JPS5847114A - Eddy-current chamber type diesel engine - Google Patents

Eddy-current chamber type diesel engine

Info

Publication number
JPS5847114A
JPS5847114A JP56145733A JP14573381A JPS5847114A JP S5847114 A JPS5847114 A JP S5847114A JP 56145733 A JP56145733 A JP 56145733A JP 14573381 A JP14573381 A JP 14573381A JP S5847114 A JPS5847114 A JP S5847114A
Authority
JP
Japan
Prior art keywords
fuel
chamber
main
combustion
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56145733A
Other languages
Japanese (ja)
Other versions
JPS6125891B2 (en
Inventor
Toshiaki Tanaka
利明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP56145733A priority Critical patent/JPS5847114A/en
Publication of JPS5847114A publication Critical patent/JPS5847114A/en
Publication of JPS6125891B2 publication Critical patent/JPS6125891B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/14Engines characterised by precombustion chambers with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To reduce NOX and HC in the exhaust gas in such a way that one injection port of a multiple-injection port nozzle is directed to the axial line of an auxiliary communicating port, fuel jetted in an eddy-current chamber is diffused, and at the initial stage of combustion, rarefied combustion gas is jetted through a main communicating port into a main combustion chamber. CONSTITUTION:Spray jetted through two auxiliary inspection ports 13, 14 to the plane Y among fuel spray jetted through a three-injection port nozzle 11 into an eddy-current chamber 7 is diffused on both sides in the eddy-current chamber 7, and most of the spray which has been jetted through a main injection port 12 toward an auxiliary communicating port 6 comes into a main combustion chamber 4 within a cycle for ignition lag. In consequence, the inside of the eddy-current chamber 7 becomes a fuel rarefying zone 15 in which there is more air rate than fuel, and its both sides become fuel super- condensed zone 16. Subsequently, fuel in the main combustion chamber 4 and in the eddy-current chamber 7 is ignited, and initial combustion starts. As a piston 2 is coming down, combustion gas in the rarefying zone 15 comes through a main communicating port 5 into the combustion chamber 4. Since the gas is involved in high temperature, it makes combustion in the main combustion chamber 4 favorable, and can reduce NOX and HC in the exhaust gas.

Description

【発明の詳細な説明】 この発明は渦流室式ディーゼル−エンジン、詳細には、
主連通孔および到達通孔とにより主燃焼室に連通された
渦流室に、燃料を噴射するノズルを多噴口ノズルとする
とともに、その1噴口な到達通孔の軸線を指向するよう
に設けることによパ″”″””::π::;:二−=ζ
二った渦流室式ディーゼルエンジンに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a swirl chamber diesel engine, in particular:
A nozzle for injecting fuel is a multi-nozzle nozzle in a swirl chamber that communicates with the main combustion chamber through a main communication hole and a reaching hole, and is provided so as to be oriented toward the axis of the reaching hole. Yopa ″”″””::π::;:2−=ζ
Regarding two swirl chamber type diesel engines.

従来の渦流室式ディーゼルエンジンとしては、倒さば実
開昭53−474Q5号公報に記載さまたもの(渦流室
式燃焼室)があり、この渦流室式燃焼室は第1,2図に
示すように構成されている。
As a conventional swirl chamber type diesel engine, there is the one (vortex chamber type combustion chamber) described in Korasaba Utility Model Publication No. 53-474Q5, and this swirl chamber type combustion chamber is as shown in Figures 1 and 2. It is composed of

