JPH04112944A - Fuel injection type internal combustion engine - Google Patents

Fuel injection type internal combustion engine

Info

Publication number
JPH04112944A
JPH04112944A JP2228451A JP22845190A JPH04112944A JP H04112944 A JPH04112944 A JP H04112944A JP 2228451 A JP2228451 A JP 2228451A JP 22845190 A JP22845190 A JP 22845190A JP H04112944 A JPH04112944 A JP H04112944A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
wall surface
injection valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2228451A
Other languages
Japanese (ja)
Other versions
JP2841791B2 (en
Inventor
Tatsuo Kobayashi
辰夫 小林
Norihiko Nakamura
徳彦 中村
Kenichi Nomura
野村 憲一
Hiroshi Nomura
啓 野村
Hiroaki Nihei
裕昭 仁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2228451A priority Critical patent/JP2841791B2/en
Publication of JPH04112944A publication Critical patent/JPH04112944A/en
Application granted granted Critical
Publication of JP2841791B2 publication Critical patent/JP2841791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To form am optimal mixed air around a spark plug regardless of engine load by forming a recessed groove of specific shape extended from the lower part of the spark plug to the lower part of a first fuel injection valve, on a piston top surface, and by arranging a second fuel injection valve in an intake route. CONSTITUTION:A pair of intake valves 6 are arranged on a cylinder head inner wall surface part 3b that forms a bottom wall surface of a recessed groove 5 formed on a cylinder head inner wall surface 3a, while a first fuel injection valve 14 is arranged on the peripheral part of the cylinder inner wall surface 3a between each intake valve 6, and a second fuel injection valve 18 is arranged in a communicating opening 17 communicating to the upper part of each intake port 12. A recessed groove 15 extended from the lower part of a spark plug 10 to the lower part of the point of the first fuel injection valve 14 is formed on the top surface of a piston 2, while the recessed groove 15 is formed almost into spherical shape which is symmetric to a vertical flat surface K-K including the spark plug 10 as well as the first fuel injection valve 14. Fuel injection is performed only by the first fuel injection valve 14 at the time of engine low load driving, while it is performed by both of the first and second fuel injection valves 14 and 18 at the time of engine middle and high load driving.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料噴射式内燃機関に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a fuel-injected internal combustion engine.

〔従来の技術〕[Conventional technology]

