JPS5847215A - Electro-magnetic flow meter - Google Patents
Electro-magnetic flow meterInfo
- Publication number
- JPS5847215A JPS5847215A JP14585081A JP14585081A JPS5847215A JP S5847215 A JPS5847215 A JP S5847215A JP 14585081 A JP14585081 A JP 14585081A JP 14585081 A JP14585081 A JP 14585081A JP S5847215 A JPS5847215 A JP S5847215A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- voltage
- excitation
- current
- exciting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/56—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
- G01F1/58—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
- G01F1/60—Circuits therefor
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、低周波励磁方式の電磁流量針の改良に関する
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a low frequency excitation type electromagnetic flow needle.
一般に電磁流量針は、流体の流れ方向に対して徴直に磁
界を与え、同時に流体流路中の電気的信号の変化を検出
し、これに基づいて流体の流量を計測するように構成さ
れている、最近の電磁流量計は、交流励磁方式や直流励
磁方式に比して零点の安定性にすぐれている台形波励磁
や方形波励磁などと呼ばれている低周波励磁方式のもの
が多く用いられている。低周波励磁方式の電磁流量針で
は、励磁コイルに供給する電流を2つの定常値間で周期
的に切換えて、励磁電流が一定になったとき電極間に発
生する誘起電圧をそれぞれサンプリングした後隣り合っ
たサンプリング信号の差をとることにより、電気化学的
な直流電位や回路に基づくオフセット電圧による影響を
除去し、流体の流量に対応した信号を得ている。このよ
うな低周波励磁方式の電磁流量計においても、励磁電流
が一定値に達してから十分な時間が経過した後サンプリ
ングしないと零点がドリフトする。これは電極間に発生
する誘起電圧に、流体の流量に比例した信号成分と電気
化学的な直流電位や回路によるオフセット成分の外に、
励磁電流の切換時に電極と電極リード間のループで生ず
る電磁結合ノイズと流体中を流れる渦電流が液抵抗と電
極の界面電気二重層容量とで形成される一次遅れ回路に
よって生ずる一次遅れノイズを含む励磁電流の切換えに
伴うノイズ成分が重畳されており、このノイズ成分は励
磁電流を切換えるたびに極性が反転するので、隣り合う
サンプリング信号の差をとっても消去できず、しかも電
磁結合ノイズは短時間で零になるが、−次遅れノイズは
十分に時間が経過しないと零にならないためである。よ
って、零点の安定性の面から考えると励磁周波数は低い
ほど有利であり、実用化されている電磁流量計には商用
電源周波数の鴇に選ばれているものもあるが、励磁周波
数をあまり低くすると応答性が遅くなったり、制御ルー
プを組んだときハンチングを生じたりする。さらに励磁
周波数を低くすると、電気化学的な直流電位の変化が問
題となり、この変化を補償するための手段が新たに必要
となる。Generally, an electromagnetic flow needle is configured to apply a magnetic field perpendicularly to the fluid flow direction, simultaneously detect changes in electrical signals in the fluid flow path, and measure the fluid flow rate based on this. Many modern electromagnetic flowmeters use low-frequency excitation methods, such as trapezoidal wave excitation and square wave excitation, which have superior zero point stability compared to AC excitation and DC excitation methods. It is being In a low-frequency excitation type electromagnetic flow needle, the current supplied to the excitation coil is periodically switched between two steady-state values, and the induced voltage generated between the electrodes when the excitation current becomes constant is sampled. By taking the difference between the matched sampling signals, the effects of electrochemical DC potential and circuit-based offset voltage are removed, and a signal corresponding to the fluid flow rate is obtained. Even in such a low-frequency excitation type electromagnetic flowmeter, the zero point will drift if sampling is not performed after a sufficient period of time has passed after the excitation current reaches a certain value. This is due to the induced voltage generated between the electrodes, in addition to a signal component proportional to the fluid flow rate and an offset component due to the electrochemical DC potential and circuit.
This includes electromagnetic coupling noise generated in the loop between the electrode and electrode lead when excitation current is switched, and first-order lag noise generated by the first-order lag circuit formed by the eddy current flowing in the fluid and the liquid resistance and the interfacial electric double layer capacitance of the electrode. The noise component associated with switching the excitation current is superimposed, and the polarity of this noise component reverses each time the excitation current is switched, so it cannot be eliminated even by taking the difference between adjacent sampling signals, and electromagnetic coupling noise can be eliminated in a short time. This is because, although it becomes zero, -th lag noise does not become zero until a sufficient amount of time has elapsed. Therefore, from the point of view of zero point stability, the lower the excitation frequency is, the more advantageous it is.Some of the electromagnetic flowmeters that have been put into practical use are selected to operate at the commercial power frequency, but the excitation frequency cannot be set too low. This can result in slow response or hunting when a control loop is configured. Further, when the excitation frequency is lowered, changes in electrochemical DC potential become a problem, and a new means is required to compensate for this change.
