JPS5815121A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JPS5815121A
JPS5815121A JP11406881A JP11406881A JPS5815121A JP S5815121 A JPS5815121 A JP S5815121A JP 11406881 A JP11406881 A JP 11406881A JP 11406881 A JP11406881 A JP 11406881A JP S5815121 A JPS5815121 A JP S5815121A
Authority
JP
Japan
Prior art keywords
voltage
period
excitation
excitation current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11406881A
Other languages
Japanese (ja)
Inventor
Kenta Mikuriya
健太 御厨
Takehiro Sawayama
沢山 武弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Yokogawa Hokushin Electric Corp
Yokogawa Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp, Yokogawa Hokushin Electric Corp, Yokogawa Electric Works Ltd filed Critical Yokogawa Electric Corp
Priority to JP11406881A priority Critical patent/JPS5815121A/en
Publication of JPS5815121A publication Critical patent/JPS5815121A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain a device having superior stability of zero point and responsiveness by so constituting the same that the direction of the electric current to be flowed to an excitation coil is changed over periodically, a quiescent period when no current flows upon the changing-over time is reserved and the voltage induced during this period is taken in as a compensation voltage. CONSTITUTION:Switches 12a, 12b which change over the positive and negative directions of the electric current from a DC constant current source 11 to be flowed to an excitation coil 21 by means of pulses P1a, P1b periodically are provided. A signal processing circuit 4 is constituted of sample holding circuits 41a-41d which sample the output eb of an AC amplifier 3 and hold the samples, an arithmetic circuit 42 which adds and subtracts the outputs V1-V4 thereof, and a pulse generator 43. The induction voltage generated between the electrodes 23a and 23b in the period when the excitation current is flowed to the circuit 4 is taken in as a signal voltage, and the induction voltage generated in the period when no excitation current flows is taken in as a compensation voltage. The nozzle components accompanied with the changing over of the excitation current contained in the signal voltage are removed by the compensation voltage.

Description

【発明の詳細な説明】 本発明は、低周波励磁方式の電磁流量計の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a low frequency excitation type electromagnetic flowmeter.

一般に電磁流量針は、流体の流れ方向に対して垂直に磁
界を与え、同時に流体流路中の電気的信号の変化を検出
し、これに基づいて流体の流量を計測するように構成さ
れている。最近の電磁流量計は、交流励磁方式や直流励
磁方式に比して零点の安定性に丁ぐれている台形波励磁
や方形波励磁などと呼ばれている低周波励磁方式のもの
が多く用いられている。低周波励磁方式の電磁流量計で
は、励磁コイルに供給する電流を2つの定常値間で周期
的に切換えて1m磁電流が一定になったとき電極間に発
生する誘起電圧をそれぞれサンプリングした後隣り合っ
たサンプリング信号の差をとることにより、電気化学的
な直流電位や回路に基づくオフセット電圧による影蕃を
除去し、流体の流量に対応した信号を得ている。このよ
うな低周波励磁方式の電磁流量針においても、励磁電流
が一定値に達してから十分な時間が仔遇した稜サンプリ
ングしないと零点がトリアドする。これは電極間に発生
する誘起電圧に、流体の流量に比例した信号成分と電気
化学的な直流電位や回路によるオフセラF成分の外に、
励磁電流の切換時に電極と電極リード間のループで生ず
る電磁結合ノイズと流体中を流れる渦電流が液抵抗と電
極の界面電気二重層容量とで形成される一次遅れ回路に
よって生ずる一次遅れノイズを含む励磁電流の切換えに
伴うノイズ成分が重畳されており、このノイズ成分は励
磁電流を切換えるたびに極性が反転するので、隣り合う
サンプリング信号の差をとっても消去できず、しかも電
磁結合ノイズは短時間で零になるが、−次遅れノイズは
十分に時間が経過しないと零にならないためである。よ
って、零点の安定性の面から考えると励磁周波数は低い
ほど有利であり、実用化されている電磁流量計には商用
電源周波数の1732に選ばれているものもあるが。
Generally, an electromagnetic flow needle is configured to apply a magnetic field perpendicular to the fluid flow direction, simultaneously detect changes in electrical signals in the fluid flow path, and measure the fluid flow rate based on this. . Many modern electromagnetic flowmeters use low-frequency excitation methods, such as trapezoidal wave excitation or square wave excitation, which have better zero point stability than AC or DC excitation methods. ing. In a low-frequency excitation type electromagnetic flowmeter, the current supplied to the excitation coil is periodically switched between two steady-state values, and when the 1m magnetic current becomes constant, the induced voltage generated between the electrodes is sampled, and then By taking the difference between the matched sampling signals, the influence of electrochemical direct current potential and circuit-based offset voltage is removed, and a signal corresponding to the fluid flow rate is obtained. Even in such a low-frequency excitation type electromagnetic flow needle, the zero point will triad if sufficient time is not taken to sample the edge after the excitation current reaches a certain value. This is due to the induced voltage generated between the electrodes, in addition to the signal component proportional to the fluid flow rate and the offset F component due to the electrochemical DC potential and circuit.
This includes electromagnetic coupling noise generated in the loop between the electrode and electrode lead when excitation current is switched, and first-order lag noise generated by the first-order lag circuit formed by the eddy current flowing in the fluid and the liquid resistance and the interfacial electric double layer capacitance of the electrode. The noise component associated with switching the excitation current is superimposed, and the polarity of this noise component reverses each time the excitation current is switched, so it cannot be eliminated even by taking the difference between adjacent sampling signals, and electromagnetic coupling noise can be eliminated in a short time. This is because, although it becomes zero, -th lag noise does not become zero until a sufficient amount of time has elapsed. Therefore, from the standpoint of zero point stability, the lower the excitation frequency is, the more advantageous it is, and some electromagnetic flowmeters in practical use use the commercial power frequency of 1732.