すなわち、第1,2図に示されている一流室式デイーゼ
ルエンジンは、シリンダブロック(1)とピストン(2
)およびシリンダヘッド(3)により画成された主燃焼
室(4)と、シリンダヘッド(3)に形成され主連通孔
(5)と到達通孔(6)とにより主燃焼室(4)に連通
された渦流室(7)と、主連通孔(5)と到達通孔(6
)の軸線を含み渦流室(7)内を2分する仮想平面(3
)上にその噴口(8)が位置するように取付けられた単
噴ロノズル(9)と、を有し゛ており、この単噴ロノズ
ル(9)の噴口(8)は前記到達通孔(6)の軸線を癲
向している。
That is, the first-class diesel engine shown in Figs. 1 and 2 consists of a cylinder block (1) and a piston (2).
) and the cylinder head (3), and the main combustion chamber (4) is defined by the main communication hole (5) and the reaching hole (6) formed in the cylinder head (3). The vortex chamber (7), the main communication hole (5) and the reaching hole (6) are connected to each other.
) is a virtual plane (3) that bisects the inside of the swirl chamber (7).
), and the single-injection nozzle (9) is installed so that the nozzle (8) is located above the reaching hole (6). The axis of

この渦流室式ディーゼルエンジンにおいては、ピストン
(2)が上昇する圧縮行程において、主燃焼室(4)の
空気が渦流室(7)に流入し、渦流を形成する。
In this swirl chamber type diesel engine, during the compression stroke in which the piston (2) rises, air in the main combustion chamber (4) flows into the swirl chamber (7) and forms a swirl.

この渦流は平面(ト)に沿って渦流室、(力内を旋回し
、また、ピストン(2)の上昇に伴い、渦流室(7)お
よび主燃焼室(4)の空気の温度が上昇する。このピス
トン(2)の上死点直前に、単項ロノズル(9)の噴口
(8)から燃料噴霧が到達通孔(6)に向って噴射され
、噴射された燃料噴霧は第2図に示すように到達通孔(
6)に向って放射状に進行し、この燃料噴霧の一部は着
火遅れ期間中に到達通孔(6)を通過して主燃焼室(4
)に供給される。その後、主燃焼室(4)と渦流室(7
)の画室で燃焼が発生し、さらに、ピストン(2)の下
降に伴い渦流室(7)の燃焼ガスが主燃焼室(4)に流
出し、主燃焼室(4)で燃焼が継続する。このように、
渦流室(7)に噴射された燃料噴霧の一部が到達通孔(
6)を通しズ主燃焼室(4)に供給されるため、渦流室
(7)の燃料ガス濃度を低下させることができる。した
がって、渦流室(7)内での燃焼温度を高めることによ
り、燃焼効率の向上を図っている。
This vortex swirls within the vortex chamber along the plane (g), and as the piston (2) rises, the temperature of the air in the vortex chamber (7) and the main combustion chamber (4) increases. Immediately before the top dead center of this piston (2), fuel spray is injected from the nozzle (8) of the single cylinder nozzle (9) toward the reaching hole (6), and the injected fuel spray is shown in Figure 2. Reach through hole (
A part of this fuel spray passes through the reaching hole (6) during the ignition delay period and enters the main combustion chamber (4).
). After that, the main combustion chamber (4) and the swirl chamber (7)
) Combustion occurs in the compartment of the main combustion chamber (4), and as the piston (2) descends, the combustion gas in the swirl chamber (7) flows out into the main combustion chamber (4), where combustion continues. in this way,
A portion of the fuel spray injected into the swirl chamber (7) reaches the through hole (
6) and is supplied to the main combustion chamber (4), the fuel gas concentration in the swirl chamber (7) can be reduced. Therefore, the combustion efficiency is improved by increasing the combustion temperature within the swirl chamber (7).