本発明は、電磁流量計発信器の励磁コイルに供給する励
磁電流を少なくとも3つの定常値の間で切換え、励磁電
流がそれぞれの定常値になったとき電磁流量計発信器の
電極間に誘起する電圧のうち少なくとも2つに励磁電流
の切換えに伴って生ずるノイズ成分が同方向に重畳され
るようにし、これら誘起電圧の差を演算して前記ノイズ
成分を除去するととKよって、零点の安定性および応答
性にすぐれた低周波励磁方式の電磁流量計を実現したも
のである。The present invention switches the excitation current supplied to the excitation coil of the electromagnetic flowmeter transmitter between at least three steady values, and when the excitation current reaches each steady value, induces the current between the electrodes of the electromagnetic flowmeter transmitter. If at least two of the voltages are superimposed in the same direction with noise components that occur due to switching of the excitation current, and the difference between these induced voltages is calculated to remove the noise components, the stability of the zero point This is a low-frequency excitation type electromagnetic flowmeter with excellent responsiveness.
第1図は本発明電磁流量針の一実施例を示す接続図であ
る11図において、1は励磁回路で、直流定電流源Ha
、 jib、 He とこれら定電流源がらの電流Ia
、 Ib、 Ic を切換えるスイッチ12a、 1
2b、 j3c を有している7、なお定電流源の電流
値は ■2−上Ib”” +Ic なる関係に選ばれ
ている。2は電磁流量計発信器で、励磁コイル21.流
体が流れるパイプ22および電極23a、 25bを備
えている。3は信号処理回路で、電磁流量計発信器2の
電極23m、 23b間に誘起する電圧eaを増幅する
交流増幅器31と、増幅器31の出力ebをサンプルホ
ールドする2個のサンプルホールド回路32a、52b
と、サンプルホールド回路32m、 52bのホールド
値の差を演算する演算回路53およびパルス発生器54
とからなっている、サンプルホールド回路32a、 (
32b)はサンプリングスイッチSa (8b )とホ
ールド用コンデンサ0B(Cb)(5)
とからなるものが示されている。パルス発生器34は、
50Hzまたは60Hzの商用交流電源(図示せず)と
同期し、スイッチ121〜12cを制御するパルスP1
a〜Plcと、サンプリングスイッチ8m、8bを制御
するサンプリングパルスP2@、 P2bを発生する。FIG. 1 is a connection diagram showing one embodiment of the electromagnetic flow needle of the present invention. In FIG. 11, 1 is an excitation circuit, and a DC constant current source Ha
, jib, He and the current Ia of these constant current sources
, Ib, Ic switches 12a, 1
2b and j3c7, and the current value of the constant current source is selected to have the following relationship: (1)2-upper Ib''+Ic. 2 is an electromagnetic flowmeter transmitter, which includes an exciting coil 21. It includes a pipe 22 through which fluid flows and electrodes 23a and 25b. 3 is a signal processing circuit, which includes an AC amplifier 31 that amplifies the voltage ea induced between the electrodes 23m and 23b of the electromagnetic flowmeter transmitter 2, and two sample and hold circuits 32a and 52b that sample and hold the output eb of the amplifier 31.
and a pulse generator 54 and an arithmetic circuit 53 that calculates the difference between the hold values of the sample and hold circuits 32m and 52b.
A sample and hold circuit 32a, consisting of (
32b) is shown consisting of a sampling switch Sa (8b) and a hold capacitor 0B (Cb) (5). The pulse generator 34 is
A pulse P1 that is synchronized with a 50 Hz or 60 Hz commercial AC power source (not shown) and controls the switches 121 to 12c.
It generates sampling pulses P2@ and P2b that control sampling switches 8m and 8b.
このように構成した本発明の動作を第2図のタイムチャ
ートを参照して以下に説明する。まずスイッチ12a〜
12cは第2図(イ)、6:I)、(ハ)に示す如き駆
動パルスP、 a、p、cで制御され、PlJlがオン
となっている期間T1には定電流源H&から電流Iaを
、PIbがオンとなっている期間T2.T1間には定電
流源11bから電流Ibを、Plcがオンとなっている
期間TsKは定電流源11cから電流Icをそれぞれ励
磁コイル21に流す。よって励磁コイル21には第2図
に)に示すように5つの定常値Ia、 Ib、 Icを
有する励磁電流Twが供給される。なお各期間TI 、
T2 T TM HT4はそれぞれ商用交流電源周期T
の整数倍に選ばれており、また励磁電流Iwはスイッチ
12a、 12h、 12cで切換えられたとき、励磁
コイルのインダクタンスと抵抗による時定数で夾際には
立上り、立下り部分(4)
で遅れを伴ったのち定常値となるが図では省略しである
。発信器2の電極21a、 23b間には第2図(ホ)
)に示すように励磁電流1wに応じた誘起電圧eaが発
生する。誘起電圧eaにけ、パイプ22を流れる流体の
流量Fに比例した信号成分v1〜Wigの外に、図f斜
線で示す如き励磁電流の切換えに伴うノイズ成分Vn
、〜vn4と、電気化学的な直流電位や回路によるオフ
セット電圧成分Vnoとが重畳されている。The operation of the present invention configured as described above will be explained below with reference to the time chart of FIG. First, switch 12a~
12c is controlled by drive pulses P, a, p, and c as shown in FIG. Ia during the period T2. when PIb is on. During T1, current Ib is passed from constant current source 11b to exciting coil 21, and during period TsK when Plc is on, current Ic is passed from constant current source 11c to exciting coil 21. Therefore, the excitation coil 21 is supplied with an excitation current Tw having five steady-state values Ia, Ib, and Ic as shown in FIG. 2). In addition, each period TI,
T2 T TM HT4 is the commercial AC power cycle T
When the excitation current Iw is switched by the switches 12a, 12h, and 12c, the excitation current Iw rises due to the time constant due to the inductance and resistance of the excitation coil, and is delayed during the fall portion (4). It reaches a steady value after , but it is not shown in the figure. There is a gap between the electrodes 21a and 23b of the transmitter 2 as shown in Fig. 2 (e).