燃焼室内に第1の燃料噴射弁を配置すると共にピストン
頂面上に凹溝を形成して第1燃料噴射弁から凹溝内に向
けて燃料を噴射し、吸気通路内に第2の燃料噴射弁を配
置して機関高負荷運転時には第1燃料噴射弁からの燃料
噴射に加えて第2燃料噴射弁からも燃料を噴射し、燃焼
室内にシリンダ軸線回りの旋回流を発生させてこの旋回
流により点火栓の周りに着火可能な混合気を形成するよ
うにした燃料噴射式内燃機関が公知である(特開昭62
−191623号公報参照)。
A first fuel injection valve is disposed within the combustion chamber, a groove is formed on the top surface of the piston, fuel is injected from the first fuel injection valve into the groove, and a second fuel injection valve is injected into the intake passage. By arranging the valve, during high-load engine operation, fuel is injected from the second fuel injection valve in addition to the fuel injection from the first fuel injection valve, generating a swirling flow around the cylinder axis in the combustion chamber. A fuel injection type internal combustion engine is known in which an ignitable air-fuel mixture is formed around a spark plug by
(Refer to Publication No.-191623).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしなからこの燃料噴射式内燃機関ではシリンダ軸線
周りの旋回流を発生させることが必須の要件であるので
シリンダ軸線回りの旋回流を発生させない場合にはもは
やこの噴射方法を採用することができない。また、旋回
流の強さは機関の運転状態により変化するので点火栓周
りの混合気の形成を全面的に旋回流に依存しているとあ
らゆる機関の運転状態に対して最適な混合気を点火栓の
周りに形成するのは困難であるという問題がある。
However, since it is an essential requirement for this fuel injection type internal combustion engine to generate a swirling flow around the cylinder axis, this injection method can no longer be adopted if the swirling flow around the cylinder axis is not generated. In addition, the strength of the swirling flow changes depending on the operating condition of the engine, so if the formation of the mixture around the spark plug is completely dependent on the swirling flow, the optimum mixture will be ignited for every operating condition of the engine. The problem is that it is difficult to form around the stopper.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために本発明によればシリンダヘ
ッド内壁面の中心部に点火栓を配置し、シリンダヘッド
内壁面の周縁部に第1の燃料噴射弁を配置し、点火栓の
下方から第1燃料噴射弁の下方まで延びる凹溝をピスト
ン頂面上に形成して第1燃料噴射弁から凹溝の凹状内壁
面に向けて燃料を噴射し、機関高負荷運転時には噴射軸
線に沿う噴射燃料が凹状内壁面にほぼ垂直に衝突すると
共に機関低負荷運転時には凹状内壁面に衝突した燃料の
大部分を点火栓下方の凹状内壁面部分ζこ向かわさせる
べく噴射軸線に沿う噴射燃料が鋭角をなして斜めに凹状
内壁面に衝突するように凹状内壁面の形状および第1燃
料噴射弁からの噴射時期が定められており、更に吸気通
路内に第2の燃料噴射弁を配置して機関高負荷運転時に
は第1燃料噴射弁からの燃料噴射に加えて第2燃料噴射
弁からも燃料を噴射するようにしている。
In order to solve the above problems, according to the present invention, the ignition plug is arranged at the center of the inner wall surface of the cylinder head, the first fuel injection valve is arranged at the periphery of the inner wall surface of the cylinder head, and the ignition plug is inserted from below the ignition plug. A concave groove extending below the first fuel injector is formed on the top surface of the piston, and fuel is injected from the first fuel injector toward the concave inner wall surface of the concave groove, and fuel is injected along the injection axis during high engine load operation. The fuel collides almost perpendicularly with the concave inner wall surface, and when the engine is operating at low load, the injected fuel along the injection axis makes an acute angle in order to divert most of the fuel colliding with the concave inner wall surface toward the concave inner wall surface portion ζ below the spark plug. The shape of the concave inner wall surface and the injection timing from the first fuel injector are determined so that the fuel injector collides obliquely with the concave inner wall surface, and a second fuel injector is further arranged in the intake passage to adjust the engine height. During load operation, fuel is injected from the second fuel injection valve in addition to the fuel injection from the first fuel injection valve.

〔作 用〕[For production]

燃料噴射量の多い機関高負荷運転時には第1燃料噴射弁
および第2燃料噴射弁から燃料か噴射され、第2燃料噴
射弁から噴射された燃料によって燃焼室内に稀薄混合気
か形成される。第1燃料噴射弁からの噴射軸線に沿う噴
射燃料は凹溝の凹状内壁面にほぼ垂直に衝突するので衝
突後噴射燃料が凹状内壁面に沿い四方に広がり、四方に
広がった燃料のうちの一部の燃料が点火栓下方の凹状内
壁面部分に導ひかれる。一方、燃料噴射量の少ない機関
低負荷運転時には第1燃料噴射弁のみから燃料が噴射さ
れる。この第1燃料噴射弁からの噴射軸線に沿う噴射燃
料は鋭角をなして斜め乙こ凹溝の凹状内壁面に衝突し、
衝突した燃料の大部分が点火栓下方の凹状内壁面部分に
導びがれる。
During high-load operation of the engine with a large amount of fuel injection, fuel is injected from the first fuel injection valve and the second fuel injection valve, and a lean mixture is formed in the combustion chamber by the fuel injected from the second fuel injection valve. The injected fuel along the injection axis from the first fuel injection valve collides almost perpendicularly with the concave inner wall surface of the concave groove, so after the collision, the injected fuel spreads in all directions along the concave inner wall surface, and one of the fuel spread in the four directions part of the fuel is guided to the concave inner wall surface below the ignition plug. On the other hand, during low engine load operation with a small fuel injection amount, fuel is injected only from the first fuel injection valve. The injected fuel from this first fuel injection valve along the injection axis forms an acute angle and collides with the concave inner wall surface of the diagonal concave groove,
Most of the collided fuel is guided to the concave inner wall surface below the spark plug.