しかしながら、このような従来−の渦流室式ディーゼル
エンジンにあっては、単項ロノズル(9)を使用しその
噴口(8)を到達通孔(6)の軸線に指向させ、かつ、
渦流室(7)の渦流が主連通孔(5)の軸線と到達通孔
(6)の軸線とを含む平面囚に沿って旋回するようにな
っていたため、単項ロイズル(9)の噴口(8)より噴
射された燃料噴霧が十分拡散されず、渦流室(7)内で
前記平面(3)を中心軸とする領域が燃料過濃領域(7
a)となり、その両サイドが燃料希薄領域<’rb)と
なる。したがって、燃焼の初期に渦流室(7)より燃料
過濃領域(7a)の燃焼ガスが主燃焼室(4)に流れこ
み、初期燃焼において空気量が不足し、排気ガス中のN
OxやHC濃度が増加するという問題点があった。
However, in such a conventional swirl chamber type diesel engine, a single nozzle (9) is used, and its jet port (8) is directed to the axis of the reaching hole (6), and
Since the vortex flow in the vortex chamber (7) swirls along a plane that includes the axis of the main communication hole (5) and the axis of the reaching hole (6), the nozzle (8 ) is not sufficiently diffused, and a region centered around the plane (3) in the swirl chamber (7) becomes a fuel rich region (7).
a), and both sides thereof are fuel lean regions <'rb). Therefore, at the beginning of combustion, the combustion gas in the fuel-rich region (7a) flows from the swirl chamber (7) into the main combustion chamber (4), and the amount of air is insufficient in the initial combustion, resulting in N in the exhaust gas.
There was a problem that the concentration of Ox and HC increased.

この発明は、このような従来の問題点に着目してなされ
たもので、渦流室式ディーゼルエンジンにおいて、燃料
噴射ノズルを多噴口ノズルとし、その1噴口が到達通孔
の軸線を指向するように設け、この噴口より噴射された
燃料噴霧の大部分が着火遅れ期間中に到達通孔より主燃
焼室に供給されることにより、渦流室内でこの噴口・よ
り到達通、孔に向って噴射された燃料噴霧領域を燃料希
薄領域とするとともに、渦流室内の他の領域を他の噴口
より噴射された燃料噴霧により燃料過濃領域とし、燃焼
初期、希薄燃焼ガスが主連通孔より主燃焼室へ噴出°す
ることにより、上記問題点を解決することを目的として
いる。
This invention was made by focusing on such conventional problems, and in a swirl chamber type diesel engine, the fuel injection nozzle is a multi-nozzle nozzle, and one of the nozzles is oriented toward the axis of the reaching hole. Most of the fuel spray injected from this nozzle is supplied to the main combustion chamber from the reaching hole during the ignition delay period. The fuel spray area is made into a fuel-lean area, and the other area in the vortex chamber is made into a fuel-rich area by fuel spray injected from other nozzles, and at the beginning of combustion, lean combustion gas is injected from the main communication hole into the main combustion chamber. The aim is to solve the above problems by doing so.

以下、この発明を図面に基づいて説明する。The present invention will be explained below based on the drawings.

第3.4.5図は、この発明の一実施例を示す図であり
、この実施例の説明にあたり、第1,2図に示した従来
例と同一構成部分には同一符号を附して使用する。
Figure 3.4.5 is a diagram showing an embodiment of the present invention. In explaining this embodiment, the same reference numerals are given to the same components as those of the conventional example shown in Figures 1 and 2. use.

