JPS5847298A - Method of pretreating in nuclear fuel reprocessing - Google Patents
Method of pretreating in nuclear fuel reprocessingInfo
- Publication number
- JPS5847298A JPS5847298A JP56145698A JP14569881A JPS5847298A JP S5847298 A JPS5847298 A JP S5847298A JP 56145698 A JP56145698 A JP 56145698A JP 14569881 A JP14569881 A JP 14569881A JP S5847298 A JPS5847298 A JP S5847298A
- Authority
- JP
- Japan
- Prior art keywords
- nuclear fuel
- fuel
- fission products
- pretreating
- alkaline earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/42—Reprocessing of irradiated fuel
- G21C19/44—Reprocessing of irradiated fuel of irradiated solid fuel
- G21C19/48—Non-aqueous processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は原子炉核燃料の再処理における前処理方法に関
する。より詳細に述べると、本発明は、従来のポロオキ
シデーション法におけりUs’sの代りにアルカリ金属
あるいはアルカリ土類金属のウラン酸塩およびプルトニ
ウム酸塩を生成せしめることによって核燃料の細粉化と
揮発性核分裂生成物の除去を効率的に行うことを特徴と
する核燃料の再処理における前処理方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pretreatment method for reprocessing nuclear fuel in a nuclear reactor. More specifically, the present invention provides pulverization of nuclear fuel by producing alkali metal or alkaline earth metal urates and plutonates in place of Us's in conventional poloxidation processes. The present invention relates to a pretreatment method for reprocessing nuclear fuel, which is characterized by efficiently removing volatile fission products.
従来、再処理法としては乾式、湿式に大別される諸方法
が提案され、そのうち溶媒抽出法を用いて燃料核種と核
分裂生成物および超ウラン元素を分離する工程を主工程
とした湿式法は既に実用化されている。その他にも乾式
法としてフッ化物あるいは塩化物の蒸気圧の差、および
化学的性質の差を利用して分離するハロゲン化物揮発法
、あるいは使用済燃料を数百塵の融解塩に溶かした後、
電解電圧の差、溶解度の差あるいは酸化物との反応性の
差異を利用して分離を行おうとする高温冶金化学法の可
能性が提案されている。ところで、これら分離の主工程
の前後には、主工程が湿式。Conventionally, various reprocessing methods have been proposed that can be roughly divided into dry and wet methods.Among these, the wet method, whose main step is the separation of fuel nuclides, fission products, and transuranium elements using a solvent extraction method, has been proposed. It has already been put into practical use. Other dry methods include the halide volatilization method, which uses differences in vapor pressure and chemical properties of fluorides or chlorides to separate them, or after dissolving spent fuel in a molten salt containing several hundred dust particles.
The possibility of a high-temperature metallurgical chemical method that attempts to perform separation by utilizing differences in electrolytic voltage, solubility, or reactivity with oxides has been proposed. By the way, the main processes before and after these main separation processes are wet.
乾式のいずれであるかを問わず、前処理および後処理工
程としての乾式法が不可欠である。例えば硝酸ウラニル
の脱硝、仮焼、UFaへのフッ化工程、あるいはハル処
理などである。Regardless of whether it is a dry method, dry methods are essential as pre-treatment and post-treatment steps. Examples include denitrification of uranyl nitrate, calcination, fluoridation process to UFa, or hull treatment.