〔実施例〕〔Example〕

第1図および第3図を参照すると、1はシリンダブロッ
ク、2はシリンダブロック]内で往復動するピストン、
3はシリンダブロックl上に固定されたシリンダヘッド
、4はシリンダヘッド3の内壁面3aとピストン20頂
面間に形成された燃焼室を夫々示す。シリンダヘッド内
壁面3a上には凹溝5が形成され、この凹溝5の底壁面
をなすシリンダヘッド内壁面部分3b上に一対の給気弁
6が配置される。一方、凹溝5を除くシリンダヘッド内
壁面部分3cは傾斜したほぼ平坦をなし、このシリンダ
ヘッド内壁面部分3c上に一対の排気弁7が配置される
。シリンダヘッド内壁面部分3bとシリンダヘッド内壁
面部分3cは凹溝5の周壁8を介して互いに接続されて
いる。この凹溝周壁8は給気弁6の周縁部に極めて近接
配置されかつ給気弁6の周縁部に沿って円弧状に延びる
一対のマスク壁8aと、給気弁6間に位置する新気ガイ
ド壁8bと、シリンダヘッド内壁面3aの周壁と給気弁
6間に位置する一対の新気ガイド壁8Cとにより構成さ
れる。各マスク壁8aは最大リフト位置にある給気弁6
よりも下方まで燃焼室4に向けて延びており、従って排
気弁7側に位置する給気弁6周縁部と弁座9間の開口に
給気弁6の開弁期間全体に亙ってマスク壁8aにより閉
鎖されることになる。また、各新気ガイド壁8b。
Referring to FIGS. 1 and 3, 1 is a cylinder block, 2 is a cylinder block] A piston that reciprocates within the cylinder block;
Reference numeral 3 indicates a cylinder head fixed on the cylinder block l, and reference numeral 4 indicates a combustion chamber formed between the inner wall surface 3a of the cylinder head 3 and the top surface of the piston 20. A recessed groove 5 is formed on the cylinder head inner wall surface 3a, and a pair of air supply valves 6 are arranged on the cylinder head inner wall surface portion 3b forming the bottom wall surface of the recessed groove 5. On the other hand, the cylinder head inner wall surface portion 3c excluding the groove 5 is inclined and substantially flat, and a pair of exhaust valves 7 are arranged on this cylinder head inner wall surface portion 3c. The cylinder head inner wall surface portion 3b and the cylinder head inner wall surface portion 3c are connected to each other via the peripheral wall 8 of the groove 5. This concave groove peripheral wall 8 is arranged very close to the peripheral edge of the air supply valve 6 and extends in an arc shape along the peripheral edge of the air supply valve 6. It is constituted by a guide wall 8b and a pair of fresh air guide walls 8C located between the peripheral wall of the cylinder head inner wall surface 3a and the air supply valve 6. Each mask wall 8a has an air supply valve 6 in its maximum lift position.
The opening between the peripheral edge of the air intake valve 6 and the valve seat 9, which extends downward toward the combustion chamber 4 and is located on the exhaust valve 7 side, is covered with a mask throughout the opening period of the air intake valve 6. It will be closed by the wall 8a. Moreover, each fresh air guide wall 8b.

8cはほぼ同一平面内に位置しており、更にこれらの新
気ガイド壁8b、8cは両給気弁6の中心を結ぶ線に対
してほぼ平行に延びている。点火栓10はシリンダヘッ
ド内壁面3aの中心に位置するようにシリンダヘッド内
壁面部分3c上に配置されている。一方、排気弁7に対
しては排気弁7と弁座11間の開口を覆うマスク壁が設
けられておらず、従って排気弁7が開弁すると排気弁7
と弁座11間に形成される開口はその全体か燃焼室4内
に開口することムこなる。
8c are located substantially in the same plane, and furthermore, these fresh air guide walls 8b, 8c extend substantially parallel to a line connecting the centers of both air supply valves 6. The ignition plug 10 is arranged on the cylinder head inner wall surface portion 3c so as to be located at the center of the cylinder head inner wall surface 3a. On the other hand, the exhaust valve 7 is not provided with a mask wall that covers the opening between the exhaust valve 7 and the valve seat 11. Therefore, when the exhaust valve 7 opens, the exhaust valve 7
The opening formed between the valve seat 11 and the valve seat 11 opens entirely into the combustion chamber 4.

