almost no reaction force in the direction perpendicular to the resultant force of the two springs 8, and it cannot receive any force in this direction. .

このことは、軸受1に流体動力学的な力が発生しても、
軸14に対して力を及ぼす前に、チルチングパッド軸受
と同様に軸受1が変位してしまい、ふれまわりを発生さ
せることはない。
This means that even if a hydrodynamic force is generated on the bearing 1,
Before applying force to the shaft 14, the bearing 1 is displaced in the same manner as the tilting pad bearing, and no whirling occurs.

3個の軸受1,2.3が独立して軸14に作用する。Three bearings 1, 2.3 act independently on the shaft 14.

軸受1,2.3の剛性は静圧軸受であるため比較的大き
く、ばね8の剛性をこれより十分小さくすることにより
、軸受ケース4に対する軸14の偏心の剛性はほとんど
はね8のはね定数に等しくなり、フイルム厚さはほとん
ど変化しないことになる。
The rigidity of the bearings 1, 2.3 is relatively high because they are hydrostatic bearings, and by making the rigidity of the spring 8 sufficiently smaller than this, the rigidity of the eccentricity of the shaft 14 with respect to the bearing case 4 is almost completely reduced by the spring of the spring 8. is equal to a constant, and the film thickness will hardly change.

このことは、軸受全体の剛性がばね8の機械的な弾性に
依存することになり、フイルム圧力による複雑なふれま
わりの原因を回転軸系に持ち込まないことになり、機械
の設計としては、軸14の自由支持の固有振動数近くま
で安定して回転させることができる。
This means that the rigidity of the entire bearing depends on the mechanical elasticity of the spring 8, and the cause of complicated whirling due to film pressure is not introduced into the rotating shaft system. It is possible to stably rotate up to a frequency close to the free support natural frequency of 14.

また、小径の軸受をチルチングパッド軸受に、しかもそ
れを外部よりカロ圧気体を供給する静圧軸受にすること
は、構造が複雑なため至難の技であったが、軸方向に3
分割されたリング状の軸受を作ることは容易であり、こ
れに従来の軸受では得られなかった極めて安定の良い高
速回転が可能になる。
In addition, it was extremely difficult to convert a small diameter bearing into a tilting pad bearing, and also a static pressure bearing that supplies Calorie gas from the outside, due to its complicated structure.
It is easy to make a segmented ring-shaped bearing, and it enables extremely stable high-speed rotation that was not possible with conventional bearings.

さらに、ばね8の代りにゴム等のような内部ダンピング
を有する弾性部材を用いることにより、ふれまわりだけ
でなく、固有振動数に対しても、振動を押えることが可
能となり、極めて超高速回転の軸受を得ることができる
Furthermore, by using an elastic member with internal damping, such as rubber, in place of the spring 8, it is possible to suppress vibrations not only from whirling, but also from the natural frequency, allowing extremely high-speed rotation. You can get bearings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の静圧気体軸受を示す断面図、第2図は第
1図のA−A矢視断面図、第3図はチルチングパッド形
軸受を示す断面図、第4図は第3図のB−B矢視断面図
、第5図は本発明による1実施例の静圧軸受装置を示す
断面図、第6図は第5図のA−A矢視断面図、第7図は
第5図の装置の各軸受を示す断面図である。 1,2,3・・・・・・軸受、4・・・・・・軸受ケー
ス、5・・・・・・カバー、6・・・・・・0 1Jン
グ、7・・・・・・給気孔、8・・・・・・ばね、9・
・・・・・加圧気体の供給穴、10・・・・・・ばね8
の座穴、11・・・・・・排気溝、12・・・・・・回
り止めピン、13・・・・・・溝、14・・・・・・軸
Fig. 1 is a sectional view showing a conventional hydrostatic gas bearing, Fig. 2 is a sectional view taken along the line A-A in Fig. 1, Fig. 3 is a sectional view showing a tilting pad type bearing, and Fig. 4 is a sectional view showing a tilting pad type bearing. 3 is a cross-sectional view taken along the line B-B in FIG. 3, FIG. 5 is a cross-sectional view showing a hydrostatic bearing device according to an embodiment of the present invention, FIG. 6 is a cross-sectional view taken along the line A-A in FIG. 5, and FIG. 5 is a sectional view showing each bearing of the device of FIG. 5. FIG. 1, 2, 3...Bearing, 4...Bearing case, 5...Cover, 6...0 1J ring, 7... Air supply hole, 8... Spring, 9.
... Pressurized gas supply hole, 10 ... Spring 8
seat hole, 11...exhaust groove, 12...stopping pin, 13...groove, 14...shaft.