ポロオキシデーションは、これらと同じような前処理工
程の一つであるが、近年大いて注目されている。すなわ
ち、この工程は燃料の剪断と分離の主工程の間に位置し
、燃料の粉末化を行うと共にトリチウムなど揮発性核分
裂生成物の蒸発、除去を目的としている。燃料な細粉化
1−ることば分離工程が湿式法の場合、溶解を容易に行
わしめるために必要である。トリチウムは溶解により軽
水中に同伴してトリチウム水となれば分離が困難となる
から、環境安全」二の要請を満たすまで、この核種を除
去するための経済的負担も重くなる。従って、溶解の工
程の前に乾式手法によってトリチウムを揮発によって除
去することは大いに望まれる。また、ルテニウムは硝酸
に溶は難(、溶解したイオンもヨウ素と同じ(条件によ
り微妙に変化するいろいろな化学形態をとり、分離抽出
が困難となる。そこで、トリチウムと共にルテニウム。Polo oxidation is one of these pretreatment steps, but it has received a lot of attention in recent years. That is, this step is located between the main steps of fuel shearing and separation, and aims to pulverize the fuel and vaporize and remove volatile fission products such as tritium. Fuel Fine Powdering 1- When the word separation step is a wet process, this is necessary to facilitate dissolution. If tritium is dissolved into light water and becomes tritiated water, it will be difficult to separate, and the economic burden of removing this nuclide will become heavy until the second requirement of "environmental safety" is met. Therefore, it is highly desirable to remove tritium by volatilization by dry methods prior to the dissolution step. In addition, ruthenium is difficult to dissolve in nitric acid (and the dissolved ions are the same as iodine (it takes various chemical forms that change slightly depending on the conditions), making separation and extraction difficult. Therefore, ruthenium is used along with tritium.
ヨウ素、クリプトン、キセノンなどの揮発性核分裂生成
物を乾式手法によって除去しようというのがポロオキシ
デーション法の目的である。ポロオキシデーションは燃
料を空気中あるいは酸素雰囲気中400〜700°Cに
焼灼することがら成る。この操作により燃料のUO2は
Us Os に酸化され、反応に伴う体積増加のため
ペレットが粉末に変ると共に揮発性核分裂生成物が蒸発
、除去される。The purpose of the poloxidation process is to remove volatile fission products such as iodine, krypton, and xenon using a dry method. Poloxidation consists of cauterizing the fuel to 400-700°C in air or oxygen atmosphere. Through this operation, UO2 in the fuel is oxidized to UsOs, and due to the increase in volume accompanying the reaction, the pellet turns into powder and volatile fission products are evaporated and removed.
しかしながら、ポロオキシデーション法には次の諸点に
問題があることがわがってきている:(1)トリチウム
は90〜99%が揮発して除去されろが、炭素−14,
クリプトン、キセノン、ヨウ素、ルテニウムなどは充分
に放出されない。(2)高速中性子増殖炉(FBR)燃
料すなわちUO2−Pu 02混合酸化物燃料ではプル
トニウム含量が20%以下では粉末化するが、25%以
上になるとM2O3相(M=U+Pu)に止まり、80
0’cに加熱しても粉末化が進まない。(3)ポロオキ
シデーションを行うと、溶解工程で発生する不溶性プル
トニウム(puo2)の量が4〜5倍はどにも増加する
。これらの欠点を除(ために高温ポロオキシデーション
法、硝酸塩転換法などの改良法も提案されているが、未
だ問題の解決眞は至っていない。However, it has been found that the poloxidation method has the following problems: (1) Although 90 to 99% of tritium is removed by volatilization, carbon-14,
Krypton, xenon, iodine, ruthenium, etc. are not released sufficiently. (2) In fast neutron breeder reactor (FBR) fuel, that is, UO2-Pu02 mixed oxide fuel, if the plutonium content is less than 20%, it will turn into powder, but if it exceeds 25%, it will remain in the M2O3 phase (M = U + Pu), and the
Powderization does not proceed even if heated to 0'c. (3) When poloxidation is performed, the amount of insoluble plutonium (puo2) generated during the dissolution process increases by 4 to 5 times. In order to eliminate these drawbacks, improved methods such as high temperature poroxidation method and nitrate conversion method have been proposed, but the problem has not yet been completely solved.
本発明の目的は、ポロオキシデーション法の長所は残し
、かつ、上記のような欠点を持たない乾式前処理法を提
供することである。すなわち、本発明に従って、ポロオ
キシデーションにおけろUa Osの代りにアルカリ金
属あるいはアルカリ土類金属のウラン酸塩およびプルト
ニウム酸塩を生成せしめることによって燃料の細粉化と
揮発性核分裂生成物の除去を効率的に行おうとするもの
である。The object of the present invention is to provide a dry pretreatment method that retains the advantages of the poloxidation method and does not have the drawbacks mentioned above. That is, according to the present invention, fuel pulverization and removal of volatile fission products are achieved by producing alkali metal or alkaline earth metal uranates and plutonates in place of UaOs in poloxidation. The aim is to do this efficiently.