), an induced voltage ea is generated according to the excitation current 1w. In addition to the signal components v1 to Wig proportional to the flow rate F of the fluid flowing through the pipe 22 due to the induced voltage ea, there is a noise component Vn associated with switching of the excitation current as shown by diagonal lines in FIG.
, ~vn4 and an offset voltage component Vno caused by an electrochemical DC potential or a circuit are superimposed.
ノイズ成分Vnl〜Vn4は、励磁電流の切換時に電極
と電極リード間のループで生ずる電磁結合ノイズと、流
体中を流れる渦電流が液抵抗と電極の界面電気二重層容
量とで形成される一次遅れ回路によって生ずる一次遅れ
ノイズを含んでおり、期間T2゜T3では信号成分と同
方向に、期間T、、T4では信号成分とは逆方向に重量
されている。その結果励磁電流Iwの定常値がInなる
期間T1の誘起電圧の値ea+は流体の流量に比例した
信号成分Vs+ とオフセット成分Vnoと負のノイズ
成分−Vn+との和(Va+ 十Vno−Vn+)とな
り、Twの定常値がrbなる期間T2の誘起電圧の値e
a・は流体の流量に比例した信号成分Va2とオフセッ
ト成分Vnoと正のノイズ成分Vn2との和(Vs2
+ vno+ Vn2 )となり、Iwの定常値がIc
なる期間TSの誘起電圧の値ea5は流体の流量に比例
した信号成分Vs5とオフセット成分隻0と正のノイズ
成分Vn5との和(Va34vno+Vn5 )となり
、1wの定常値がTbなる期間T4の誘起電圧の値ea
4は原体の流量に比例した信号成分V@2とオフセット
成分Vnoと負のノイズ成分−Vn4との和(Vs2
+Vno−Vn4 )となる。なおノイズ成分vr11
〜′v114は電極25a 、 23bの汚れ方によっ
ては、上述とは逆極性に発生し、VrllとVn4が正
1c 、 Vn2とVn5が負になる場合もあとなる。Noise components Vnl to Vn4 are electromagnetic coupling noise generated in the loop between the electrode and electrode lead when switching the excitation current, and first-order lag caused by the eddy current flowing in the fluid formed by the liquid resistance and the interfacial electric double layer capacitance of the electrode. It includes first-order lag noise caused by the circuit, and is weighted in the same direction as the signal component during periods T2 and T3, and in the opposite direction to the signal component during periods T, T4. As a result, the value ea+ of the induced voltage during the period T1 when the steady-state value of the excitation current Iw is In is the sum of the signal component Vs+ proportional to the flow rate of the fluid, the offset component Vno, and the negative noise component -Vn+ (Va+ + Vno-Vn+) Then, the value e of the induced voltage during period T2 when the steady value of Tw is rb
a. is the sum of the signal component Va2 proportional to the fluid flow rate, the offset component Vno, and the positive noise component Vn2 (Vs2
+ vno + Vn2), and the steady value of Iw becomes Ic
The value of the induced voltage ea5 during the period TS becomes the sum of the signal component Vs5 proportional to the fluid flow rate, the offset component 0, and the positive noise component Vn5 (Va34vno+Vn5), and the induced voltage during the period T4 when the steady value of 1W becomes Tb. The value of ea
4 is the sum (Vs2
+Vno-Vn4). Note that the noise component vr11
~'v114 may occur with the opposite polarity to that described above depending on how the electrodes 25a and 23b are contaminated, and Vrll and Vn4 may be positive 1c and Vn2 and Vn5 may be negative.
