JP3823593B2 - Method for reprocessing spent nuclear fuel and method for reprocessing spent nuclear fuel - Google Patents

Method for reprocessing spent nuclear fuel and method for reprocessing spent nuclear fuel Download PDF

Info

Publication number
JP3823593B2
JP3823593B2 JP09241999A JP9241999A JP3823593B2 JP 3823593 B2 JP3823593 B2 JP 3823593B2 JP 09241999 A JP09241999 A JP 09241999A JP 9241999 A JP9241999 A JP 9241999A JP 3823593 B2 JP3823593 B2 JP 3823593B2
Authority
JP
Japan
Prior art keywords
uranium
fuel
plutonium
reprocessing
recovered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09241999A
Other languages
Japanese (ja)
Other versions
JP2000284089A (en
Inventor
文雄 河村
哲生 深澤
守 鴨志田
朗 笹平
淳一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP09241999A priority Critical patent/JP3823593B2/en
Publication of JP2000284089A publication Critical patent/JP2000284089A/en
Application granted granted Critical
Publication of JP3823593B2 publication Critical patent/JP3823593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所で発生する使用済核燃料の再処理方法および使用済核燃料からの燃料再加工方法に係り、特にフッ化物の揮発性の差を利用して使用済燃料からウランおよびプルトニウムを再処理して回収し、回収したウランおよびプルトニウムを燃料として再加工するのに好適な方法に関する。
【0002】
【従来の技術】
使用済核燃料の再処理方法としては、例えば、M.Benedict他著,清瀬量平訳,原子力化学工学,第IV分冊,燃料再処理と放射性廃棄物管理の化学工学(日刊工業新聞社),18頁以下に記載されている、湿式法のピュレックス法が広く採用されている。ピュレックス法は、使用済燃料を硝酸に溶解し、硝酸溶液中のウラン(U)とプルトニウム(Pu)をリン酸トリブチルの有機溶媒で抽出回収する方法である。
【0003】
水溶液を使わない乾式法としては、2種類の溶融塩電解法が開発されており、開発国,機関の名前からロシア法およびANL法と呼ばれている。ロシア法は、酸化物燃料を塩化物の溶融塩中に溶融し、U酸化物を電極へ析出させ、Pu酸化物を沈殿させ、それぞれ回収する方法である。ANL法は、金属燃料をそのままあるいは酸化物燃料を金属に還元して塩化物の溶融塩に溶融し、U金属およびPu金属を別々の電極(陰極)に回収する技術である。
【0004】
溶融塩電解法以外の乾式再処理法としては、例えば、原子力工業第17巻第3号53頁以下に記載の、フッ化物の揮発性の差を利用して再処理を行うフッ化物揮発法が知られている。従来のフッ化物揮発法は、蒸留,部分凝縮,分別蒸留,吸着等の技術を駆使して、UとPuを高純度で回収する方法である。
【0005】
【発明が解決しようとする課題】
使用済核燃料の再処理方法としての湿式ピュレックス法は、水溶液系であることや有機溶媒を使用することから、今後の高燃焼度燃料やPuの多い高速炉燃料では臨界制限が厳しくなることや溶媒の放射線分解による劣化等が問題になるといわれている。
【0006】
一方、水溶液を使わない乾式法は、臨界の問題や放射線劣化の問題を回避しやすいといわれている。乾式法はいずれも開発途上にあるが、酸化物燃料が対象のロシア法は、製品の除染係数(DF)向上,塩廃棄物処理等の開発課題を有している。主に金属燃料が対象のANL法は、酸化物処理には工程付加が必要であり、製品のDF向上,塩廃棄物処理,処理速度向上等の開発課題を有している。
【0007】
溶融塩電解法以外の乾式再処理法である従来型のフッ化物揮発法は、UとPuを高純度で回収するため、工程が複雑化すること、Puの精製過程等でPuのフッ化物の分解によりPuの回収率が低下すること等の課題があった。
【0008】
本発明の目的は、臨界および放射線劣化の問題を回避でき、塩廃棄物処理が不必要で、製品DF向上,処理速度向上,工程簡素化,Pu回収率向上が可能な、種々燃料に適した再処理方法および再処理に続く合理的な燃料再加工方法を提供することにある。
【0009】
【課題を解決するための手段】
上記した本発明の目的のうち、臨界,放射線劣化,塩廃棄物処理の回避,処理速度の向上および種々燃料への適用性向上は、フッ化物揮発法を採用することにより達成できる。
【0010】
再処理後の燃料(U,Pu)の使途を考慮すると、製品DFの向上が必要な燃料はUであり、本発明の特徴である再処理方法において、U,UとPuの混合物,核分裂生成物をそれぞれに分離回収することにより、フッ化物の安定なUの
DF向上は容易に達成できる。
【0011】
Uと同様に製品として回収されるUとPuの混合物は、混合酸化物燃料としての使途を考慮すると、DFを向上させる必要はなく、したがって精製工程を削除可能であり、このことによって工程の簡素化とPuの回収率向上が達成できる。また、再加工燃料としての価値の高いUとPuの混合物は、本発明の特徴である燃料再加工方法において、UとPuのフッ化物の混合物を直接酸化し、振動充填法等の方法で再び混合酸化物燃料として加工することにより、再処理から燃料再加工までの一連の工程の簡素化および一連の工程におけるPu回収率向上を達成できる。
【0012】
【発明の実施の形態】
[実施例1]
本発明の第一の実施例である、軽水炉で発生する使用済核燃料棒を再処理する方法について図1を用いて説明する。
【0013】
使用済燃料棒を脱被覆後あるいはそのままフッ化装置3へ装荷し、フッ化剤1をこの装置へ供給することにより、最もフッ素化物になり易いUが最初に六フッ化ウラン(UF6)になり揮発する。フッ化剤1としてUだけフッ化するようなフッ化物を選定することにより、揮発するUは比較的高純度のものが得られる。この際、予めフッ化剤1の供給量に対するUF6 の生成量を把握しておくか、生成するUF6 の量を測定することにより、Puと混合すべき量のUをフッ化装置内へ残しておく。揮発してUF6 はそのままあるいは必要に応じて精製した後ボンベ内へ保管貯蔵する。Uを再濃縮する場合はUF6 のまま保管した方が効率的であり、再濃縮しない場合は酸化物に変換した方が貯蔵スペースを小さくできる。
次に、フッ化剤1より強力なフッ化剤2をフッ化装置へ供給し、Puと残りのUをフッ化して揮発させる。フッ化剤2はPuを全量(ほぼ100%)揮発するために用いることより、十分強力な試薬を適用する。フッ化剤2が酸化作用を有しているとPuの揮発は比較的スムーズに進行する。この際、U,Pu以外の核種、例えばネプツニウム(Np)やアメリシウム(Am)あるいはヨウ素(I),テクネシウム(Tc)等も一部あるいは全部フッ化するが、UとPuの混合物は遠隔技術で燃料に加工するので、問題は生じない。また、Pu量を調整することにより原子炉内でも十分燃焼する。むしろ、不純物核種が混入した方が、核物質としての取扱が困難となり、核不拡散上好都合である。回収されたUとPuの混合物はフッ化物から酸化物に変換され、混合酸化物燃料(MOX)として再利用される。変換の際、遊離するフッ素はフッ化剤としてリサイクル使用される。
最終的に、フッ化装置3内には不揮発性の核分裂生成物が高レベル廃棄物として残る。これらは酸化物あるいは金属として残存するので、そのまま圧縮成型,ガラス固化,セラミック固化,人工岩石固化することにより、安定に貯蔵,処分できる。
【0014】