まず、構成を説明すると、第3図において(11はシリ
ンダブロックであり、シリンダブロック(1)内にはピ
ストン(2)が摺動自在に収納されている。シリンダブ
ロック(1)の上端にはシリンダヘッド(3)が固定さ
れており、これらのシリンダブロック(1)とピストン
(2)の上面とシリンダヘラ・ド(3)とにより主燃焼
室(4)が画成されている。シリンダヘッド(3)には
渦流室(7)が形成されており、またシリンダヘッド(
カにはこの渦流室(7)と前記主燃焼室(4)とを連通
ずる一対の主連通孔(5)および到達通孔(6)とが形
成されている。この主連通孔甲)および到達通孔(6)
は、第4図に系すように、それぞれの軸線を含む同一平
面(1)上に大略位置するように形成されており、また
、シリンダヘッド(3)には、この平面(1)上に大略
位置するように第5図に詳示する3噴ロノズルaυが取
付けられている。この3噴ロノズル←υの主噴口azは
前記平面(1)上に位置するとともに、第4図に示すよ
うに、前記到達通孔(6)ヤ軸線を指向しており、他の
2つの副噴ロQ3.α句は平面(1)に対し対称で、か
つ、所定角度(渦流室(7)の側壁面略中央部に指向す
る角度)を有1している。また、第5図に示すように副
噴口0.αaの開口面積は等しく、かつ、これらの2つ
の副噴口Q3.αΦの開口面積の和は主噴口Q2の開口
面積より大きい。したがって、主噴口(13より噴射さ
れた燃料噴霧が着火遅れ期間中に主燃焼室(4)に流入
するため、主噴口(lりより噴射された平面(1)を中
心とする燃料噴霧の領域は燃料に比し空気の多い燃料希
薄領域Q5)となり、2つの副噴口Q3.α4より噴射
された平面(1)の両側の燃料噴霧の領域は燃料に比し
空気の少ない燃料過濃領域Q6)となる。また、シリン
ダへ′ラド(3)には図示しない吸気ボートと排気ポー
トが形成されている。
First, to explain the configuration, in Fig. 3, (11 is a cylinder block, a piston (2) is slidably housed in the cylinder block (1). A cylinder head (3) is fixed, and a main combustion chamber (4) is defined by the cylinder block (1), the upper surface of the piston (2), and the cylinder head (3).The cylinder head ( 3) is formed with a swirl chamber (7), and the cylinder head (
A pair of main communication holes (5) and a reaching hole (6) are formed in the engine to communicate the swirl chamber (7) with the main combustion chamber (4). This main communication hole A) and the reaching hole (6)
As shown in FIG. A three-spray nozzle aυ, which is shown in detail in FIG. 5, is installed approximately at the same position. The main nozzle az of this three-spray nozzle←υ is located on the plane (1), and as shown in FIG. Spout Q3. The α clause is symmetrical with respect to the plane (1) and has a predetermined angle (an angle directed toward substantially the center of the side wall surface of the swirl chamber (7)). In addition, as shown in FIG. 5, the sub-nozzle 0. αa has the same opening area, and these two sub-nozzles Q3. The sum of the opening areas of αΦ is larger than the opening area of the main nozzle Q2. Therefore, since the fuel spray injected from the main nozzle (13) flows into the main combustion chamber (4) during the ignition delay period, the area of the fuel spray centered on the plane (1) injected from the main nozzle (1) is a fuel-lean region Q5) where there is more air than fuel, and the region of fuel spray on both sides of plane (1) injected from the two sub-nozzles Q3.α4 is a fuel-rich region Q6 where there is less air than fuel. ). Further, an intake port and an exhaust port (not shown) are formed in the cylinder (3).

次に作用を説明する。Next, the action will be explained.