励磁周波数をあまり低くすると応答性が遅くなったり、
制御ループを組んだときハンチングを生じたりする。さ
らに励磁周波数を低くすると、電気化学的な直流電位の
変化が問題となり、この変化を補償するための手段が新
たに必要となる。
If the excitation frequency is too low, the response will be slow,
Hunting may occur when a control loop is constructed. Further, when the excitation frequency is lowered, changes in electrochemical DC potential become a problem, and a new means is required to compensate for this change.

本発明は、励磁プイルに正の励磁電流を流す期間と負の
励磁電流を流す期間の間に励磁電流な流さない休止期間
を設け、信号処理回路に励磁電流が流れている期間に電
極間に生ずる誘起電圧を信号電圧として取込むとともに
、励磁電流が流れていない期間罠電極間に生ずる誘起電
圧を補償電圧として取込み、信号電圧に含まれる励磁電
流の切換えに伴うノイズ成分を補償電圧により除去する
ようにして、零点の安定性に丁ぐれ、かつ応答性にも丁
ぐれた低周波励磁方式の電磁流量計を実現したものであ
る。
The present invention provides a rest period in which no excitation current is passed between a period in which a positive excitation current is passed through the excitation pulley and a period in which a negative excitation current is caused to flow, and a rest period in which no excitation current is passed through the signal processing circuit is provided between the electrodes. The generated induced voltage is taken in as a signal voltage, and the induced voltage generated between the trap electrodes during the period when no excitation current is flowing is taken in as a compensation voltage, and the noise component included in the signal voltage due to switching of the excitation current is removed by the compensation voltage. In this way, a low-frequency excitation type electromagnetic flowmeter with excellent zero point stability and excellent response has been realized.

第1図は本発明電磁流量計の一実施例を示す接続図であ
る1図において、1は励磁回路で、直流定電流源11と
この定電流源からの電流を切換えるスイッチ12□12
b を有している。2は電磁流量計発信器で、励磁コイ
ル21.流体が流れるパイプ22および電極25m、2
31)を備えている。3は交流増幅器で、電磁流量計発
信器2の電極fls、、25b間に誘起する電圧e8を
増幅するものである。4は信号処理回路で、増幅器5の
出力ebをサンプルホールドするサンプルホールド回路
u、、 41b+41e、41dと、サンプルホールド
回路41a〜41dの出力v1〜v4の加減算を行う演
算回路42およびノ(ルス発生器4Sと力)うなってい
る。サンプルホールド回路41a〜41dktサンプリ
ングスイツチs8麿〜8sdとホールド用コンデンサ0
龜〜〜とからなるものが示されている。ノ4ルス発生器
45は、50Hsまたは60七の商用交流電源(図示せ
ず)と同期し、スイッチ12m+ 12b を制御する
パルス?1al l’1b  と、サンプリングスイッ
チ8B亀。
Fig. 1 is a connection diagram showing an embodiment of the electromagnetic flowmeter of the present invention. In Fig. 1, 1 is an excitation circuit, a DC constant current source 11 and a switch 12□12 for switching the current from this constant current source.
It has b. 2 is an electromagnetic flowmeter transmitter, which includes an exciting coil 21. Pipe 22 through which fluid flows and electrodes 25m, 2
31). 3 is an AC amplifier that amplifies the voltage e8 induced between the electrodes fls, , 25b of the electromagnetic flowmeter transmitter 2. 4 is a signal processing circuit, which includes sample and hold circuits u, 41b+41e, and 41d that sample and hold the output eb of the amplifier 5, an arithmetic circuit 42 that adds and subtracts the outputs v1 to v4 of the sample and hold circuits 41a to 41d, and a Vessel 4S and force) growling. Sample hold circuit 41a~41dkt Sampling switch s8maro~8sd and hold capacitor 0
The one consisting of a bell is shown. The pulse generator 45 is synchronized with a 50Hs or 60Hs commercial AC power supply (not shown) and generates pulses that control the switches 12m+12b. 1al l'1b and sampling switch 8B turtle.

88b+ 88c、 88dを制御するIリレスP2膳
t Pzb+ P2e+P2dを発生する。
88b+ Generates an I-response P2 set Pzb+ P2e+P2d that controls 88c and 88d.