以上、本実施例によれば、フッ化装置3だけで使用済核燃料棒からU,UとPuの混合物,核分裂生成物をそれぞれに分離して回収することができるので、再処理システムの簡素化および再処理プラントの建設,運転コスト低減が可能となる効果がある。再処理システムが簡素化し、FP等の廃棄物の発生場所が限られ、フッ素等をリサイクル使用するので、放射性廃棄物量の低減が可能となる。回収されるUは比較的高純度のため貯蔵保管や再濃縮が容易であり、UとPuの混合物は比較的不純物核種を多く含むため核拡散(核兵器転用)を防止できる効果がある。適切なフッ化剤の選定によりNp,Am,I,Tc等の長半減期核種を回収できるので、高レベル廃棄物の管理負担を軽減できる効果がある。
【0015】
[実施例2]
本発明の第二の実施例である、高速炉で発生する使用済核燃料棒を再処理し、回収するUとPuの混合物を核燃料物質として再加工する方法について図2を用いて説明する。
【0016】
使用済燃料棒を必要に応じてせん断した後、熱分解炉4へ装荷し、水素ガス等の水素化剤を供給して核燃料物質および被覆管を一旦水素化物に変換する。水素化物変換後、酸素ガス等の酸化物化剤を供給して水素化物を酸化物に変換する。各変換過程で結晶形や格子定数が変化するので、核燃料物質と被覆管は粉体化する。また、ヨウ素等の揮発性核分裂生成物(FP)は揮発除去される。粉体化や揮発の程度を高めるためには、加熱や水素化物―酸化物の変換回数の増加が有効である。揮発したヨウ素は銀系吸着材等で除去され、粉体化した核燃料物質と被覆管はフッ化塔5へ移送される。
【0017】
フッ化塔5へ移送された核燃料物質と被覆管は、実施例1と同様に2段階フッ化される。すなわち、まずBrF5 等のフッ化剤1を供給することにより、大部分のUがUF6 の形態で揮発する。この際、予めフッ化剤1の供給量に対するUF6 の生成量を把握しておくか、生成するUF6 の量を測定することにより、Puと混合すべき量のUをフッ化塔内へ残しておく。次に、F2 等のフッ化剤2をフッ化塔5へ供給し、Pu全量と残りのUをフッ化して揮発させる。この際、U,Pu以外の核種、例えばネプツニウム(Np)やアメリシウム(Am)あるいはヨウ素(I),テクネシウム(Tc)等も一部あるいは全部フッ化するが、UとPuの混合物は遠隔技術で燃料に加工するので、問題は生じない。また、Pu量を調整することにより原子炉内でも十分燃焼する。むしろ、不純物核種が混入した方が、核物質としての取扱が困難となり、核不拡散上好都合である。
【0018】
1段目のフッ化で揮発したUF6 は、NaFトラップ等の吸着塔およびもしくは凝縮塔で共存する不純物核種を除去して精製し、ボンベ内に保管するか、再濃縮あるいは燃料製造の工程へ移送される。精製が不要な場合はそのままとする。精製後あるいは精製せず燃料製造工程に送られ、燃料製造工程で二酸化ウラン(UO2)に変換されたUは、下記するUとPuの混合フッ化物を酸化物に転換するための核(種)として使用できる。精製の過程で除去されたFPは、他の工程で除去されるFPといっしょに高レベル廃棄物として管理される。
【0019】
2段目のフッ化で揮発したUとPuの混合フッ化物は、予め種となる二酸化ウラン粒子(粉末)を装荷しておいた酸化物転換塔6に水蒸気や水素ガスとともに供給され、UとPuの混合酸化物粒子に変換される。混合フッ化物は水蒸気と水素ガスの作用により種粒子の表面で酸化物になり、積層されて大粒径粒子を形成する。この際、種となる二酸化ウラン粒子の大きさと供給ガス流量および組成,反応時間を調整することにより、混合酸化物粒子の大きさを制御できる。反応後の混合酸化物粒子は、真球ではなく、歪んだ球形となる。これらのUとPuの混合酸化物燃料粒子は、燃料加工工程へ送られて振動充填により再び燃料として加工される。混合酸化物への変換の際発生するフッ素を含むガスは、フッ化剤としてリサイクル使用される。
【0020】
最終的に、フッ化塔5内には不揮発性のFPが高レベル廃棄物として残る。これらは酸化物あるいは金属として残存するので、他の工程で発生するFPと混合してそのままの形態で圧縮成型するか、ガラス固化,セラミック固化,人工岩石固化等で廃棄体として成型することにより、安定に貯蔵,処分できる。
【0021】
以上、本実施例によれば、熱分解炉,フッ化塔,吸着塔,酸化物転換塔および振動充填装置だけの簡単なシステムで、使用済核燃料からU,UとPuの混合物,FPをそれぞれに分離して回収することができるので、再処理プラントの建設,運転コスト低減が可能となる効果がある。再処理システムが簡素化し、フッ素等をリサイクル使用するので、放射性廃棄物量の低減が可能となる。回収されるUは精製工程を経て高純度となるため貯蔵保管や再濃縮,燃料(ペレット)製造が容易となり、UとPuの混合物は比較的不純物核種を多く含むため核拡散(核兵器転用)を防止できる効果がある。適切なフッ化剤の選定によりNp,Am,I,Tc等の長半減期核種を回収できるので、高レベル廃棄物の管理負担を軽減できる効果がある。また、熱分解炉により燃料を微細化するため、UやUとPuの混合物のフッ化を促進して核燃料物質の回収率を向上できる。酸化物転換塔で生成したUとPuの混合酸化物をそのまま振動充填用の燃料とするため、核燃料物質、特にPuの回収率を向上できる。この際、わざわざ振動充填用燃料を製造する必要がないので、燃料製造加工コストを低減できる効果がある。UとPuの混合酸化物は不純物核種を含み比較的高線量率であるが、振動充填で燃料として再加工するので、被ばく量を低減できる。
【0022】
【発明の効果】
本発明によれば使用済核燃料の再処理を行うに際して、従来の方法よりも、種々の点で効果が発揮できる。即ち、ウランを高純度で回収するため、ウランの再利用、例えば再濃縮、が容易になりかつウランの保管等の際の管理が極めて容易である。またウランとプルトニウムを混合物としてかつ直接燃料再加工原料として回収できるため、燃料再加工コストを低下できるとともに高純度のプルトニウムを単独で扱わないため核不拡散性も高くできる。従来の方法に比べ装置,処理施設を簡略化できるため経済性を向上できる。
【図面の簡単な説明】
【図1】本発明の好適な一実施例である使用済核燃料の再処理方法に用いられる使用済燃料再処理装置の構成図である。
【図2】本発明の他の一実施例である使用済核燃料からの燃料再加工方法に用いられる再処理燃料再加工装置の構成図である。
【符号の説明】
3…フッ化装置、4…熱分解炉、5…フッ化塔、6…酸化物転換塔。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for reprocessing spent nuclear fuel generated at a nuclear power plant and a method for reprocessing fuel from spent nuclear fuel, and in particular, uranium and plutonium are removed from spent fuel by utilizing the difference in volatility of fluorides. The present invention relates to a method suitable for reprocessing and recovering, and reprocessing the recovered uranium and plutonium as fuel.
[0002]
[Prior art]
As a method for reprocessing spent nuclear fuel, for example, M. Benedict et al., Kiyose Kyohei, Nuclear Chemical Engineering, Volume IV, Chemical Engineering for Fuel Reprocessing and Radioactive Waste Management (Nikkan Kogyo Shimbun), 18 The PUREX method, which is a wet method described below, is widely used. The Purex method is a method in which spent fuel is dissolved in nitric acid, and uranium (U) and plutonium (Pu) in the nitric acid solution are extracted and recovered with an organic solvent of tributyl phosphate.
[0003]