吸入行程時吸気ポートより主燃焼室(4)に吸入された
空気は、圧縮行程中のピストン(2)の上昇によって、
渦流室(7)に流入し平面(1)に沿って渦流室(7)
内を旋回する渦流を形成する。さらに、ピストン(2)
の上昇に伴い、燃焼室(4)および渦流室(7)の空気
は圧縮、加熱され、ピストン(2)の上死点直前で、渦
流室(7)内に3噴口、ノズルaυから燃−料噴霧が噴
射される。噴射された燃料噴霧のうち2つの副噴口(1
3)、α滲から平面(1)の両側に対称に噴射された燃
料噴霧は渦流室(7)内の両側に拡散し、主噴口αりか
ら到達掘孔(6)に向って噴射された燃料噴霧は渦流室
(7)内を平面(1)を中心に拡散するとともに、その
大部分は着火遅れの期間内に到達通孔(6)を通って主
燃焼室(4)に入る。したがって、渦流室(7)内は平
面(1)を中心とする近傍の領域が燃料の量に比して空
気の量が多い燃料希薄領域α9となり、平面(1)を中
心としてその両側が燃料の量に比して空気の量が少ない
燃料希薄領域翰となる。すなわち、副噴口(1m、 (
14)の開口面積の和は主噴口α2の開口面積より大き
く、かつ、主噴口(121から噴射された燃料噴霧の大
部分は到達通孔(6)より主燃焼室(4)へ供給されて
しまう、その結果、到達通孔(6)に指向した主噴口α
2より噴射された燃料噴霧の拡散領域は副噴口(13,
(14)より噴射された燃料噴霧の拡散領域よりも燃料
の希薄な領域となる。その後、主燃焼室(4)に供給さ
れた燃料と渦流室(7)の燃料とが共に着火し、初期燃
焼が始まる。ピストン(2)の下降に伴い渦流室(7)
の燃焼ガスのうち、まず、渦流の中心にある燃料希薄領
域a5の燃焼ガスが主連通孔(5)より主燃焼室(4)
に進入する。この燃焼ガスは燃料量に比べ空気量が多い
ため、高温であり、到達通孔(6)より供給された主燃
焼室(4)の燃料の燃焼を良好なものとする。。その結
果、初期燃焼が完全に行なわれ、排気ガス中のNQxや
HCの低減を図ることができる。その後、主連通孔(5
)より燃料過濃領域(161の燃の空気と混合されなが
ら拡散燃焼される。この拡散燃焼とされる燃料過濃領域
αeの燃焼ガスは拡散燃焼されるまで時間があり、かつ
、主燃焼室(4)に進入する際にも攪拌されるため、空
気と十分攪拌されており、拡散燃焼は十分に完全燃焼さ
れる。
During the intake stroke, the air sucked into the main combustion chamber (4) from the intake port is caused by the rise of the piston (2) during the compression stroke.
Flowing into the vortex chamber (7) and along the plane (1) the vortex chamber (7)
Forms a swirling vortex inside. Furthermore, piston (2)
As air rises, the air in the combustion chamber (4) and swirl chamber (7) is compressed and heated, and just before the top dead center of the piston (2), fuel is released from three jets and nozzles aυ in the swirl chamber (7). A spray of fuel is injected. Of the injected fuel spray, two sub-nozzles (1
3) The fuel spray was symmetrically injected from the α rim to both sides of the plane (1), spread to both sides of the swirl chamber (7), and was injected from the main nozzle α towards the reaching borehole (6). The fuel spray diffuses in the swirl chamber (7) around the plane (1), and most of it enters the main combustion chamber (4) through the access hole (6) within the ignition delay period. Therefore, in the vortex chamber (7), the area near the plane (1) becomes the fuel lean area α9 where the amount of air is large compared to the amount of fuel, and the area on both sides of the plane (1) is the fuel lean area α9. This results in a fuel lean region where the amount of air is small compared to the amount of air. In other words, the sub-nozzle (1m, (
14) is larger than the opening area of the main nozzle α2, and most of the fuel spray injected from the main nozzle (121) is supplied to the main combustion chamber (4) from the reaching hole (6). As a result, the main nozzle α directed toward the reaching hole (6)
The diffusion area of the fuel spray injected from 2 is the sub-nozzle (13,
(14) This is a region where the fuel is leaner than the diffusion region of the injected fuel spray. Thereafter, the fuel supplied to the main combustion chamber (4) and the fuel in the swirl chamber (7) are both ignited, and initial combustion begins. As the piston (2) descends, the vortex chamber (7)
Among the combustion gases, the combustion gases in the fuel lean region a5 located at the center of the vortex are first transferred from the main communication hole (5) to the main combustion chamber (4).
enter. Since this combustion gas has a large amount of air compared to the amount of fuel, it has a high temperature and makes good combustion of the fuel supplied to the main combustion chamber (4) from the reaching hole (6). . As a result, initial combustion is completely performed, and it is possible to reduce NQx and HC in the exhaust gas. After that, the main communication hole (5
) from the fuel-enriched region (161) and is diffusely combusted while being mixed with the combustion air of the fuel-rich region (161).The combustion gas in the fuel-rich region αe, which is considered to be diffusive combustion, has time until it is diffusively combusted, and (4) Since it is also stirred when it enters, it is sufficiently mixed with the air, and the diffusive combustion is fully completed.