本発明に従って使用済燃料にアルカリ金属の化合物ある
いはアルカリ土類金属の化合物の適当量を添加する。添
加する量はウラン酸塩およびプルトニウム酸塩の生成に
必要十分な量とする。添加する化合物は数百度で熱分解
し、有害ガスを生じないものが望ましい。また、分解温
度より低温で融解する特性をもつことも燃料との反応性
から見て望ましい。添加したあと、酸素あるいは空気を
流しながら混合物を加熱すれば、数百度で化合物は分解
し、それと共に燃料ペレットと反応してウラン酸塩およ
びプルトニウム酸塩を生成する。この過程で燃料は細粉
化され、核分裂生成物が気相中に放出される。According to the present invention, a suitable amount of an alkali metal compound or an alkaline earth metal compound is added to the spent fuel. The amount added is sufficient to produce uranate and plutonate. It is desirable that the compound to be added be one that thermally decomposes at several hundred degrees and does not produce harmful gases. It is also desirable from the viewpoint of reactivity with fuel to have the property of melting at a temperature lower than the decomposition temperature. After addition, if the mixture is heated with a stream of oxygen or air, the compound decomposes at a few hundred degrees Celsius, reacting with the fuel pellets to form uranates and plutonates. During this process, the fuel is pulverized and fission products are released into the gas phase.
本発明の方法によればプルトニウムもプルトニウム酸塩
をつ(す、体積が太き(増加するから(プルトニウム酸
塩の格子定数はPL102よりも一般に相当大きい)、
FBR燃料のよってプルトニウム含量の大きなUO2−
Pu 02混合酸化物も容易に粉末化される。また、ポ
ロオキシデーションではU8’gに転換したが、この、
化合物は共有結合性の強い層状化合物であり、ウランと
酸素原子とが二次元状網目構造をつくった一種のポリマ
ーと見做すことが出来るものであって、そのため揮発性
核分裂生成物が結晶格子中に捕集され、気相中への放出
率が低いと考えられる。また、共存するプルトニウムは
ポロオキシデーションによっても、初めのPu0zから
変らず、従ってPu0z格子中に捕集された核分裂生成
物の放出が困難になっている。本発明の方法によれば、
ウランもプルトニウムも、初めのUO2、Pu0zと全
(異なった結晶構造をもつウラン酸塩、プルトニウム酸
塩に転換されるから、この生成反応の間に揮発性核分裂
生成物が高い収率で放出される。つぎに溶解性の問題で
あるが、PuO2は本来、酸への溶解が容易でない化合
物として知られているものであるが、ボロオキシデーシ
ョンのような加熱処理を行うことにより、−属その溶解
が困難になる。しかし、文献などにも記載されている様
にアルカリ金属あるいはアルカリ土類金属のウラン酸塩
あるいはプルトニウム酸塩の酸への溶解性は良好であり
、生成物知よっては水てさえも溶けるから、本発明の方
法によれば、溶解性のわるいことによって従来生じてい
た困難が解決される。According to the method of the present invention, plutonium also contains plutonate, since the volume increases (the lattice constant of plutonate is generally much larger than that of PL102).
FBR fuel has a large plutonium content, UO2-
Pu 02 mixed oxide is also easily powdered. In addition, in poloxidation, it was converted to U8'g, but this
The compound is a layered compound with strong covalent bonds, and can be regarded as a type of polymer in which uranium and oxygen atoms form a two-dimensional network structure, so that volatile fission products are formed in the crystal lattice. It is thought that the rate of release into the gas phase is low. Furthermore, the coexisting plutonium does not change from the initial Pu0z even by poroxidation, making it difficult to release the fission products trapped in the Pu0z lattice. According to the method of the invention,
Both uranium and plutonium are converted into uranate and plutonate, which have different crystal structures from the initial UO2 and Pu0z, so volatile fission products are released in high yield during this production reaction. Next, regarding the issue of solubility, PuO2 is originally known as a compound that does not dissolve easily in acids, but by heat treatment such as borooxidation, it is possible to dissolve However, as described in the literature, uranate or plutonate of alkali metals or alkaline earth metals have good solubility in acids, and the product is known to be water-soluble. The method of the present invention overcomes the difficulties previously encountered due to poor solubility.