このように構成した本発明の動作を第2図のタイムチャ
ートを参照して以下に説明する。まずスイッチBa、1
2b は第2図(イ)、(−1に示す如き駆動/(ルス
P1a+F1bで制御され、Plmがオンとなって〜す
るT1期間には定電*I[11から電流工1を正方向に
、PlbがオンとなっているT5期間には逆方向に切換
えて励磁コイル21に流し、P1麿、 Plb がとも
にオフとなっているT2期間および14期間には励磁コ
イル21に電流を流さない。よって励*:Iイル21に
を1第2図(へ)に示すように休止期間T2.T4を有
する励磁電流Iwが供給される。なお励磁電流の周期τ
を1商用交流電源周期Tの整数倍に選ばれている。励磁
電流Iwはスイッチ12a@ 1tbで切換えられたと
き、励磁フィルのインダクタンスと抵抗による時定数で
第2図(ハ)のように立上り、立下り部分で遅れを伴っ
たのち定常値となる。発信器2の電極25m、 25b
間には第2図に)K示すように励磁電流1wK応じた誘
起電圧eaが発生する。誘起電圧e富には、ノくイブ2
2を流れる流体の流量rに比例した信号成分Vsの外に
、第5図の拡大波形図に斜線で示す如きノイズ成分Va
1〜Vn4と、電気化学的な直流電位や回路によるオフ
セット電圧成分Woo とが重畳されて〜・る。ノイズ
成分Vn1〜Vn4は、励磁電流の切換時に電極と電極
リード間のループで生ずる電磁結合ノイズと、流体中を
流れる渦電流が液抵抗と電極の界面電気二重層容量とで
形成される一次遅れ回路によって生ずる一次遅れノイズ
を含んでいる。その結果圧の励磁電流が流れている期間
T1の誘起電圧e1は流体の流量に比例した正の信号成
分VSとオフセット成分VnOとノイズ成分Vn1  
との和(Vs+VnO+ Vnl)となり、休止期間T
2の誘起電圧ea2は9 オフセット電圧VnOと負のノイズ成分Vn2 どの和
(VnQ  TI12 )となり、負の励磁電流が流れ
ている期間T5の誘起電圧easは流体の流量に比例し
た負の信号成分−Vsとオフセット成分VnOおよび負
のノイズ成分−VO3の和(VnOVn!l −Vs 
)となり、休止期間T4の誘起電圧em4はオフセット
電圧VnOと正のノイズ電圧Vn4との和(VnO+V
n4 )となる。そして正または負の励磁電流が流れて
いる期間T+、T5の誘起電圧eajgem5 が交流
増幅器3で増幅された後信号電圧v1.v3として信号
処理回路4に与えられ、励磁電流が流れない休止期間T
21T4の誘起電圧ea21144 が交流増幅器3で
増幅された後補償電圧V2.V4として信号処理回路4
に与えられる。信号処理回路4においては、第2図(ホ
)、(へ)、())、(ハ)に示す如きタイミングで発
生するサンプリングパルスP2a、 P2b、P2c+
 p2dによって、■1〜v4がそれぞれサンプルホー
ルド回路41a〜41dにホールドされろうこれらホー
ルド電圧v1〜v4は演算回路42に加えられ、(v1
+V2−VS −T4 )なる加減演算が行われる。
The operation of the present invention configured as described above will be explained below with reference to the time chart of FIG. First, switch Ba, 1
2b is controlled by P1a+F1b as shown in FIG. , Plb are on, and the current is switched to the opposite direction to flow through the excitation coil 21, and during the T2 and 14 periods, when both P1 and Plb are off, no current is passed through the excitation coil 21. Therefore, an excitation current Iw having a rest period T2.T4 is supplied to the excitation current 21 as shown in FIG.
is selected to be an integral multiple of one commercial AC power supply period T. When the excitation current Iw is switched by the switch 12a@1tb, it rises as shown in FIG. 2(c) due to the time constant due to the inductance and resistance of the excitation fill, and reaches a steady value after a delay in the falling part. Electrodes 25m and 25b of transmitter 2
In between, as shown in FIG. 2), an induced voltage ea corresponding to the excitation current 1wK is generated. For the induced voltage e wealth, Nokuib 2
In addition to the signal component Vs proportional to the flow rate r of the fluid flowing through 2, there is a noise component Va as shown by diagonal lines in the enlarged waveform diagram of FIG.
1 to Vn4 and an offset voltage component Woo caused by an electrochemical DC potential or a circuit are superimposed. Noise components Vn1 to Vn4 are electromagnetic coupling noise generated in the loop between the electrode and electrode lead when switching the excitation current, and first-order lag caused by the eddy current flowing in the fluid formed by the liquid resistance and the interfacial electric double layer capacitance of the electrode. Contains first-order lag noise caused by the circuit. As a result, the induced voltage e1 during the period T1 during which the excitation current is flowing is a positive signal component VS proportional to the fluid flow rate, an offset component VnO, and a noise component Vn1.
(Vs+VnO+Vnl), and the rest period T
The induced voltage ea2 of 2 is the sum of the offset voltage VnO and the negative noise component Vn2 (VnQ TI12), and the induced voltage eas during the period T5 during which the negative excitation current flows is a negative signal component - proportional to the flow rate of the fluid. The sum of Vs, offset component VnO and negative noise component -VO3 (VnOVn!l -Vs
), and the induced voltage em4 during the rest period T4 is the sum of the offset voltage VnO and the positive noise voltage Vn4 (VnO+V
n4). After the induced voltage eajgem5 during periods T+ and T5 during which a positive or negative excitation current flows is amplified by the AC amplifier 3, the signal voltage v1. A rest period T, which is given to the signal processing circuit 4 as v3 and during which no excitation current flows.
After the induced voltage ea21144 of 21T4 is amplified by the AC amplifier 3, the compensation voltage V2.21T4 is amplified by the AC amplifier 3. Signal processing circuit 4 as V4
given to. In the signal processing circuit 4, sampling pulses P2a, P2b, P2c+ are generated at the timings shown in FIG.
p2d, the hold voltages v1 to v4 will be held in the sample and hold circuits 41a to 41d, respectively.These hold voltages v1 to v4 are applied to the arithmetic circuit 42, and (v1
+V2-VS-T4) is performed.