As a dry method that does not use an aqueous solution, two types of molten salt electrolysis methods have been developed, which are called the Russian method and the ANL method from the names of the developing countries and institutions. The Russian method is a method in which an oxide fuel is melted in a molten salt of chloride, U oxide is deposited on an electrode, and Pu oxide is precipitated and recovered. The ANL method is a technique for recovering U metal and Pu metal to separate electrodes (cathodes) by reducing the metal fuel as it is or by reducing the oxide fuel to a metal and melting it in a molten salt of chloride.
[0004]
Examples of the dry reprocessing method other than the molten salt electrolysis method include a fluoride volatilization method in which reprocessing is performed using the difference in volatility of fluoride described in Nuclear Industry Vol. Are known. The conventional fluoride volatilization method is a method for recovering U and Pu with high purity by utilizing techniques such as distillation, partial condensation, fractional distillation, and adsorption.
[0005]
[Problems to be solved by the invention]
The wet purex method as a reprocessing method for spent nuclear fuel is an aqueous solution system and uses an organic solvent, so that critical limits will become stricter in future high burnup fuel and fast reactor fuel with high Pu. It is said that degradation due to radiolysis of the solvent becomes a problem.
[0006]
On the other hand, the dry method that does not use an aqueous solution is said to easily avoid the problem of criticality and the problem of radiation degradation. Both dry methods are still under development, but the Russian method, which targets oxide fuels, has development issues such as improving the decontamination factor (DF) of products and treating salt waste. The ANL method, which mainly targets metal fuels, requires additional processes for oxide treatment, and has development issues such as improvement of product DF, salt waste treatment, and improvement of treatment speed.
[0007]
The conventional fluoride volatilization method, which is a dry reprocessing method other than the molten salt electrolysis method, recovers U and Pu with high purity, which complicates the process, and in the process of purifying Pu. There existed problems, such as the recovery rate of Pu falling by decomposition | disassembly.
[0008]
The object of the present invention is suitable for various fuels that can avoid the problems of criticality and radiation degradation, do not require salt waste treatment, can improve product DF, improve processing speed, simplify process, and improve Pu recovery rate. It is to provide a reprocessing method and a rational fuel reprocessing method following the reprocessing.
[0009]
[Means for Solving the Problems]
Among the objects of the present invention described above, criticality, radiation deterioration, avoidance of salt waste treatment, improvement of treatment speed, and improvement of applicability to various fuels can be achieved by adopting the fluoride volatilization method.
[0010]
Considering the use of the reprocessed fuel (U, Pu), the fuel that needs to be improved in the product DF is U. In the reprocessing method that is a feature of the present invention, the mixture of U, U and Pu, and fission generation By separating and recovering each product, stable DF improvement of fluoride can be easily achieved.
[0011]