そしてノイズ成分Vn 1〜Vn4け、励磁電流の立上
抄、立下り時間を一定に保ち、期間T1〜T4をT1=
’r2= ’r、 = T4とし、ea1〜ea4を
サンプリングする時間Th + 〜’f@ 、をTs1
= Ta2 += TsS= Ta4 K選んでやれば
、その大きさはほぼ等しくなりVn1= Vn2 =
Vn3 = Vn4 =Vnとみなすことができる。よ
って、信号処理回路3で期間T5に生ずる誘起電圧ea
B と期間T2に生ずる誘起電圧ea2の差(eaB
−ea2 )を実質的に求めれば(Vs5− Vs2)
となり、また期間T4に生ずる誘起電圧ea4 と期間
T、に生ずる誘起電圧ea1 の差(ea4ea+)を
実質的に求めれば(VI2−Vat )となり、オフセ
ット電圧Vnoを除去できるとともにノイズ成分Vnも
除去でき、流体の流量に比例した信号成分Vnみを得る
ことができる。Then, keep the noise component Vn 1 to Vn4 constant, the rise time and fall time of the excitation current, and set the period T1 to T4 as T1=
'r2 = 'r, = T4, and the time Th + ~'f@, for sampling ea1 to ea4 is Ts1
= Ta2 += TsS= Ta4 If K is selected, the sizes will be almost equal, Vn1= Vn2 =
It can be considered that Vn3 = Vn4 = Vn. Therefore, the induced voltage ea generated in the signal processing circuit 3 during the period T5
B and the induced voltage ea2 generated during period T2 (eaB
-ea2), we get (Vs5- Vs2)
Moreover, if the difference (ea4ea+) between the induced voltage ea4 generated in the period T4 and the induced voltage ea1 generated in the period T is found (VI2-Vat), the offset voltage Vno can be removed and the noise component Vn can also be removed. , a signal component Vn proportional to the fluid flow rate can be obtained.
図の信号処理回路3では、まず増幅器31で電磁流量計
発信器2からの誘起電圧eaを増幅してサンプルホール
ド回路52a、 32bに与える。サンプルボールド回
路32aには第2図(へ)の実線に示す如きタイミング
で発生するサンプリングパルスhaによって、期間T、
の誘起電圧ea3を増幅した電圧eb3がホールドされ
、サンプルホールド回路32bKFi第2図住)の実線
に示す如きタイミングで発生するサンプリングパルスP
2b Kよって期間T2の誘起電圧em2を増幅した電
圧eb2がホールドされる。サンプルホールド回路32
m、 32bのホールド値eb5. eb2は演算回路
35に加えられて(eb! −eb2)なる演算が行わ
れる。よって、演算回路53では、実質的K (eaB
−ea2)なる演算が行わねてオフセット電圧Vnoお
よびノイズ成分Vnが除去され、その出力端には流体の
流量に比例した信号成分のみに関連した電圧V。In the signal processing circuit 3 shown in the figure, first, an amplifier 31 amplifies the induced voltage ea from the electromagnetic flowmeter oscillator 2 and supplies it to sample and hold circuits 52a and 32b. The sample bold circuit 32a receives period T,
The voltage eb3 obtained by amplifying the induced voltage ea3 of
2bK, the voltage eb2 obtained by amplifying the induced voltage em2 during the period T2 is held. Sample hold circuit 32
m, hold value eb5 of 32b. eb2 is added to the calculation circuit 35 and the calculation (eb!-eb2) is performed. Therefore, in the arithmetic circuit 53, the substantial K (eaB
-ea2) is not performed, the offset voltage Vno and the noise component Vn are removed, and the output terminal has a voltage V associated only with the signal component proportional to the fluid flow rate.
(7)
が得られる。またサンプルホールド回路52a、 52
bK第2図(へ)、(ト)に点線で示す如きサンプリン
グパルスP、α、 P2bによって、期間T4の誘起電
圧ea4を増幅した電圧eb4 と、期間T1の誘起電
圧ealを増幅した電圧eblをそれぞれホールドさせ
、演舞回路53で(eb4−eb、)なる演算を行って
も同様にオフセット電圧Vnoおよびノイズ成分Vnを
除去できる。(7) is obtained. In addition, sample hold circuits 52a, 52
bK By sampling pulses P, α, and P2b as shown by dotted lines in FIG. The offset voltage Vno and the noise component Vn can be similarly removed by holding them and performing the calculation (eb4-eb,) in the performance circuit 53.
このように本発明においては、零点のドリフトの原因と
なるノイズ成分を有効に除去しているので、励磁周波数
を低くぜずKすなわち応答性を慢性にすることなく零点
の安定性が得られる。In this way, in the present invention, since the noise component that causes the drift of the zero point is effectively removed, the stability of the zero point can be obtained without lowering the excitation frequency and without making K, that is, the response chronic.
なお励磁回路1としては第3図に示すように、励磁電流
rwに関連1〜た電圧E1と設定電圧Erとの差を鴎差
増幅器13で増幅1.た電圧翫と、三角波発生回路14
の出力&とを比較器15で比較し、その比較結果Epで
スイッチ12を駆動して、励磁コイル21に励磁電源V
Bから供給する電流をオンオフ制御することによって励
磁電流の定常値を設定電圧Erの値で決まる一定値に保
ち、かつ信号処理回路5のパルス発生器34からの制御
パルスPea−PHoでスイッチ(8)
12a〜12bを駆動し設定電圧Erの値をEr1→E
r2→E「3→Br2→Erl と1−次切換えて励磁
電流Iwの定常値をIa→Ib −+ Ic −+ T
b→Iaと順次切換λるようにしてもよい。この場合励
磁回路の電力損失を小さく1〜効率をよくできる利点が
ある。なおダイオードDはスイッチ12がオフのとき励
磁コイル21に蓄積された磁気エネルギを放出し励磁電
流を流し続けるためのものである。また胆差増幅器13
と三角波発生回路14および比較器15の代りに、第5
図に示すようにヒステリシス特性を持った比較器15を
用いて自励振形にし構成を簡単にしてもよい。The excitation circuit 1, as shown in FIG. voltage wire and triangular wave generation circuit 14
The comparator 15 compares the output & of
By on/off controlling the current supplied from B, the steady value of the excitation current is kept at a constant value determined by the value of the set voltage Er, and the switch (8 ) Drive 12a to 12b and change the value of the set voltage Er from Er1 to E.