よって、演算回路42の出力V(、は。Therefore, the output V(, is) of the arithmetic circuit 42.

VO==v1+V2−T3−T4 =ek (2Vs+
Vn1−Vn7+Vn3 VO4) =−−−−(it
ただし、kは交流増幅器3のゲイン となり、オフセット電圧VnOの影響は除去される。
VO==v1+V2-T3-T4 =ek (2Vs+
Vn1-Vn7+Vn3 VO4) =----(it
However, k is the gain of the AC amplifier 3, and the influence of the offset voltage VnO is removed.

(11式において、 Vnl −VO2+Vn3− VO4W O・・・・・
・川・・川・… (2)の関係を満足させれば、ノイズ
成分Vn1〜Vn4にょる影響も除去できる。そして、
励磁電流の立上り。
(In formula 11, Vnl -VO2+Vn3- VO4WO O...
- River... River... If the relationship (2) is satisfied, the influence of the noise components Vn1 to Vn4 can also be removed. and,
Rise of excitation current.

立下り時間を一定に保ち、励磁電流が流れている期間T
1.Tsと休止期間〒2.T4とを、 Tj =T2 
=T3 =T4に、またサンプリングパルスP2a+ 
P2b、 P2c+ P2d  を発生するタイミング
時間Ts1s Ti2+ TsS、 Ti4をTsl 
=Ts2 ”TsS =T、4に選んでやれば、はぼv
r+4 = VO2= Vn5=:Vn4  となって
(2)式の関係を満足し、出力電圧VDは、 VC+ = 2 k Vs・・・・・・・・・・・・・
・・・・・(5)となり、ノイズ電圧Vn1〜Vn4の
影響も除去され、流体の流量に比例した電圧成分v3の
みを2に倍したものとなる。  “− とのよ5に本発明では、零点のドリフトの原因となるノ
イズ成分を有効に除去しているので、励磁側波数を低く
することな(すなわち応答性を犠牲Kjることなく零点
の安定性が得られる。また本発明では、励磁電流を流さ
ない休止期間を設けているので、消費電力を少なくでき
る利点がある。
The period T during which the excitation current is flowing while keeping the fall time constant
1. Ts and suspension period〒2. T4 and Tj = T2
=T3 =T4, and sampling pulse P2a+
Timing time to generate P2b, P2c+ P2d Ts1s Ti2+ TsS, Ti4 to Tsl
=Ts2 ”TsS =T, if you choose 4, it will be v
r+4=VO2=Vn5=:Vn4, satisfying the relationship of equation (2), and the output voltage VD is: VC+=2 k Vs・・・・・・・・・・・・・・・
(5), the influence of the noise voltages Vn1 to Vn4 is also removed, and only the voltage component v3 proportional to the fluid flow rate is multiplied by 2. 5. In the present invention, since the noise component that causes the zero point drift is effectively removed, it is possible to stabilize the zero point without lowering the excitation side wave number (that is, without sacrificing the response Kj). Furthermore, since the present invention provides a rest period in which no excitation current flows, there is an advantage that power consumption can be reduced.

さらに本発明では、励磁電流を流す期間Tl、T5およ
び励磁電流を流さない期間T2.T4をそれぞれ商用交
流電源周期Tの整数倍nT  に選ぶことにより、第4
図に示すように商用電源周波数ノイズの影響をv1〜v
4が同様に受け、サンプリングパルスP2a〜P2dを
発生するタイミングTm1〜Ts4を等しく選んで、(
Vl +V2−T3−Va )  なる加減演算を行っ
ているので、その影響は除去される。またT1〜T4の
各々が〒の整数倍でなくても、(丁1+T2)と(T3
+T’4)とがそれぞれTの整数倍であれば、同様に除
去できる。
Furthermore, in the present invention, the periods Tl, T5 during which the excitation current flows and the periods T2. By selecting T4 to be an integer multiple nT of the commercial AC power supply period T, the fourth
As shown in the figure, the influence of commercial power supply frequency noise is
4 is received in the same way, and the timings Tm1 to Ts4 at which sampling pulses P2a to P2d are generated are equally selected, and (
Vl +V2-T3-Va) Since the addition/subtraction operation is performed, the influence thereof is removed. Also, even if each of T1 to T4 is not an integral multiple of 〒, (T1+T2) and (T3
+T'4) are each an integral multiple of T, they can be removed in the same way.