The mixture of U and Pu recovered as a product in the same manner as U does not need to improve the DF in consideration of its use as a mixed oxide fuel, and therefore the purification process can be eliminated, which simplifies the process. And improvement of Pu recovery rate. In addition, the mixture of U and Pu, which has a high value as a reprocessed fuel, is obtained by directly oxidizing the mixture of U and Pu fluoride in the fuel reprocessing method, which is a feature of the present invention, and again using a vibration filling method or the like. By processing as a mixed oxide fuel, it is possible to simplify the series of processes from reprocessing to fuel reprocessing and to improve the Pu recovery rate in the series of processes.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
A method for reprocessing spent nuclear fuel rods generated in a light water reactor, which is a first embodiment of the present invention, will be described with reference to FIG.
[0013]
By loading spent fuel rods into the fluorination unit 3 after de-coating or as-is and supplying the fluorinating agent 1 to this unit, U, which is most likely to become a fluorinated product, is first converted into uranium hexafluoride (UF 6 ). Volatilizes. By selecting a fluoride such that only U is fluorinated as the fluorinating agent 1, a relatively high purity U can be obtained. In this case, either know the production of UF 6 for previously supplied amount of fluorinating agent 1, by measuring the amount of UF 6 to generate, the amount of U to be mixed with Pu into the fluoride device Leave it. It volatilizes and the UF 6 is stored as it is or after purification as needed and stored in a cylinder. When re-concentrate the U is still stored the more efficient of UF 6, if not reconcentrated better converted into oxides can be reduced storage space.
Next, a fluorinating agent 2 stronger than the fluorinating agent 1 is supplied to the fluorination device, and Pu and the remaining U are fluorinated and volatilized. Since the fluorinating agent 2 is used to volatilize the entire amount of Pu (approximately 100%), a sufficiently powerful reagent is applied. When the fluorinating agent 2 has an oxidizing action, the volatilization of Pu proceeds relatively smoothly. At this time, nuclides other than U and Pu, such as neptunium (Np), americium (Am), iodine (I), and technesium (Tc), are partially or fully fluorinated, but the mixture of U and Pu is a remote technology Because it is processed into fuel, no problems arise. In addition, by adjusting the amount of Pu, sufficient combustion occurs in the nuclear reactor. Rather, it is more convenient in terms of nuclear non-diffusion when the impurity nuclides are mixed, making handling as nuclear material difficult. The recovered mixture of U and Pu is converted from fluoride to oxide and reused as a mixed oxide fuel (MOX). Upon conversion, the liberated fluorine is recycled as a fluorinating agent.
Eventually, non-volatile fission products remain in the fluorination apparatus 3 as high level waste. Since these remain as oxides or metals, they can be stably stored and disposed of by compression molding, vitrification, ceramic solidification, and artificial rock solidification.
[0014]
As described above, according to the present embodiment, it is possible to separate and collect U, U and Pu mixture and fission products from spent nuclear fuel rods by using only the fluorination device 3, and thus simplify the reprocessing system. In addition, the reprocessing plant can be constructed and the operating cost can be reduced. The reprocessing system is simplified, the generation site of waste such as FP is limited, and fluorine is recycled, so that the amount of radioactive waste can be reduced. Since the recovered U is relatively high in purity, it is easy to store and re-concentrate, and since the mixture of U and Pu contains a relatively large amount of impurity nuclides, it has the effect of preventing nuclear proliferation (diversion of nuclear weapons). By selecting an appropriate fluorinating agent, long half-life nuclides such as Np, Am, I, and Tc can be recovered, which has the effect of reducing the burden of managing high-level waste.