r2→E "3→Br2→Erl" and the steady value of the excitation current Iw is changed to Ia→Ib −+ Ic −+ T
It is also possible to sequentially switch λ from b to Ia. In this case, there is an advantage that the power loss of the excitation circuit can be reduced and the efficiency can be improved. Note that the diode D is for releasing the magnetic energy accumulated in the excitation coil 21 when the switch 12 is off, so that the excitation current continues to flow. Also, bile difference amplifier 13
In place of the triangular wave generating circuit 14 and the comparator 15, the fifth
As shown in the figure, a comparator 15 having hysteresis characteristics may be used to form a self-oscillation type to simplify the configuration.
また信号処理回路3においては、第3図に示すように演
算回路33の出力側に1サンプリングスイツチ8cとホ
ールド用コンデンサOcおよび演算増幅器O20カらな
るサンプルホールド回路32cを設け、第4図のタイム
チャートに示すようにサンプルホーh )’回路s2a
KパルスP2.によって増幅器31の出力ebのeb
5 とeb4 を交互にホールドさせ、サンプルホー
ルド回路32bにパルスP2bKよ)てeb2とeb、
を交互にホールドさせ、サンプルホールド回路32CK
パルスP2cVCよって演算回路35の出力ecのうち
の(eb3− eb2 )と(eb4− eb、 )を
交互にサンプルホールドさせるようにして、その出力端
に流体の流Iに比例した信号成分に関連した出力電圧V
Qを取り出すようにしてもよい、この場合は(ebg
−eb2)と(ey −et+l )を交互に出力して
いるので、第1図の実施例と比して応答性を2倍にでき
る利点がある なお第1図および第5図の実施例におけ
るサンダルホールド回路32a、 32bの代りにそt
Iぞれ積分回路を用いてもよい。また第5図に示すよう
にサンプルホールド回路32m、 521)と演算回路
35の代りに、積分回路35と反転増幅器36および切
換スイッチ37を用いてもよい。積分回路35は、抵抗
RI、演算増幅器OP2.OP2の帰還回路に接続さね
た積分用コンデンサー、入力積分時間を制御するタイミ
ングスイッチ′1′Sおよび積分値をリセットするリセ
ットスイッチR8を有している。そして積分回路35に
は切換スイッチ67がa側のとき増幅器51の出力eb
が直接加えられ、b側のとき増幅器61の出力ebが反
転増幅器36を介して加えられる。切換スイッチ37は
第6図に示す如きタイミングで発生するパルスPSによ
って’r、、’r2期間にはa側に、T5゜T4期間に
はb側に接続され、またタイミングスイッチT8は第6
図に示すサンプリングパルスP2 ’l)’ 発生する
毎に一定時間imだけオンとなり、積分回路55に増幅
器31の出力ebtたは反転増幅器36の出力−ebを
一定時間与える。リセットスイッチR8は第6図に示す
リセットパルスP4によってオンとフZ b積分回路3
5をリセットする。In addition, in the signal processing circuit 3, as shown in FIG. 3, a sample and hold circuit 32c consisting of a 1-sampling switch 8c, a hold capacitor Oc, and an operational amplifier O20 is provided on the output side of the arithmetic circuit 33. As shown in the chart sample ho)'circuit s2a
K pulse P2. eb of the output eb of the amplifier 31 by
5 and eb4 are held alternately, and the sample and hold circuit 32b receives pulses P2bK) to output eb2 and eb,
is held alternately, and the sample hold circuit 32CK
(eb3-eb2) and (eb4-eb, ) of the output ec of the arithmetic circuit 35 are alternately sampled and held by the pulse P2cVC, and a signal related to a signal component proportional to the fluid flow I is output to the output terminal. Output voltage V
You may also extract Q, in this case (ebg
-eb2) and (ey -et+l) are output alternately, which has the advantage of doubling the response compared to the embodiment shown in Fig. 1. Instead of the sandal hold circuits 32a and 32b,
An integrating circuit may be used for each. Further, as shown in FIG. 5, an integrating circuit 35, an inverting amplifier 36, and a changeover switch 37 may be used instead of the sample hold circuit 32m, 521) and the arithmetic circuit 35. The integrating circuit 35 includes a resistor RI, an operational amplifier OP2. It has an integrating capacitor connected to the feedback circuit of OP2, a timing switch '1'S that controls the input integration time, and a reset switch R8 that resets the integrated value. When the selector switch 67 is on the a side, the output eb of the amplifier 51 is sent to the integrating circuit 35.
is added directly, and when on the b side, the output eb of the amplifier 61 is added via the inverting amplifier 36. The changeover switch 37 is connected to the a side during the 'r, , 'r2 periods and to the b side during the T5°T4 period by the pulse PS generated at the timing shown in FIG. 6, and the timing switch T8 is connected to the sixth side.