なお上述では、励磁電流Iwの立上り、立下り時間を一
定に保ち、TI =T2 ”TiS =T4およびT、
1=T、2=T、5 == Ti4に選び、Vn 1 
=g Vn 2 = Vn 5− VO4としてノイズ
成分Vn1〜V+s4の影響を除去する場合を例示した
が、励磁電流Iwの立上り、立下り時間などに差がある
場合には、Tsl、 Ti2+ Ts3t Ti4  
を調整することによってVnl == VO2= Vn
3コVn4  の関係を満足させることもできる。すな
わち例えばTi4を短かくすればVO4が増加し、長(
すればvrI4が減少する。またノイズ成分Vn1〜V
f14の影響は、(2)式から(Vn1+ vns )
 = (V口2+VI!4)であれば除去できるので、
この関係を満足するようにTI+ T2* T3+ T
4およびTi1゜Ti21 ’h31 TI4を選んで
もよい。この場合第4図に示すようにサンプリングパル
スP2aとPlcの間隔t1(−TlTsl + T2
 + Td )およびサンプリングパルスP2bとP2
cとの間隔t (xT2  Ti2 +T3 +Tsa
 )をそれぞれ商用交流電源周期の整数倍に選べば・、
商用交流電源周期数ノイズの影響も除去できる。
In the above description, the rise and fall times of the excitation current Iw are kept constant, and TI = T2, TiS = T4 and T,
1=T, 2=T, 5 == Select Ti4, Vn 1
=g Vn 2 = Vn 5- Although the case where the influence of the noise components Vn1 to V+s4 is removed as VO4 has been illustrated, if there is a difference in the rise and fall times of the excitation current Iw, Tsl, Ti2+ Ts3t Ti4
By adjusting Vnl == VO2= Vn
It is also possible to satisfy the relationship of three Vn4. In other words, for example, if Ti4 is shortened, VO4 will increase, and if Ti4 is shortened (
Then, vrI4 will decrease. Also, the noise component Vn1~V
The influence of f14 is calculated from equation (2) as (Vn1+ vns)
If = (V port 2 + VI! 4), it can be removed, so
TI+ T2* T3+ T to satisfy this relationship
4 and Ti1°Ti21 'h31 TI4 may be selected. In this case, as shown in FIG. 4, the interval t1 (-TlTsl + T2) between the sampling pulses P2a and Plc is
+ Td ) and sampling pulses P2b and P2
The distance t (xT2 Ti2 +T3 +Tsa
) are each selected as an integer multiple of the commercial AC power supply period.
The influence of commercial AC power cycle number noise can also be removed.

また上述では、正の励磁電流が流れている期間T1と、
休止期間T2と、負の励磁電流が流れている期間T3お
よび休止期間T4のそれぞれの期間のサンプリング信号
V1 + V2t v3. v4を演算回路12  で
(Vl +V2−V!l −Va )なる加減演算を行
う場合を例示したが、T1期間とT4期間のみをVn1
=Vn4になるようにそれぞれサンプリングし、演算回
路42で(va−V4)なる演算を行って流量に比例し
た電圧成分■1の4を破り出すようにしてもよい。この
場合サンプルホールド回路41bl 41c は省略し
得るので構成が簡単になり、また休止期間T2を零にす
ることもできる。同様にT2期間とT5期間のみをVn
2eIIvl  になるようにそれぞれサンプリンブレ
、演算回路42で(V2−Vs)なる演算を行って流量
に比例した電圧成分vsのみを取り出すようにしてもよ
い、この場合にはサンプルホールド回路41a* 41
bが省略でき、休止期間T4も零にできる。
Furthermore, in the above description, the period T1 during which the positive excitation current is flowing,
Sampling signal V1 + V2t v3. of each period of rest period T2, period T3 where negative excitation current flows, and rest period T4. The case where the addition/subtraction operation of (Vl +V2-V!l-Va) is performed on v4 by the arithmetic circuit 12 has been exemplified, but only the T1 period and T4 period are used as Vn1.
=Vn4, and the arithmetic circuit 42 performs the calculation (va-V4) to extract the voltage component (1) 4 proportional to the flow rate. In this case, the sample and hold circuit 41bl 41c can be omitted, which simplifies the configuration, and the pause period T2 can also be made zero. Similarly, only the T2 period and T5 period are set to Vn.
2eIIvl, and the arithmetic circuit 42 may perform the calculation (V2-Vs) to extract only the voltage component vs proportional to the flow rate. In this case, the sample hold circuit 41a*41
b can be omitted, and the pause period T4 can also be made zero.

第5図は本発明電磁流量針の他の実施例を示す接続図で
、第1図の実施例と異るところは、信号処理回路4のサ
ンプルホールド回路41a〜41dおよび演算回路42
の代りに、積分回路441反転反転器45.jFl換ス
イッチ46およびサンプルホールド回路47を用いた点
である。積分回路44は、抵抗R1゜演算増幅器QP1
+OP1  の帰還回路に接続された積分用コンデンサ
01+入力積分時間を制御するタイミングスイッチT8
および積分値をリセットするクセ、トスイ、チR8を有
している。そして積分回路44出力が直接加えられ、b
側のとき交流増幅器3の出力が反転増li器45を介し
て加えられる。第6図に示す如きタイミングで発生する
パルスP3によ。
FIG. 5 is a connection diagram showing another embodiment of the electromagnetic flow needle of the present invention. The difference from the embodiment of FIG.
Instead of integrating circuit 441 inverter 45 . This is because a jFl conversion switch 46 and a sample hold circuit 47 are used. The integrating circuit 44 includes a resistor R1° and an operational amplifier QP1.
Integrating capacitor 01 connected to the +OP1 feedback circuit + timing switch T8 that controls the input integration time
It also has a quirk, tosui, and chi R8 that reset the integral value. Then, the output of the integrating circuit 44 is directly added to b
When the AC amplifier 3 is on the side, the output of the AC amplifier 3 is added via an inverting amplifier 45. By the pulse P3 generated at the timing shown in FIG.