[0015]
[Example 2]
A method of reprocessing spent nuclear fuel rods generated in a fast reactor and reprocessing the mixture of U and Pu to be recovered as nuclear fuel material, which is a second embodiment of the present invention, will be described with reference to FIG.
[0016]
After the spent fuel rod is sheared as necessary, it is loaded into the pyrolysis furnace 4 and a hydrogenating agent such as hydrogen gas is supplied to temporarily convert the nuclear fuel material and the cladding tube into a hydride. After the hydride conversion, an oxidant such as oxygen gas is supplied to convert the hydride into an oxide. As the crystal form and lattice constant change during each conversion process, the nuclear fuel material and the cladding tube are pulverized. Further, volatile fission products (FP) such as iodine are volatilized and removed. To increase the degree of pulverization and volatilization, it is effective to increase the number of times of heating and hydride-oxide conversion. Volatilized iodine is removed by a silver-based adsorbent or the like, and the powdered nuclear fuel material and the cladding tube are transferred to the fluorination tower 5.
[0017]
The nuclear fuel material and the cladding tube transferred to the fluorination tower 5 are fluorinated in two stages as in the first embodiment. That is, by first supplying a fluorinating agent 1 such as BrF 5 , most of U is volatilized in the form of UF 6 . In this case, either know the production of UF 6 for previously supplied amount of fluorinating agent 1, by measuring the amount of UF 6 to generate, the amount of U to be mixed with Pu into fluoride in the tower Leave it. Next, a fluorinating agent 2 such as F 2 is supplied to the fluorination tower 5, and the entire amount of Pu and the remaining U are fluorinated and volatilized. At this time, nuclides other than U and Pu, such as neptunium (Np), americium (Am), iodine (I), and technesium (Tc), are partially or fully fluorinated, but the mixture of U and Pu is a remote technology. Because it is processed into fuel, no problems arise. In addition, by adjusting the amount of Pu, sufficient combustion occurs in the nuclear reactor. Rather, it is more convenient in terms of nuclear non-diffusion when the impurity nuclides are mixed, making handling as nuclear material difficult.
[0018]
UF 6 volatilized in the first stage of fluorination is purified by removing impurity nuclides coexisting in the adsorption tower and / or condensing tower such as a NaF trap, and stored in a cylinder, or reconcentrated or fueled. Be transported. If purification is not required, leave it as is. U after being refined or sent to the fuel production process without purification, and converted to uranium dioxide (UO 2 ) in the fuel production process, U is a nucleus (seed) for converting the mixed fluoride of U and Pu into oxides described below. ) Can be used. The FP removed in the purification process is managed as a high-level waste together with the FP removed in other processes.
[0019]
The mixed fluoride of U and Pu volatilized in the second stage of fluorination is supplied together with water vapor and hydrogen gas to the oxide conversion tower 6 in which uranium dioxide particles (powder) as seeds are loaded in advance. It is converted into mixed oxide particles of Pu. The mixed fluoride becomes an oxide on the surface of the seed particles by the action of water vapor and hydrogen gas, and is laminated to form large particle diameter particles. At this time, the size of the mixed oxide particles can be controlled by adjusting the size of the seed uranium dioxide particles, the flow rate and composition of the supply gas, and the reaction time. The mixed oxide particles after the reaction are not spheres but distorted spheres. These mixed oxide fuel particles of U and Pu are sent to the fuel processing step and processed again as fuel by vibration filling. A gas containing fluorine generated upon conversion to a mixed oxide is recycled as a fluorinating agent.