Each time the sampling pulse P2 'l)' shown in the figure is generated, it is turned on for a certain period of time im, and the output ebt of the amplifier 31 or the output -eb of the inverting amplifier 36 is given to the integrating circuit 55 for a certain period of time. The reset switch R8 is turned on and off by the reset pulse P4 shown in FIG.
Reset 5.
よって積分回路55は第6図に示すようにeb、の積分
値とeb2の積分値との差と、eb4の積分値とeb、
の積分値の差を交互に出力するようKなり、実質的K
(em3−em2)と(em4−ea+ )が交互に演
算されノイズ成分およびオフセット成分は除去される。Therefore, as shown in FIG. 6, the integrating circuit 55 calculates the difference between the integral value of eb and the integral value of eb2, and the difference between the integral value of eb4 and the integral value of eb,
K alternately outputs the difference between the integral values of
(em3-em2) and (em4-ea+) are calculated alternately to remove noise components and offset components.
さらに信号処理回路3は第7図に示すようにフィクロプ
ロセッサ38を用いて構成してもよい。第7図において
は、積分回路35の出力ecがA/D変換器39mでデ
ィジタル信号に変換されてマイクロプロセッサ3Bに与
えられ、マイクロプロセッサ58で所望の処理を行った
後アナログの出力電圧VDが必(11)
要な場合はD/A変換器59bを介して出力される。Further, the signal processing circuit 3 may be configured using a fibroprocessor 38 as shown in FIG. In FIG. 7, the output ec of the integrating circuit 35 is converted into a digital signal by the A/D converter 39m and given to the microprocessor 3B, and after the desired processing is performed by the microprocessor 58, the analog output voltage VD is Necessary (11) If necessary, it is outputted via the D/A converter 59b.
との場合マイクロプロセッサ58には、第5図と同様に
積分回路35で(eb3−eb2)と(eb、 −el
g )を交互に積分した結果をA/D変換器39aでデ
ィジタル信号に変換して与えてもよいが、第8図のタイ
ムチャートに:示すようIc Xebl、 eb2.
el)s、 eb4を個々に積分回路35で積分した値
をそれぞれA/D変換器39aでディジタル信号に変換
して与え、マイクロプロセッサ38で実質的に(eb、
−eb2 )と(eb4− ebl)を交互にディジ
タル演算を行い、オフセット電圧およびノイズ成分を除
去し流体の流量に比例した信号成分を取り出すようにし
てもよく、またマイクロプロセッサ58で実質的に(e
b5+eb、−eb2−ebl )なるディジタル演算
を行ってもよい。このとき積分回路35に基準電圧V「
をパルスP!で駆動されるスイッチTdを介して第8図
に示すように一定時間Iiだけ積分した値もA/D変換
器39aを介してマイクロプロセッサ38に与オ、流体
の流量に比例した信号成分を算出した結果を割算するよ
うにすれば、積分回路55の特性の影餐も受けない。な
お第7図にお(12)
いて、積分回路350代りに電圧・周波数変換器を用い
、A/D変換器391Iの代りにカウンタを用いてもよ
く、また積分回路35の代りに電圧・パルス幅変換回路
を用い、A/D変換器39aの代りに基準クロックおよ
びカウンタを用いてもよく、さらにA/D変換器39a
として二重積分形A/D変換器を用いる場合には積分回
路35は省略し得る。また第7図においては、励磁回路
1の設定電圧E「を第8図(イ)に示すようにマイクロ
プロセッサ38からD/人変換器17を介して与える場
合が例示されている。In this case, the microprocessor 58 uses the integrating circuit 35 to calculate (eb3-eb2) and (eb, -el) as in FIG.
g) may be converted into a digital signal by the A/D converter 39a and provided as a digital signal, but as shown in the time chart of FIG.
The values obtained by integrating s and eb4 individually by the integrating circuit 35 are converted into digital signals by the A/D converter 39a and provided, and the microprocessor 38 essentially converts them into digital signals (eb, eb4, etc.).
-eb2) and (eb4-ebl) may be alternately digitally operated to remove the offset voltage and noise component and extract a signal component proportional to the fluid flow rate. e
b5+eb, -eb2-ebl) may be performed. At this time, the reference voltage V'
Pulse P! As shown in FIG. 8, the value integrated over a certain period of time Ii is also sent to the microprocessor 38 via the A/D converter 39a through the switch Td driven by the switch Td, which calculates a signal component proportional to the flow rate of the fluid. If the obtained result is divided, the characteristics of the integrating circuit 55 will not be affected. In FIG. 7 (12), a voltage/frequency converter may be used instead of the integrating circuit 350, a counter may be used instead of the A/D converter 391I, and a voltage/pulse converter may be used instead of the integrating circuit 35. A width conversion circuit may be used, and a reference clock and a counter may be used in place of the A/D converter 39a.