Claims (1)

【特許請求の範囲】[Claims] 1 軸受ケースにそれぞれ径方向の変位可能に連続して
内蔵された複数個のリング状の軸受、同軸受を貫通して
軸受面へ加圧気体を供給する給気孔、上記軸受の回動を
規制する回り止め装置、上記軸受のそれぞれに対する位
置を周方向にほぼ等間隔にずらして上記各軸受の外周側
に配設され同各軸受を対向側へ付勢する弾性部材を備え
たことを特徴とする静圧軸受装置。
1. Multiple ring-shaped bearings built into the bearing case so that they can each be displaced in the radial direction, an air supply hole that passes through the bearings and supplies pressurized gas to the bearing surface, and controls the rotation of the bearings. a detent device, comprising an elastic member disposed on the outer circumferential side of each of the bearings so as to shift its position relative to each of the bearings at approximately equal intervals in the circumferential direction, and biasing each of the bearings toward the opposite side. Hydrostatic bearing device.
JP4089977A 1977-04-12 1977-04-12 Hydrostatic bearing device Expired JPS5847571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4089977A JPS5847571B2 (en) 1977-04-12 1977-04-12 Hydrostatic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4089977A JPS5847571B2 (en) 1977-04-12 1977-04-12 Hydrostatic bearing device

Publications (2)

Publication Number Publication Date
JPS53126456A JPS53126456A (en) 1978-11-04
JPS5847571B2 true JPS5847571B2 (en) 1983-10-24

Family

ID=12593348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4089977A Expired JPS5847571B2 (en) 1977-04-12 1977-04-12 Hydrostatic bearing device

Country Status (1)

Country Link
JP (1) JPS5847571B2 (en)

Also Published As

Publication number Publication date
JPS53126456A (en) 1978-11-04

Similar Documents

Publication Publication Date Title
JP2709735B2 (en) High-speed rotating shaft fluid compression membrane damper
TWI704297B (en) Hybrid dynamic pressure gas thrust bearing
US10487871B2 (en) Air foil journal bearing
JP2005536697A (en) Foil-elastic support for fluid bearings
US5399024A (en) Face seal with hydrodynamic thrust pads
JPS6118067B2 (en)
US3048043A (en) Gas bearing gyroscope
CN105202018A (en) Hybrid type dynamic pressure gas journal bearing
JPH10184668A (en) Fluid bearing device
JPS5847571B2 (en) Hydrostatic bearing device
JPH0147649B2 (en)
JPH0914262A (en) Dynamic pressure gas journal bearing
WO2019087890A1 (en) Tilting pad bearing
JPH02503711A (en) Thrust bearing support device with tilt position correction mechanism
JPS61107523A (en) Rotary drum device
US4466299A (en) Gyro bearing assembly
JPS62288719A (en) Dynamic pressure thrust bearing
JPS5829405B2 (en) bearing device
JPH1182498A (en) Bearing device
JP2645544B2 (en) Shaft sealing device
KR20190043229A (en) Tilting pad bearing using multiple support methods
JP2002070853A (en) High damping thrust bearing
JPH0520606B2 (en)
KR101279252B1 (en) Tilting pad bearing for turbocharger
JPH0619882Y2 (en) Segment seal