[0020]
Eventually, non-volatile FP remains as high-level waste in the fluorination tower 5. Since these remain as oxides or metals, they can be mixed with FP generated in other processes and compression-molded as they are, or formed as waste by vitrification, ceramic solidification, artificial rock solidification, etc. It can be stored and disposed of stably.
[0021]
As described above, according to the present embodiment, a simple system including only a pyrolysis furnace, a fluorination tower, an adsorption tower, an oxide conversion tower, and a vibration packing device is used to remove U, U and Pu mixture and FP from spent nuclear fuel. Therefore, it is possible to construct a reprocessing plant and reduce operating costs. Since the reprocessing system is simplified and the fluorine is recycled, the amount of radioactive waste can be reduced. The recovered U becomes highly pure after the purification process, so it is easy to store, re-concentrate, and produce fuel (pellets). The mixture of U and Pu contains a relatively large amount of impurity nuclides, so it can be used for nuclear proliferation (diversion of nuclear weapons). There is an effect that can be prevented. By selecting an appropriate fluorinating agent, long half-life nuclides such as Np, Am, I, and Tc can be recovered, which has the effect of reducing the burden of managing high-level waste. In addition, since the fuel is refined by the pyrolysis furnace, the recovery of the nuclear fuel material can be improved by promoting the fluorination of U or a mixture of U and Pu. Since the mixed oxide of U and Pu generated in the oxide conversion tower is used as the fuel for vibration filling as it is, the recovery rate of nuclear fuel material, particularly Pu can be improved. At this time, there is no need to bother producing the vibration filling fuel, so that there is an effect of reducing the fuel production processing cost. The mixed oxide of U and Pu contains impurity nuclides and has a relatively high dose rate. However, since it is reprocessed as fuel by vibration filling, the exposure dose can be reduced.
[0022]
【The invention's effect】
According to the present invention, when the spent nuclear fuel is reprocessed, the effect can be exhibited in various points as compared with the conventional method. That is, since uranium is recovered with high purity, it is easy to reuse uranium, for example, re-concentration, and it is very easy to manage uranium during storage. Moreover, since uranium and plutonium can be recovered as a mixture and directly as a fuel reworking raw material, the fuel reworking cost can be reduced, and high purity plutonium can not be handled alone, so that the nuclear non-proliferation can be enhanced. Compared to the conventional method, the equipment and processing facilities can be simplified, so the economy can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a spent fuel reprocessing apparatus used in a spent nuclear fuel reprocessing method according to a preferred embodiment of the present invention.
FIG. 2 is a configuration diagram of a reprocessed fuel reprocessing apparatus used in a fuel reprocessing method from spent nuclear fuel according to another embodiment of the present invention.
[Explanation of symbols]
3 ... fluorination device, 4 ... pyrolysis furnace, 5 ... fluorination tower, 6 ... oxide conversion tower.