When a double-integrating A/D converter is used, the integrating circuit 35 can be omitted. Further, in FIG. 7, a case is illustrated in which the set voltage E' of the excitation circuit 1 is applied from the microprocessor 38 via the D/person converter 17 as shown in FIG. 8(A).
なお上述の説明では、励磁電流Iwの定常値をIa→よ
り一+IC−+Xb→Iaと順次切換える場合を例示し
たが、(e113−em2)のみ求める場合には期間T
4を省略して第9図(イ)に示すようKしてもよ(、(
emじear)のみ求める場合は期間T2を省略して第
9図(ロ)に示すようにしてもよい。この場合は励磁周
期Tを短かくできる利点がある。また、励磁電流Iwの
3つの定常値In、 Ib、 Icのいずれか1つを零
にして励磁電流を流さない期間を設け、消費電力を少な
くしてもよい。例えば第10図(−f)の励磁電流の波
形はTaを零にし、かつTe=2Ibに選び、(ea5
− ea2 )または(eli−eal)を求める場合
で、第10図(ロ)の励磁電流の波形はIbを零にし、
かつIc=2Ibに選び(eaB−eli )を求める
場合で、第10図(ハ)の励磁電流の波形はTcを零に
し、かつIb=21aに選んで(eli−eag )を
求める場合である。第10図に)の励磁電流の波形は、
■11を零にするとともに期間T4も零にして(eaB
−ea2 )を求めるようにL7、消費電力をさらに少
なくした場合である。なお上述では、励磁電流1wの定
常値がIa、 Tb、 reの5つの場合を説明したが
、3つ以上あってもよく、また定常値は負であってもよ
い。さらに励磁電流Iwとしては短形波の場合を例示し
たが、台形波や商用交流電源を周波数変換した後整流し
て得た波形のもの等必要に応じて種々の波形のものを用
いることができる。In the above explanation, the case where the steady-state value of the excitation current Iw is sequentially switched from Ia to 1+IC-+Xb to Ia was exemplified, but when only (e113-em2) is obtained, the period T
4 may be omitted and K may be used as shown in Figure 9 (a) (, (
If only emjear) is to be obtained, the period T2 may be omitted as shown in FIG. 9(b). In this case, there is an advantage that the excitation period T can be shortened. Further, power consumption may be reduced by setting any one of the three steady values In, Ib, and Ic of the excitation current Iw to zero to provide a period in which no excitation current flows. For example, in the waveform of the excitation current shown in FIG. 10 (-f), Ta is set to zero, Te=2Ib is selected,
-ea2) or (eli-eal), the exciting current waveform in Fig. 10 (b) sets Ib to zero,
And when Ic=2Ib is selected and (eaB-eli) is obtained, the waveform of the excitation current in Figure 10 (c) is when Tc is set to zero and Ib=21a is selected to obtain (eli-eag). . The waveform of the excitation current (in Fig. 10) is
■ Set 11 to zero and also set period T4 to zero (eaB
This is a case where L7 and power consumption are further reduced so as to obtain -ea2). In the above description, the case where the excitation current 1w has five steady values, Ia, Tb, and re, has been described, but there may be three or more, and the steady value may be negative. Furthermore, although the case of a rectangular wave is illustrated as the excitation current Iw, various waveforms can be used as necessary, such as a trapezoidal wave or a waveform obtained by converting the frequency of a commercial AC power source and then rectifying it. .
以上説明したように本発明においては、電磁流量計発信
器の励磁コイルに供給する励磁電流を少なくとも3つの
定常値の間で切換え、励磁電流がそれぞれの定常値にな
ったとき電磁流量計発信器の電極間に誘起する電圧のう
ち少なくとも2つに励磁電流の切換えに伴って牛するノ
イズ成分が同方向に重畳されるようにし、これち誘起電
圧の差を実質的に演算することによって前記ノイズ成分
を除去するように;−7でいるので、零点の安定性およ
び応答性にすぐれた低周波励磁方式の電磁流量計が得ら
れる。よって本発明電磁流量計を用いて制御ループを構
成すれば、制御ループはハンチングを生ずることなく安
定化する。As explained above, in the present invention, the excitation current supplied to the excitation coil of the electromagnetic flowmeter transmitter is switched between at least three steady values, and when the excitation current reaches each steady value, the electromagnetic flowmeter transmitter The noise component caused by switching the excitation current is superimposed on at least two of the voltages induced between the electrodes in the same direction, and the difference between the induced voltages is substantially calculated to eliminate the noise. -7 so as to remove the components, so a low frequency excitation type electromagnetic flowmeter with excellent zero point stability and responsiveness can be obtained. Therefore, if a control loop is configured using the electromagnetic flowmeter of the present invention, the control loop will be stabilized without hunting.