以上、分離主工程が湿式の場合を主眼において述べたが
、本発明による前処理法が乾式分離を主工程とする再処
理法においても成り立つことは勿論である。Although the above description has focused on the case where the main separation step is a wet type, it goes without saying that the pretreatment method according to the present invention is also applicable to a reprocessing method whose main step is dry separation.
以下、実施例を掲げて本発明をより具体的に解説する。Hereinafter, the present invention will be explained in more detail with reference to Examples.
未照射U O2ペレツトの一部、約200 m9を石英
ルツボに入れ、硝酸す) IJウムの濃厚水溶液0.2
5m1を加えた後、乾燥器中、数十塵で乾燥させた。A portion of the unirradiated UO2 pellet, approximately 200 m9, was placed in a quartz crucible and nitric acid was added.
After adding 5ml, it was dried in a dryer with several tens of dust particles.
このNa/U比は原子比ではソ17である。石英ルツボ
は横置管状炉中で酸素ガスを流しなから3°C/分の速
度で昇温した。320°Cで硝酸ナトリウムが融解し、
UO2との反応がはじまり、400〜500°Cでペレ
ットが粉末化する反応と共にウラン酸すトリウムの茶褐
色結晶が生じた。550〜600°CではNO2が完全
に揮発して反応が終り、Na2O(またはNa202)
と共に、かさ高かウラン酸ナトリウムの微粉末が得られ
た。This Na/U ratio is So17 in terms of atomic ratio. The quartz crucible was heated in a horizontal tube furnace at a rate of 3°C/min without flowing oxygen gas. Sodium nitrate melts at 320°C,
The reaction with UO2 started, and at 400 to 500°C, the pellets were pulverized and brown crystals of thorium uranate were generated. At 550-600°C, NO2 completely evaporates and the reaction ends, and Na2O (or Na202)
At the same time, bulky fine powder of sodium uranate was obtained.
特許出願人 日本原子力研究所Patent applicant: Japan Atomic Energy Research Institute
Claims (1)
塩を添加した後、空気中又は酸素ガスの存在下で加熱し
て両者を反応させることによりウランおよびプルトニウ
ムをそれぞれアルカリ金属あるいはアルカリ土類金属の
ウラン酸塩あるいはプルトニウム酸塩に変えて、核燃料
を細粉化し、同時に揮発性核分裂生成物を気相中に放出
除去することから成る核燃料の再処理における前処理方
法。After adding an alkali metal salt or an alkaline earth metal salt to nuclear fuel, the two are heated in air or in the presence of oxygen gas to react, thereby converting uranium and plutonium into alkali metal or alkaline earth metal uranium, respectively. A pretreatment method for reprocessing nuclear fuel, which consists of pulverizing the nuclear fuel by converting it into acid salts or plutonate salts, and simultaneously releasing and removing volatile fission products into the gas phase.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56145698A JPS5847298A (en) | 1981-09-16 | 1981-09-16 | Method of pretreating in nuclear fuel reprocessing |
FR8215606A FR2513000B1 (en) | 1981-09-16 | 1982-09-15 | PROCESS FOR PRETREATMENT OF NUCLEAR FUEL DURING RE-TREATMENT OF FUEL |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56145698A JPS5847298A (en) | 1981-09-16 | 1981-09-16 | Method of pretreating in nuclear fuel reprocessing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5847298A true JPS5847298A (en) | 1983-03-18 |
JPS6351516B2 JPS6351516B2 (en) | 1988-10-14 |
Family
ID=15391034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56145698A Granted JPS5847298A (en) | 1981-09-16 | 1981-09-16 | Method of pretreating in nuclear fuel reprocessing |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS5847298A (en) |
FR (1) | FR2513000B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63109936A (en) * | 1986-10-27 | 1988-05-14 | マホ アクチエンゲゼルシャフト | Program control type universal milling machine and tool exchanger for boring machine |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1199748B (en) * | 1963-05-15 | 1965-09-02 | Kernforschung Mit Beschraenkte | Process for processing irradiated nuclear fuel |