Claims (6)

使用済燃料をフッ化して成分を揮発させ、ウランとプルトニウムを回収する再処理方法において、弱いフッ化剤を用いるかフッ化剤濃度を小さくすることで、フッ化しやすいウランをフッ化物として揮発回収し、その後、強いフッ化剤を用いるかフッ化剤濃度を大きくすることで、フッ化しにくいプルトニウムをフッ化物として揮発回収し、核分裂生成物を残さとして残す事により、ウラン,プルトニウム,核分裂生成物をそれぞれに分離し、
フッ化において揮発するウランとプルトニウムのフッ化物の混合物を直接酸化し、ウランとプルトニウムの混合酸化物として回収し、再び燃料として加工することを特徴とする使用済核燃料からの燃料再加工方法。
In the reprocessing method that recovers uranium and plutonium by fluorinating spent fuel and recovering uranium and plutonium, uranium, which is easily fluorinated, is volatilized and recovered by using weak fluorinating agent or reducing the concentration of fluorinating agent. Then, by using a strong fluorinating agent or increasing the concentration of the fluorinating agent, plutonium, which is difficult to be fluorinated, is volatilized and recovered as a fluoride, leaving fission products as the residue, uranium, plutonium, fission products Separated into each
A method of reprocessing fuel from spent nuclear fuel, characterized in that a mixture of fluoride of uranium and plutonium that volatilizes in fluorination is directly oxidized, recovered as a mixed oxide of uranium and plutonium, and processed again as fuel.
請求項1において、使用済核燃料が酸化物,金属,窒化物であり、必要に応じてフッ化する前に使用済核燃料を酸化,還元処理等により微細化することを特徴とする使用済燃料からの燃料再加工方法。  The spent nuclear fuel according to claim 1, wherein the spent nuclear fuel is an oxide, a metal, or a nitride, and the spent nuclear fuel is refined by oxidation, reduction treatment or the like before being fluorinated as necessary. Fuel reprocessing method. 請求項1において、長半減期のヨウ素,テクネチウム等の核分裂生成物およびもしくはネプツニウム,アメリシウム等のマイナーアクチニドをフッ化により揮発させ、ウランもしくはプルトニウムとともに回収することを特徴とする使用済核燃料からの燃料再加工方法。  The fuel from spent nuclear fuel according to claim 1, wherein fission products such as iodine and technetium having a long half-life and minor actinides such as neptunium and americium are volatilized by fluorination and recovered together with uranium or plutonium. Rework method. 請求項1において、回収したウランとプルトニウムの混合酸化物を軽水炉,高転換炉,高速炉の燃料として使用することを特徴とする使用済核燃料からの燃料再加工方法。  2. The method of reprocessing fuel from spent nuclear fuel according to claim 1, wherein the recovered mixed oxide of uranium and plutonium is used as fuel for a light water reactor, a high conversion reactor, and a fast reactor. 請求項1において、酸化物として回収するウランとプルトニウムの混合物を粉末もしくは顆粒状とし、これらを燃料被覆管中に振動充填することを特徴とする使用済核燃料からの燃料再加工方法。  2. The fuel reprocessing method from spent nuclear fuel according to claim 1, wherein the mixture of uranium and plutonium recovered as oxide is powdered or granulated, and these are vibrated and filled into a fuel cladding tube. 使用済燃料をフッ化して成分を揮発させ、プルトニウムとウランの混合物および高純度のウランを分離回収する再処理方法において、弱いフッ化剤を用いるかフッ化剤濃度を小さくすることで、フッ化しやすいウランをフッ化物として揮発回収し、その後、強いフッ化剤を用いるかフッ化剤濃度を大きくすることで、フッ化しにくプルトニウムと残りのウランをフッ化物として揮発回収し、核分裂生成物を残さとして残す事により、ウラン,プルトニウムとウランの混合物,核分裂生成物をそれぞれに分離し回収する使用済燃料の再処理方法であって、
弱いフッ化剤を用いるかフッ化剤濃度を小さくすることでフッ化しやすいウランをフッ化物として揮発回収する際に、回収されたウランフッ化物量をモニタして弱いフッ化剤または低い濃度のフッ化剤の供給量を調整し、プルトニウムとウランの混合物におけるウランとプルトニウムの比率を調整することを特徴とする使用済燃料の再処理方法。
In the reprocessing method that separates and collects a mixture of plutonium and uranium and high-purity uranium by fluorinating spent fuel and volatilizing components, it is fluorinated by using a weak fluorinating agent or by reducing the concentration of the fluorinating agent. Easy uranium is volatilized and recovered as fluoride, and then a strong fluorinating agent is used or the concentration of the fluorinating agent is increased, so that plutonium that is difficult to fluorinate and the remaining uranium is volatilized and recovered as fluoride, and fission products are recovered. A method for reprocessing spent fuel that separates and recovers uranium, a mixture of plutonium and uranium, and fission products by leaving them as residues,
When recovering volatile uranium, which is easily fluorinated by using a weak fluorinating agent or reducing the concentration of the fluorinating agent, as a fluoride, monitor the amount of uranium fluoride recovered to detect a weak fluorinating agent or a low concentration of fluorination. A method for reprocessing spent fuel, comprising adjusting a supply amount of the agent and adjusting a ratio of uranium and plutonium in a mixture of plutonium and uranium.
JP09241999A 1999-03-31 1999-03-31 Method for reprocessing spent nuclear fuel and method for reprocessing spent nuclear fuel Expired - Lifetime JP3823593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09241999A JP3823593B2 (en) 1999-03-31 1999-03-31 Method for reprocessing spent nuclear fuel and method for reprocessing spent nuclear fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09241999A JP3823593B2 (en) 1999-03-31 1999-03-31 Method for reprocessing spent nuclear fuel and method for reprocessing spent nuclear fuel