したがって、排気ガス中のNOxやHCρ低減を図るこ
とができる。
Therefore, it is possible to reduce NOx and HCρ in the exhaust gas.

なお、この2実施例にあっては、燃料噴射ノズルを3噴
ロノズルとしたが、3噴ロノズルに限るものではな(、
多噴口ノズルを使用しそのうちの1噴口が到達通孔を指
向するものであればよい。また、3噴ロノズルにおいて
、副噴口を主噴口に対して対称で、かつ、2つの副噴口
の開口面積が同じで、2つの副噴口の開口面積の和か主
噴口の開するものに限るものではない。
In addition, in these two examples, the fuel injection nozzle was a three-injection nozzle, but it is not limited to a three-injection nozzle (,
It is sufficient if a multi-nozzle nozzle is used, and one of the nozzles is directed toward the reaching hole. In addition, for 3-spout nozzles, the secondary nozzle is symmetrical with respect to the main nozzle, and the opening area of the two secondary nozzles is the same, and the main nozzle opens by the sum of the opening areas of the two secondary nozzles. isn't it.

以上説明してきたように、この発明によれば、その構成
をシリンダヘッドに設けられた渦流室と、シリンダヘッ
ドとピストンの上面との間に形成された主燃焼室と、こ
れらの主燃焼室と渦流室゛とを連通ずる一対の主連通孔
および到達通孔と、を備えた渦流室式ディーゼルエンジ
ンにおいて、前記渦流室に燃料を噴射する多噴口ノズル
を、その−噴口が前記到達通孔の軸線を指向するように
設け、渦流室内でこの潰口より到達通孔に向って噴射さ
れた燃料噴霧の近辺を燃料希薄領域とするとともに、さ
らに、この燃料希薄領域の周囲を燃料過濃領域とし、燃
焼初期、高温で希薄燃焼ガスが主連通孔より主燃焼室へ
噴出するようにしたので到達通孔を有する渦流室式ディ
ーゼルエンジンの特徴である渦流室での燃焼温度め上昇
を図る仁とができるとともに、燃焼室での燃焼を完全燃
焼させることができる。したがって、排気ガス中のNO
xやHC濃度を低減することができるという効果が得ら
れる。
As explained above, according to the present invention, the structure includes a swirl chamber provided in the cylinder head, a main combustion chamber formed between the cylinder head and the upper surface of the piston, and a main combustion chamber formed between the cylinder head and the upper surface of the piston. In a swirl chamber type diesel engine equipped with a pair of main communication holes and a reaching hole that communicate with the swirl chamber, a multi-nozzle for injecting fuel into the swirl chamber is arranged such that the nozzle thereof is connected to the reaching hole. The vortex chamber is provided so as to be oriented toward the axis, and the vicinity of the fuel spray injected from the constriction port toward the reaching hole in the vortex chamber is defined as a fuel-lean region, and furthermore, the area around this fuel-lean region is defined as a fuel-rich region; At the beginning of combustion, the high-temperature, lean combustion gas is ejected from the main communication hole into the main combustion chamber, which increases the combustion temperature in the swirl chamber, which is a feature of a swirl chamber type diesel engine with a reaching hole. At the same time, it is possible to achieve complete combustion in the combustion chamber. Therefore, NO in the exhaust gas
The effect is that x and HC concentration can be reduced.