て、切換スイッチ46はTI、T2期間にはb側に、T
3゜T4期間には1側になる。またタイミングスイッチ
T8は第6図に示すサンプリングパルスP2が発生する
毎に一定時間を器だけオンとなり、積分回路44は反転
された信号電圧v1と、反転された補償電圧v2と、信
号電圧v5と、補償電圧■4とを順次一定時間づつ積分
し、その出力端には第6図に示す如き波形の積分電圧v
島が得られる。よって■1は。
The selector switch 46 is set to the b side during the TI and T2 periods, and is set to the T side during the T2 period.
During the 3°T4 period, it becomes the 1 side. Further, the timing switch T8 is turned on for a certain period of time every time the sampling pulse P2 shown in FIG. , compensation voltage 4 are sequentially integrated over a certain period of time, and at the output end there is an integrated voltage v with a waveform as shown in FIG.
You will get an island. Therefore, ■1 is.

v、=者k(2Va + Vnl  Vn2 + Vn
A  VnA)・・・・・・・・・(4)となり、しか
もVn1= Vn2 = Vn3 = VnA  Kで
きるので、Va=2”VBとなって、オフセット電圧お
よび7(!IR1 イズ成分Vnl〜Vn4の影響は除去される。この電圧
Viが第6図に示す如きタイミングで発生するサンプリ
ングパルスP4によってサンプルホールド回路47にホ
ールドされ、その出力端に流体の流量に比例した信号成
分V@のみに関連した出力電圧vOを得ることかで會る
。この実施例においては積分時間taを商用交流電源周
期Tの整数倍に選ぶことによって商用電源周波数ノイズ
の影響を除去でき、しかも’TSI、 ’rat、 T
l31 Teaを調整してVnly Tl21 Vnl
1 VnA =0を満足させる場合でも部用電源周波数
ノイズの影響を受けない。
v, = person k(2Va + Vnl Vn2 + Vn
A VnA) ...... (4), and since Vn1 = Vn2 = Vn3 = VnA K, Va = 2''VB, and the offset voltage and 7(!IR1 noise component Vnl~Vn4 This voltage Vi is held in the sample hold circuit 47 by the sampling pulse P4 generated at the timing shown in FIG. In this embodiment, by selecting the integration time ta to be an integer multiple of the commercial AC power supply period T, the influence of commercial power supply frequency noise can be removed. T
Adjust l31 Tea and Vnly Tl21 Vnl
Even when satisfying 1 VnA = 0, it is not affected by internal power supply frequency noise.

なお第5図の実施例では、信号処理回路4の出力段にサ
ンプルホールド回路47を用いる場合を例示したが、第
7図に示すようにマイクロプロセッサ48を用い【もよ
い。第7図においては、積分回路44の出力Vaがψ変
換器49mでディジタル信号に変換されてマイクロブー
セッサ48に与えられ。
In the embodiment shown in FIG. 5, a sample and hold circuit 47 is used at the output stage of the signal processing circuit 4, but a microprocessor 48 may also be used as shown in FIG. In FIG. 7, the output Va of the integrating circuit 44 is converted into a digital signal by a ψ converter 49m and provided to the microprocessor 48.

マイクロブーセッサ46で所望の処理を行った後アナμ
グの出力電圧vOが必要な場合はD/A変換器49bを
介して出力される。この場合、マイクロブーセッサ48
には、第5図と同様にv1〜v4を積分回路44で加算
積分した結果をA/D変換器49a でディジタル信号
に変換して与えてもよいが、第8図のタイムチャートに
示すように、Vl 、 V2 * v31 V4を佃々
に積分回路44で積分した値をそれぞれA/D変換器4
9aでディジタル信号に変換して与え、マイクロプロセ
ッサ48で実質的に(V1+ V7− Vs −va)
なるディジt、に タル演算を行い20rRt”を求めてもよい。このとき
積分回路44に基準電圧vrをパルスで駆動されるスイ
ッチT8’  を介して第8図に示すように一定時間1
./  だ1す積分した値もA/D変換器498を介し
て−rイクpプpセ、す4sK4t、2 ”’ Vs/
 ”’ Vr す(!IR1C1R1 るディジタル演算を行うようにすれば、積分回路44の
特性の影響を除去できる。なお第7図においては、積分
回路44とA/D変換器49m とを用いてマイクロブ
クセ・・す4Bに信号を与える場合を例示しであるが、
積分回路44の代りにサンプルホールビ回路を用いても
よく、また積分回路44の代りに電圧、周波数変換器を
用い、A/D変換器49aの代りにカウンタを用いてマ
イクロプロセッサ48に与えてもよく、積分回路44の
代りに電圧パルス幅変換回路を用い、A/D変換器49
mの代りに基準クロックおよびカウンタを用いてもよく
、さらに積分回路44とA/D変換器49の代りに二重
積分形A/D変換器を利用してマイクロプロセッサ46
に信号を与えてもよい。
After performing the desired processing with the microprocessor 46, the
If the output voltage vO of the output signal is required, it is outputted via the D/A converter 49b. In this case, the microbussessor 48
5, the results of addition and integration of v1 to v4 by the integrating circuit 44 may be converted into a digital signal by the A/D converter 49a, but as shown in the time chart of FIG. Then, the values obtained by integrating Vl, V2 * v31 and V4 by the integrating circuit 44 are respectively input to the A/D converter 4.
9a converts it into a digital signal and provides it, and the microprocessor 48 essentially converts it into a digital signal (V1+V7-Vs-va).
20rRt" may be obtained by performing a tal operation on the digital t. At this time, the reference voltage vr is applied to the integrating circuit 44 via a pulse-driven switch T8' for a certain period of time 1 as shown in FIG.
.. / The integrated value is also converted via the A/D converter 498 to
"' Vr (!IR1C1R1) If the digital calculation is performed, the influence of the characteristics of the integrating circuit 44 can be removed. In FIG. ...The case where a signal is given to S4B is shown as an example, but
A sample Holby circuit may be used instead of the integrating circuit 44, a voltage/frequency converter may be used instead of the integrating circuit 44, and a counter may be used instead of the A/D converter 49a to provide the signal to the microprocessor 48. Alternatively, a voltage pulse width conversion circuit may be used instead of the integration circuit 44, and the A/D converter 49
A reference clock and a counter may be used instead of m, and a double integration type A/D converter may be used instead of the integrating circuit 44 and A/D converter 49 to control the microprocessor 46.
may be given a signal.