シリンダベント3内には各給気弁6に対して夫々給気ポ
ート12が形成され、各排気弁7に対して夫々排気ポー
ト13が形成される。一方、両給気弁6の間のシリンダ
ヘッド内壁面3aの周縁部には第1の燃料噴射弁14が
配置され、この第1燃料噴射弁14から燃料が燃焼室4
内に向けて噴射される。
In the cylinder vent 3, an air supply port 12 is formed for each air intake valve 6, and an exhaust port 13 is formed for each exhaust valve 7, respectively. On the other hand, a first fuel injection valve 14 is disposed at the peripheral edge of the cylinder head inner wall surface 3a between both intake valves 6, and fuel is injected into the combustion chamber from this first fuel injection valve 14.
It is sprayed inward.

一方、第1図および第4図に示されるように各給気ボー
ト12の上方部は連通開口17を介して互いに連通せし
められており、この連通関口17内に第2の燃料噴射弁
18が配置される。この第2燃料噴射弁18からは各給
気弁6の背面に向けて燃料が噴射される。
On the other hand, as shown in FIGS. 1 and 4, the upper parts of each air supply boat 12 are communicated with each other through a communication opening 17, and a second fuel injection valve 18 is installed in this communication port 17. Placed. Fuel is injected from this second fuel injection valve 18 toward the back surface of each intake valve 6.

第1図および第2図に示されるようにピストン2の頂面
上には点火栓10の下方から第1燃料噴射弁14の先端
部の下方まで延びる凹溝15が形成される。第1図およ
び第2図に示される実施例ではこの凹′7f415は点
火栓10と第1燃料噴射弁14とを含む垂直平面に−K
に対して対称なほぼ球面状をなす。
As shown in FIGS. 1 and 2, a groove 15 is formed on the top surface of the piston 2 and extends from below the ignition plug 10 to below the tip of the first fuel injection valve 14. In the embodiment shown in FIG. 1 and FIG.
It has an almost spherical shape that is symmetrical to the surface.

また、ピストン2の頂面の中心部には凹溝15よりも曲
率の小さな球面状をなす凹所16か形成される。
Further, a recess 16 having a spherical shape with a smaller curvature than the recess groove 15 is formed in the center of the top surface of the piston 2 .

この凹所16も垂直平面に−に上に形成されており、こ
の凹所16は凹溝15の凹状内壁面の上方部に開口して
いる。第1図に示すように、ピストン2が上死点に達す
ると点火栓10が凹所16内に侵入する。
This recess 16 is also formed upwardly in the vertical plane, and this recess 16 opens at the upper part of the concave inner wall surface of the groove 15. As shown in FIG. 1, when the piston 2 reaches the top dead center, the spark plug 10 enters the recess 16.

一方、凹所16に関して凹溝15と反対側のピストン2
の頂面部分2aは傾斜したほぼ平坦面から形成され、第
1図に示すようにピストン2が上死点に達するとシリン
ダヘッド内壁面部分3Cとピストン頂面部分2a間には
スキッシュエリア19が形成される。
On the other hand, the piston 2 on the opposite side of the groove 15 with respect to the recess 16
The top surface portion 2a of the piston 2 is formed from an inclined, substantially flat surface, and as shown in FIG. It is formed.