また、前述した実施例は上記効果に加えて、更に以下の
様な効果がある。すなわち、渦流室の燃料噴霧を対称的
に分布させることができ、初期燃焼の高温化と拡散燃焼
の完全燃焼化をより一層図ることができる。
Further, in addition to the above-mentioned effects, the embodiments described above have the following effects. That is, the fuel spray in the swirl chamber can be distributed symmetrically, and the initial combustion temperature can be increased and the diffusive combustion can be more complete.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は従来の渦流室式ディーゼルエンジンを示す
図であり、第1図はその概略断面図、第2図は第1図の
■−■矢視断面図、第3,4゜5図はこの発明の渦流室
式ディーゼルエンジンの一実施例を示す図であり、第3
図はその概略断面図、第4図は第3図のIV−IV矢視
断面図、第5図は3噴ロノズルの拡大断面図である。 (2)・・・ピストン     (31・−・シリンダ
ヘッド(4)・・・主燃焼室     (5)・・・主
連通孔(6)・・・開運通孔     (7)・・・渦
流室01)・・・3噴ロノズル   (12)・・・主
噴口Q31(14)・・・副噴口     (151・
・・燃料希薄領域αe・・・燃料過濃領域 特許出願人    日産自動車株式会社代理人  弁理
士  有 我 軍 −部第4図
Figures 1 and 2 are diagrams showing a conventional swirl chamber type diesel engine. Figure 1 is a schematic cross-sectional view thereof, Figure 2 is a cross-sectional view taken along the ■-■ arrow in Figure 1, and Figures 3 and 4゜5. The figure is a diagram showing one embodiment of the swirl chamber type diesel engine of the present invention.
The figure is a schematic sectional view thereof, FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3, and FIG. 5 is an enlarged sectional view of the three-spray nozzle. (2)...Piston (31...Cylinder head (4)...Main combustion chamber (5)...Main communication hole (6)...Open passage hole (7)...Vortex chamber 01 )...3-spray nozzle (12)...Main nozzle Q31 (14)...Sub-nozzle (151.
...Fuel lean region αe...Fuel rich region Patent applicant Nissan Motor Co., Ltd. Representative Patent attorney Ariga Army - Part 4 Figure 4

Claims (1)

【特許請求の範囲】[Claims] シリンダヘッドに設けられた渦流室と、シリンダヘッド
とピストンの上面との間に形成された主燃焼室と、これ
らの主燃焼室と渦流室とを連通ずる主連通孔および到達
通孔と、を備えた渦流室式ディーゼルエ〉ジンにおいて
、前記渦流室に燃料を噴射する多噴口ノズルを、その1
噴口が前記到達通孔の軸線を指向するように設け、渦流
室内のこの噴口より到達通孔に向って噴射された燃料噴
−の近辺を燃料希薄領域とするとともに、さらに、この
燃料過濃領域の周囲を燃料過濃領域とし、燃焼初期に希
薄燃焼ガスが主連通孔より主燃焼室へ噴出するようにし
たことを特徴とする渦流室式ディーゼルエンジン。
A swirl chamber provided in the cylinder head, a main combustion chamber formed between the cylinder head and the upper surface of the piston, and a main communication hole and a reaching hole that communicate the main combustion chamber and the swirl chamber. In the swirl chamber type diesel engine, one of which includes a multi-nozzle for injecting fuel into the swirl chamber.
The nozzle is provided so as to be oriented toward the axis of the reaching hole, and the vicinity of the fuel injection injected from the nozzle toward the reaching hole in the vortex chamber is defined as a fuel-lean region, and furthermore, this fuel-rich region is defined as a fuel-lean region. A swirl chamber type diesel engine is characterized in that a fuel-rich region is formed around the engine, and lean combustion gas is ejected from the main communication hole into the main combustion chamber at the early stage of combustion.
JP56145733A 1981-09-16 1981-09-16 Eddy-current chamber type diesel engine Granted JPS5847114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145733A JPS5847114A (en) 1981-09-16 1981-09-16 Eddy-current chamber type diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145733A JPS5847114A (en) 1981-09-16 1981-09-16 Eddy-current chamber type diesel engine