また第7図においては、励磁回路1として励磁電流工!
に関連した電圧E1と設定電圧Erとの差を誤差増11
ii)Aで増幅した電圧Ecと、三角波電圧発生回路(
至)の出力Bsとを比較器αで比較し、その比較結果B
、を一方の入力に駆動パルスP1=またはPlbが加え
られているアントゲ−)G1.G2の他方の入力に共通
に与え、G1.G2の出力に応じて励磁電流の方向を切
換えるスイッチ12/112b’をオンオフ制御し、励
磁電流の定常値を一定値に保つようにして励i1回路の
電力損失を小さくして効率をよくしたものである。なお
ダイオードD1〜D4  はスイッチ12m’ 、 j
2Wがオフのとき励磁フィル21に蓄積された勘気的エ
ネルギを放出し励磁電流IWを流し続けるためのもので
ある。
In addition, in FIG. 7, the excitation circuit 1 is an excitation current circuit!
The difference between the voltage E1 and the set voltage Er related to the error increase 11
ii) The voltage Ec amplified by A and the triangular wave voltage generation circuit (
) is compared with the output Bs of
, to which the drive pulse P1= or Plb is applied to one input (G1.). Commonly applied to the other input of G2, G1. The switch 12/112b', which changes the direction of the excitation current according to the output of G2, is controlled on/off to keep the steady value of the excitation current at a constant value, thereby reducing power loss in the excitation i1 circuit and improving efficiency. It is. Note that diodes D1 to D4 are connected to switches 12m', j
When 2W is off, the energy stored in the excitation filter 21 is released to keep the excitation current IW flowing.

なお上述では、励磁回路1として矩形波で励磁する場合
を例示したが、台形波や商用交流電源を周波数変換した
後整流して得た波形のもの等必要に応じて種々の波形の
ものを用いることができる。
In the above description, the case where the excitation circuit 1 is excited with a rectangular wave is illustrated, but various waveforms may be used as necessary, such as a trapezoidal wave or a waveform obtained by converting the frequency of a commercial AC power source and then rectifying it. be able to.

以・上説明したように本発明罠よれば、正の励磁電流を
流す期間と負の励磁電流を流す期間の間に励磁電流を流
さない休止期間を設け、励磁電流が流れている期間に電
極間に発生する誘起電圧を交流増幅器で増幅した後信号
電圧として信号処理回路に与え、励磁電流が流れていな
い休止期間に電極間に発生する誘起電圧を交流増幅器で
増幅した後補償電圧として信号処理回路に与えて、信号
電圧に含まれる励磁電流の切換えに伴うノイズ成分を補
償電圧によって除去するようにしているので零点の安定
性にすぐれた応答性の良好な低周波励磁方式の電磁流量
計が得られる。よって本発明電磁流量計を用いて制御ル
ープを構成すれば、ハンチング等を生ずることのない安
定な制御ループが得られる。
As explained above, according to the trap of the present invention, a rest period in which no excitation current is applied is provided between a period in which a positive excitation current is applied and a period in which a negative excitation current is applied, and the electrodes are removed during a period in which an excitation current is applied. The induced voltage generated between the electrodes is amplified by an AC amplifier and then given as a signal voltage to the signal processing circuit.The induced voltage generated between the electrodes during the rest period when no excitation current is flowing is amplified by the AC amplifier and then signal processed as a compensation voltage. Since the compensation voltage removes the noise component caused by switching the excitation current contained in the signal voltage applied to the circuit, it is possible to use a low-frequency excitation type electromagnetic flowmeter with excellent zero point stability and good response. can get. Therefore, if a control loop is constructed using the electromagnetic flowmeter of the present invention, a stable control loop that does not cause hunting or the like can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電磁流量計り一実施例を示す接続図、第
2図〜第4図はその動作説明図、第5図は本発明電磁流
量計の他の実施例を示す接続図、第6図はその動作説明
図、第7図は本発明電磁流量計のさら江別の実施例の接
続図、第8図はその動作説明図である。 1・・・矩形波励磁回路  2・・・電磁流量計発信器
3・・・交流増幅器  4・・・信号処理回路オ   
/、  ffi
Fig. 1 is a connection diagram showing an embodiment of the electromagnetic flowmeter of the present invention, Figs. 2 to 4 are diagrams for explaining its operation, and Fig. 5 is a connection diagram showing another embodiment of the electromagnetic flowmeter of the invention. 6 is an explanatory diagram of its operation, FIG. 7 is a connection diagram of another embodiment of the electromagnetic flowmeter of the present invention, and FIG. 8 is an explanatory diagram of its operation. 1... Rectangular wave excitation circuit 2... Electromagnetic flow meter oscillator 3... AC amplifier 4... Signal processing circuit
/, ffi