FR1399016A (en) * | 1963-05-15 | 1965-05-14 | Kernforschung Gmbh Ges Fuer | Process for the preparation and separation of nuclear fuels |
DE1467322B2 (en) * | 1964-06-10 | 1972-06-22 | Europäische Atomgemeinschaft (EURATOM), Brüssel | PROCESS FOR THE RECYCLING OF OXYDIC NUCLEAR REACTOR FUEL |
BE815189A (en) * | 1974-05-17 | 1974-09-16 | PROCESS FOR CONDITIONING OF IRRADIATED NUCLEAR FUEL | |
IT1034322B (en) * | 1975-03-17 | 1979-09-10 | Agip Nucleare Spa | PYROCHEMICAL SEPARATION OF PLUTUS NIUM FROM IRRAYED NUCLEAR FUELS BY THERMODECOMPOSITION IN MELTED NITRATES |
US4297174A (en) * | 1979-03-09 | 1981-10-27 | Agip Nucleare, S.P.A. | Pyroelectrochemical process for reprocessing irradiated nuclear fuels |
-
1981
- 1981-09-16 JP JP56145698A patent/JPS5847298A/en active Granted
-
1982
- 1982-09-15 FR FR8215606A patent/FR2513000B1/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63109936A (en) * | 1986-10-27 | 1988-05-14 | マホ アクチエンゲゼルシャフト | Program control type universal milling machine and tool exchanger for boring machine |
Also Published As
Publication number | Publication date |
---|---|
JPS6351516B2 (en) | 1988-10-14 |
FR2513000A1 (en) | 1983-03-18 |
FR2513000B1 (en) | 1988-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4011296A (en) | Irradiated fuel reprocessing | |
JP4196173B2 (en) | Method for reprocessing spent nuclear fuel | |
EP0419777A1 (en) | Actinide recovery | |
EP4060681A1 (en) | Dry aftertreatment method for spent fuel employing plasma | |
US3981960A (en) | Reprocessing method of caramic nuclear fuels in low-melting nitrate molten salts | |
Campbell et al. | The chemistry of fuel reprocessing: present practices, future trends | |
JP3823593B2 (en) | Method for reprocessing spent nuclear fuel and method for reprocessing spent nuclear fuel | |
US5135728A (en) | Method for dissolving delta-phase plutonium | |
Groh et al. | 244Cm Production and Separation—Status of the Pilot Production Program at Savannah River | |
JPS5847298A (en) | Method of pretreating in nuclear fuel reprocessing | |
US3982928A (en) | Separation of uranium from (Th,U)O2 solid solutions | |
JP2845413B2 (en) | Reprocessing method of spent nitride fuel | |
US3030176A (en) | Uranium separation process | |
Gray | Explosion and fire during conversion of liquid uranyl nitrate to solid uranium oxide | |
RU2707562C1 (en) | Method of processing fuel elements | |
US3451940A (en) | Process for the fixation of high level radioactive wastes | |
Flanary et al. | Hot-cell studies of aqueous dissolution processes for irradiated carbide reactor fuels | |
Orth | Plutonium metal from trifluoride | |
DelCul et al. | Advanced head-end for the treatment of used LWR fuel | |
US3110555A (en) | Separation of protactinium from molten salt reactor fuel compositions | |
JP6515369B1 (en) | Insoluble residue treatment process | |
JPH0943391A (en) | Nuclear fuel recycle system | |
US2892701A (en) | Pyrochemical decontamination method for reactor fuel | |
Ekberg | Developments in reprocessing of spent nuclear fuels for the thorium fuel cycle | |
US2898186A (en) | Solubilization of actinide metal-containing slag |