第5図に示されるように第1図から第4図に示す実施例
では排気弁7が給気弁6よりも先に開弁じ、排気弁7が
給気弁6よりも先に閉弁する。また第1図から第4図に
示す実施例では機関低負荷運転時には第1燃料噴射弁1
4のみから燃料噴射が行われ、機関中高負荷運転時には
第1燃料噴射弁14および第2燃料噴射弁18の双方か
ら燃料噴射が行われる。第5図においてIrは機関低負
荷運転時における第1燃料噴射弁14からの燃料噴射時
期を示しており、l hlは機関中高負荷運転時におけ
る第1燃料噴射弁14からの燃料噴射時期を示しており
、Ih□は機関中高負荷運転時における第2燃料噴射弁
18からの燃料噴射時期を示している。第5図に示され
るように機関中高負荷運転時における第2燃料噴射弁1
8からの燃料噴射1h□は給気行程の後半であってかつ
排気弁7が閉弁する少し手前において行われ、機関中高
負荷運転時における第1燃料噴射弁14からの燃料噴射
Iゎ1は上死点TDC前50度から80度程度において
行われる。また第5図から機関低負荷運転時における第
1燃料噴射弁14からの燃料噴射時期Itは機関中高負
荷運転時における第1燃料噴射弁14からの燃料噴射時
期1hlよりも遅いことがわかる。
As shown in FIG. 5, in the embodiment shown in FIGS. 1 to 4, the exhaust valve 7 opens before the intake valve 6, and the exhaust valve 7 closes before the intake valve 6. . Furthermore, in the embodiments shown in FIGS. 1 to 4, the first fuel injector 1 is
Fuel injection is performed only from the first fuel injection valve 14 and the second fuel injection valve 18 during engine medium-high load operation. In FIG. 5, Ir indicates the timing of fuel injection from the first fuel injection valve 14 during low engine load operation, and l hl indicates the fuel injection timing from the first fuel injection valve 14 during medium to high engine load operation. , and Ih□ indicates the fuel injection timing from the second fuel injection valve 18 during engine medium-high load operation. As shown in FIG. 5, the second fuel injection valve 1 during engine medium-high load operation
The fuel injection 1h□ from the first fuel injection valve 14 is performed in the latter half of the air intake stroke and slightly before the exhaust valve 7 closes, and the fuel injection Iゎ1 from the first fuel injection valve 14 during engine medium-high load operation is This is done at about 50 to 80 degrees before top dead center TDC. Furthermore, it can be seen from FIG. 5 that the fuel injection timing It from the first fuel injection valve 14 during engine low load operation is later than the fuel injection timing 1hl from the first fuel injection valve 14 during engine medium high load operation.

次に第6図を参照しつつ低負荷運転時および中高負荷運
転時における噴射方法について説明する。
Next, the injection method during low load operation and medium to high load operation will be explained with reference to FIG.

第6図(A)に示すように給気弁6および排気弁7が開
弁すると給気弁6を介して燃焼室4内に空気が流入する
。このとき、排気弁7側の給気弁6の開口はマスク壁8
aによって覆われているので空気はマスク壁8aと反対
側の給気弁6の開口から燃焼室4内に流入する。この空
気は矢印Wで示すように給気弁6下方のシリンダボア内
壁面に沿い下縫し、次いでピストン2の頂面に沿い進ん
で排気弁7下方のシリンダボア内壁面に沿い上昇し、斯
くして空気は燃焼室4内をループ状に流れることになる
。このループ状に流れる空気Wによって燃焼室4内の既
燃ガスが排気弁7を介して排出され、更にこのループ状
に流れる空気Wによって燃焼室4内には垂直面内で旋回
する旋回流Xが発生せしめられる。次いでピストン2が
下死点BDCを過ぎて上昇を開始し、給気弁6および排
気弁7が閉弁すると第1燃料噴射弁14からの燃料噴射
が行われる。
As shown in FIG. 6(A), when the intake valve 6 and the exhaust valve 7 are opened, air flows into the combustion chamber 4 through the intake valve 6. At this time, the opening of the air supply valve 6 on the side of the exhaust valve 7 is connected to the mask wall 8.
Since the combustion chamber 4 is covered by the mask wall 8a, air flows into the combustion chamber 4 from the opening of the intake valve 6 on the side opposite to the mask wall 8a. This air flows along the inner wall surface of the cylinder bore below the intake valve 6 as shown by the arrow W, then travels along the top surface of the piston 2 and rises along the inner wall surface of the cylinder bore below the exhaust valve 7. Air flows in a loop within the combustion chamber 4. The air W flowing in a loop causes the burnt gas in the combustion chamber 4 to be discharged through the exhaust valve 7, and the air W flowing in a loop causes a swirling flow X in the combustion chamber 4 that swirls in a vertical plane. is caused to occur. Next, the piston 2 passes the bottom dead center BDC and begins to rise, and when the intake valve 6 and the exhaust valve 7 close, fuel injection from the first fuel injection valve 14 is performed.