第1図は本発明電磁流量計の一実施例を示す接続図、第
2図はその動作説明図、第3図は本発明電磁流量計の他
の実施例を示す接続図、第4図はその動作説明図、第5
図は本発明電磁流量計の別の実施例を示す接続図、第6
図はその動作説明図、第7図は本発明電磁流量計のさら
に他の実施例の接続図、第8図はその動作説明図、第9
図および第[1VFi本発明電磁流量1ttKおける励
磁電流の他の波形の説明図である。
1・・励磁回路、2・・・電磁流量計発信器、5・・・
信号処理回路、32a、 32b、 S2c ・・・サ
ンプルホールド回(15)
路、33・・・演算回路、35・・・積分回路、58・
・・マイクロプロセッサ、39a・・・A/D変換器。
(17) −125−(16)
(イノ
憤乞 /L
q 唱
Cロン
fX
不 ′−
(イノ
嬶
(ロン
(ニ)Fig. 1 is a connection diagram showing one embodiment of the electromagnetic flowmeter of the present invention, Fig. 2 is an explanatory diagram of its operation, Fig. 3 is a connection diagram showing another embodiment of the electromagnetic flowmeter of the present invention, and Fig. 4 is a connection diagram showing an embodiment of the electromagnetic flowmeter of the present invention. Diagram explaining its operation, 5th
Figure 6 is a connection diagram showing another embodiment of the electromagnetic flowmeter of the present invention.
7 is a connection diagram of still another embodiment of the electromagnetic flowmeter of the present invention, FIG. 8 is an explanatory diagram of its operation, and FIG.
and [1VFi] is an explanatory diagram of another waveform of the excitation current at the electromagnetic flow rate of 1ttK of the present invention. 1... Excitation circuit, 2... Electromagnetic flow meter transmitter, 5...
Signal processing circuit, 32a, 32b, S2c... Sample hold circuit (15) circuit, 33... Arithmetic circuit, 35... Integrating circuit, 58...
...Microprocessor, 39a...A/D converter. (17) -125-(16) (Ino indignation /L q chant Cron fX fu'- (Ino 嬶 (Ron (ni)
Claims (1)
なくとも3つの定常値の間で切換える手段と、励磁電流
がそれぞれの定常値になったとき電磁流量計発信器の電
極間に誘起する電圧のうち、励磁電流の切換えに伴って
生ずるノイズ成分が同方向に重畳されている少なくとも
2つの誘起電圧を検出し、その差を実質的に演算する手
段を有することを特徴とする電磁流量針。means for switching the excitation current supplied to the excitation coil of the electromagnetic flowmeter transmitter between at least three steady values; An electromagnetic flow needle characterized by having means for detecting at least two induced voltages in which noise components generated due to switching of excitation current are superimposed in the same direction, and substantially calculating the difference between the two induced voltages.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14585081A JPS5847215A (en) | 1981-09-16 | 1981-09-16 | Electro-magnetic flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14585081A JPS5847215A (en) | 1981-09-16 | 1981-09-16 | Electro-magnetic flow meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5847215A true JPS5847215A (en) | 1983-03-18 |
Family
ID=15394531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14585081A Pending JPS5847215A (en) | 1981-09-16 | 1981-09-16 | Electro-magnetic flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5847215A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5375966A (en) * | 1976-12-15 | 1978-07-05 | Hokushin Electric Works | Electromagnetic flow meter |
-
1981
- 1981-09-16 JP JP14585081A patent/JPS5847215A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5375966A (en) * | 1976-12-15 | 1978-07-05 | Hokushin Electric Works | Electromagnetic flow meter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101409044B1 (en) | Current sensor apparatus and method for uninterruptible power supply | |
US4144751A (en) | Square wave signal generator | |
US4206641A (en) | Electromagnetic flow meter | |
JP2661933B2 (en) | Circuit for measuring the DC component of the current flowing through the primary winding of the output transformer of the inverter | |
US4206640A (en) | Magnetic flowmeter | |
EP4012909A1 (en) | Control circuit for power converting device, and power converting device | |
KR102129625B1 (en) | Referential signal generating circuit and method, and power factor compensation apparatus including the same | |
US5641914A (en) | Inductive flow meter | |
US4156363A (en) | Magnetic flowmeter | |
JPS5847215A (en) | Electro-magnetic flow meter | |
JPH03235065A (en) | Electromagnetic type digital current detector | |
US4169375A (en) | Magnetic flowmeter | |
JPS58120118A (en) | Electromagnetic flowmeter | |
JPH0261689B2 (en) | ||
JP2006112833A (en) | Inductance measuring instrument | |
JPS5815122A (en) | Electromagnetic flowmeter | |
JP3996464B2 (en) | 2-wire electromagnetic flow meter | |
JP3120660B2 (en) | Electromagnetic flow meter | |
JP3052571B2 (en) | Timing pulse generation circuit in electromagnetic flowmeter | |
JP4993709B2 (en) | Current controlled switching power supply | |
JP2545659B2 (en) | Electromagnetic flow meter | |
JPS5815121A (en) | Electromagnetic flowmeter | |
JPH0318131B2 (en) | ||
JPS58120117A (en) | Electromagnetic flowmeter | |
JP2003066071A (en) | Power supply frequency detecting circuit |