Publications (2)

Publication Number Publication Date
JPS5847114A true JPS5847114A (en) 1983-03-18
JPS6125891B2 JPS6125891B2 (en) 1986-06-18

Family

ID=15391879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145733A Granted JPS5847114A (en) 1981-09-16 1981-09-16 Eddy-current chamber type diesel engine

Country Status (1)

Country Link
JP (1) JPS5847114A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261255A (en) * 1984-05-30 1985-12-24 ノキア ウンテルハルトゥングスエレクトロニック(ドイッチュランド)ゲー.エム.ベー.ハー Switching power source
JPS62122125U (en) * 1986-01-24 1987-08-03
JP2020106020A (en) * 2018-12-28 2020-07-09 株式会社クボタ diesel engine
JP2020106022A (en) * 2018-12-28 2020-07-09 株式会社クボタ diesel engine
JP2020106019A (en) * 2018-12-28 2020-07-09 株式会社クボタ diesel engine
JP2020106021A (en) * 2018-12-28 2020-07-09 株式会社クボタ diesel engine
JP2020109288A (en) * 2018-12-31 2020-07-16 株式会社クボタ diesel engine
JP2020109287A (en) * 2018-12-31 2020-07-16 株式会社クボタ diesel engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261255A (en) * 1984-05-30 1985-12-24 ノキア ウンテルハルトゥングスエレクトロニック(ドイッチュランド)ゲー.エム.ベー.ハー Switching power source
JPS62122125U (en) * 1986-01-24 1987-08-03
JP2020106020A (en) * 2018-12-28 2020-07-09 株式会社クボタ diesel engine
JP2020106022A (en) * 2018-12-28 2020-07-09 株式会社クボタ diesel engine
JP2020106019A (en) * 2018-12-28 2020-07-09 株式会社クボタ diesel engine
JP2020106021A (en) * 2018-12-28 2020-07-09 株式会社クボタ diesel engine
JP2020109288A (en) * 2018-12-31 2020-07-16 株式会社クボタ diesel engine
JP2020109287A (en) * 2018-12-31 2020-07-16 株式会社クボタ diesel engine

Also Published As

Publication number Publication date
JPS6125891B2 (en) 1986-06-18

Similar Documents

Publication Publication Date Title
JPS5847114A (en) Eddy-current chamber type diesel engine
JPH09280055A (en) Direct cylinder injection type spark ignition engine
JP2841748B2 (en) In-cylinder two-stroke internal combustion engine
JPH04224231A (en) Inner cylinder injection type internal combustion engine
JPH04370319A (en) Cylinder fuel injection type internal combustion engine
JPH04112944A (en) Fuel injection type internal combustion engine
JPH0510137A (en) Cylinder injection type internal combustion engine
JPS6325307Y2 (en)
JP2526943Y2 (en) Sub-chamber diesel engine
JPH05179961A (en) Intra-cylinder injection type internal combustion engine
JPS60128927A (en) Direct-injection diesel engine
JPH0518244A (en) Injection-in-cylinder type internal combustion engine
JPH0510139A (en) Cylinder injection type internal combustion engine
JP2906665B2 (en) In-cylinder internal combustion engine
JPH0143468Y2 (en)
JPS6118186Y2 (en)
JPS6325309Y2 (en)
JPH0143467Y2 (en)
JP2552579Y2 (en) Combustion chamber of a swirl chamber type diesel engine
JPS6023462Y2 (en) Combustion chamber structure of internal combustion engine
JPH0828271A (en) Combustion chamber for swirl chamber type diesel engine
JPS6044495B2 (en) Combustion chamber of internal combustion engine with auxiliary combustion chamber
JPH0526047A (en) Cylinder fuel injection type two-cycle internal combustion engine
JPH05240051A (en) Cylinder injection type internal combustion engine
JPS6236130B2 (en)