Claims (1)

【特許請求の範囲】[Claims] 励磁コイルに正の励磁電流と負の励磁電流を周期的に切
換えて流し、かつ正の励磁電流を流す期間と負のm1m
電流を流す期間の関に励磁電流を流さない休止期間が設
けられている電磁流置針発信器と、この発信器からの励
磁電流が流れている期間の誘起電圧を交流増幅器で増幅
した電圧を信号電圧として取込むとともに、励磁電流が
流れていない休止期間の誘起電圧を前記交流増幅器で増
幅した電圧を補償電圧として取込み、信号電圧に含まれ
る#磁電流の切換えに伴うノイズ成分を補償電圧によっ
て除去する信号処理回路とを具えたこと−IkIflI
徴とする電磁流量計。
A positive excitation current and a negative excitation current are periodically switched and passed through the excitation coil, and the period during which the positive excitation current is passed and the negative m1m
An electromagnetic current positioning pointer transmitter has a pause period in which no excitation current flows between the periods in which current flows, and a voltage signal is obtained by amplifying the induced voltage from this transmitter during the period in which the excitation current is flowing using an AC amplifier. In addition to taking in the voltage as a compensation voltage, the voltage amplified by the AC amplifier during the rest period when no excitation current is flowing is taken in as a compensation voltage, and the noise component accompanying the switching of #magnetic current included in the signal voltage is removed by the compensation voltage. - IkIflI
An electromagnetic flowmeter with a characteristic of
JP11406881A 1981-07-21 1981-07-21 Electromagnetic flowmeter Pending JPS5815121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11406881A JPS5815121A (en) 1981-07-21 1981-07-21 Electromagnetic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11406881A JPS5815121A (en) 1981-07-21 1981-07-21 Electromagnetic flowmeter

Publications (1)

Publication Number Publication Date
JPS5815121A true JPS5815121A (en) 1983-01-28

Family

ID=14628223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11406881A Pending JPS5815121A (en) 1981-07-21 1981-07-21 Electromagnetic flowmeter

Country Status (1)

Country Link
JP (1) JPS5815121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016124976A1 (en) * 2016-12-20 2018-06-21 Endress+Hauser Flowtec Ag Method for operating a magnetic-inductive flowmeter and such a flowmeter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149919A (en) * 1981-03-13 1982-09-16 Yokogawa Hokushin Electric Corp Electromagnetic flow meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149919A (en) * 1981-03-13 1982-09-16 Yokogawa Hokushin Electric Corp Electromagnetic flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016124976A1 (en) * 2016-12-20 2018-06-21 Endress+Hauser Flowtec Ag Method for operating a magnetic-inductive flowmeter and such a flowmeter

Similar Documents

Publication Publication Date Title
JPS60220875A (en) Evaluating circuit for passive measured quantity detector
JPS6166123A (en) Converter of electromagnetic flowmeter
US4206641A (en) Electromagnetic flow meter
JP2661933B2 (en) Circuit for measuring the DC component of the current flowing through the primary winding of the output transformer of the inverter
JPS5815121A (en) Electromagnetic flowmeter
US4723449A (en) Electromagnetic flowmeters
JP2932710B2 (en) Mass flow meter
JPS5815122A (en) Electromagnetic flowmeter
US6320370B1 (en) Circuit with improved dynamic response for measuring current in pulse width modulated amplifiers
JPS58120118A (en) Electromagnetic flowmeter
JP2006112833A (en) Inductance measuring instrument
JPS5844314A (en) Electromagnetic flow meter
JPS5916645B2 (en) Excitation circuit of electromagnetic flowmeter
JPH0318131B2 (en)
JPS5847215A (en) Electro-magnetic flow meter
JPS6225695Y2 (en)
JPS58120117A (en) Electromagnetic flowmeter
RU2039357C1 (en) Electricity meter
SU1015252A1 (en) Electromagnetic flowmeter having frequency output
JP3052571B2 (en) Timing pulse generation circuit in electromagnetic flowmeter
JPH0153403B2 (en)
SU1676031A1 (en) Device for controlling a converter
JPH07225247A (en) Current detector
JPS58120116A (en) Electromagnetic flowmeter
JPS594648B2 (en) electromagnetic flow meter