Publications (2)

Publication Number Publication Date
JP2000284089A JP2000284089A (en) 2000-10-13
JP3823593B2 true JP3823593B2 (en) 2006-09-20

Family

ID=14053912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09241999A Expired - Lifetime JP3823593B2 (en) 1999-03-31 1999-03-31 Method for reprocessing spent nuclear fuel and method for reprocessing spent nuclear fuel

Country Status (1)

Country Link
JP (1) JP3823593B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4196173B2 (en) 2003-01-28 2008-12-17 日立Geニュークリア・エナジー株式会社 Method for reprocessing spent nuclear fuel
KR100822022B1 (en) * 2006-08-10 2008-04-15 (주)에스알에스테크놀 The process of reducing nuclear wastes including uranium and theradionuclide
JP5483867B2 (en) * 2008-11-25 2014-05-07 日立Geニュークリア・エナジー株式会社 Method for recovering metallic fuel material from spent fuel and method for reprocessing spent fuel
JP2013101066A (en) * 2011-11-09 2013-05-23 Hitachi-Ge Nuclear Energy Ltd Treatment device and treatment method for used fuel containing zirconium
US9196389B2 (en) * 2012-11-13 2015-11-24 General Atomics Systems and methods for efficiently preparing plutonium-238 with high isotopic purity
JP6165623B2 (en) * 2013-12-27 2017-07-19 株式会社東芝 Measurement method of nuclear fuel material
GB2536857A (en) * 2014-10-12 2016-10-05 Richard Scott Ian Simple fuel cycle for molten salt reactors
JP6534945B2 (en) * 2016-02-19 2019-06-26 日立Geニュークリア・エナジー株式会社 Method and apparatus for reprocessing spent fuel
GB2606640A (en) * 2020-10-14 2022-11-16 China Nuclear Power Technology Res Inst Co Ltd Dry aftertreatment method for spent fuel employing plasma

Also Published As

Publication number Publication date
JP2000284089A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
JP4196173B2 (en) Method for reprocessing spent nuclear fuel
JP5483867B2 (en) Method for recovering metallic fuel material from spent fuel and method for reprocessing spent fuel
JP3823593B2 (en) Method for reprocessing spent nuclear fuel and method for reprocessing spent nuclear fuel
US5041193A (en) Acitnide recovery
McFarlane et al. Review of hazards associated with molten salt reactor fuel processing operations
Laidler et al. Chemical partitioning technologies for an ATW system
JP5961572B2 (en) Treatment of damaged or molten nuclear fuel
Till Source terms for technetium-99 from nuclear fuel cycle facilities
EP4060681A1 (en) Dry aftertreatment method for spent fuel employing plasma
Schmets Reprocessing of spent nuclear fuels by fluoride volatility processes
DelCul et al. Reprocessing and recycling
Bruffey et al. Advanced Low-Temperature Chlorination of Zirconium
JP5065163B2 (en) Method for recycling uranium from spent nuclear fuel
JP2845413B2 (en) Reprocessing method of spent nitride fuel
JP2001153991A (en) Peprocessing method for spent nuclear fuel
JPH0943391A (en) Nuclear fuel recycle system
US11894154B2 (en) Modular, integrated, automated, compact, and proliferation-hardened method to chemically recycle used nuclear fuel (UNF) originating from nuclear reactors to recover a mixture of transuranic (TRU) elements for advanced reactor fuel to recycle uranium and zirconium
US20240120120A1 (en) Modular, integrated, automated, compact, and proliferation-hardened method to chemically recycle used nuclear fuel (unf) originating from nuclear reactors to recover a mixture of transuranic (tru) elements for advanced reactor fuel, and to recycle uranium and zirconium
JP6515369B1 (en) Insoluble residue treatment process
Davis Studies of Used Fuel Fluorination and U Extraction Based on Molten Salt Technology for Advanced Molten Salt Fuel Fabrication
Moore et al. Conceptual Assessment of VTR Add-on Processing Capability
Williamson Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system
Boussier et al. Waste Minimization Study on Pyrochemical Reprocessing Processes
Goode A Laboratory Study of the Separation and Recovery of Uranium and Plutonium from Fission Products by Chloride Volatility
JP2020125989A (en) Method for reducing disposition load of high-level radioactive waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060619

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

EXPY Cancellation because of completion of term