第6図(BL (C)は機関低負荷運転時を示しており
、第6図(D)、 (E)、 (F)は機関中高負荷運
転時を示している。
Figure 6 (BL) (C) shows the engine running at low load, and Figures 6 (D), (E), and (F) show the engine running at medium and high load.

第6図(B)に示されるように第1燃料噴射弁14から
は凹溝15の凹状内壁面に向けて燃料が噴射される。第
1図から第4図に示す実施例ではこの噴射燃料の噴霧は
第6図(B)に示されるように例えば円錐状をなしてお
り、この噴射燃料の噴射軸線Zは第2図に示す垂直平面
に−に内に位置している。
As shown in FIG. 6(B), fuel is injected from the first fuel injection valve 14 toward the concave inner wall surface of the concave groove 15. As shown in FIG. In the embodiment shown in FIGS. 1 to 4, the spray of the injected fuel has, for example, a conical shape as shown in FIG. 6(B), and the injection axis Z of the injected fuel is shown in FIG. 2. Located within - in the vertical plane.

機関低負荷運転時には第6図(B)に示されるように第
1燃料噴射弁14からの噴射軸線Zに沿う噴射燃料が鋭
角θをなして斜めに凹溝15の凹状内壁面状に衝突する
。このように噴射燃料が凹溝15の凹状内壁面上に斜め
に衝突すると衝突した燃料は第6図(C)においてFl
で示されるように慣性力によって凹溝15の凹状内壁面
に沿い気化しつつ点火栓10の下方に進み、次いで凹所
16内に送り込まれる。機関低負荷運転時には噴射量が
少ないがこのとき大部分の噴射燃料が点火栓10の下方
に運ばれるので点火栓10の周りには着火可能な混合気
が形成されることになる。また、第6図(A)に示され
るように燃焼室4内に発生した旋回流Xはピストン2が
上昇するにつれて減衰しつつ旋回半径が次第に小さ(な
り、ピストン2が上死点に近づくと第6図(B)に示さ
れるように凹溝16の凹状内壁面に沿う旋回流Xとなる
。噴射燃料はこの旋回流Xによっても点火栓10の下方
に向かう力が与えられる。また、ピストン2が更に上死
点に近づ(と第6図(C)において矢印Sで示すように
スキッシュエリア19からスキッシュ流が噴出し、この
スキッシュ流Sも凹溝15の凹状内壁面に沿って進む。
During low engine load operation, as shown in FIG. 6(B), the injected fuel from the first fuel injection valve 14 along the injection axis Z obliquely collides with the concave inner wall surface of the concave groove 15 at an acute angle θ. . In this way, when the injected fuel obliquely collides with the concave inner wall surface of the concave groove 15, the collided fuel becomes Fl in FIG. 6(C).
As shown in the figure, the inertial force causes the gas to vaporize along the concave inner wall surface of the concave groove 15 and proceed below the ignition plug 10, and then to be fed into the concave portion 16. When the engine is operating at low load, the injection amount is small, but at this time most of the injected fuel is carried below the ignition plug 10, so an ignitable air-fuel mixture is formed around the ignition plug 10. In addition, as shown in FIG. 6(A), the swirling flow X generated in the combustion chamber 4 is attenuated as the piston 2 rises, and the swirling radius gradually becomes smaller (as the piston 2 approaches the top dead center). As shown in FIG. 6(B), a swirling flow X forms along the concave inner wall surface of the groove 16. This swirling flow X also gives the injected fuel a force directed downward to the spark plug 10. 2 further approaches the top dead center (as shown by the arrow S in FIG. 6(C), a squish flow ejects from the squish area 19, and this squish flow S also advances along the concave inner wall surface of the concave groove 15. .

従って噴射燃料はこのスキンシュ流Sによっても点火栓
10の下方に向かう力が与えられる。
Therefore, the injected fuel is also given a force directed downward to the spark plug 10 by the skinsh flow S.

また、凹溝15の凹状内壁面に沿い点火栓10の下方に
向かう燃料は旋回流Xおよびスキッシュ流Sによって気
化せしめられ、斯くして点火栓10の周りには十分に気
化した可燃混合気が集まることになる。斯くして噴射量
が少ない機関低負荷運転時であっても良好な着火と、そ
れに続く良好な燃焼が得られることになる。
Furthermore, the fuel flowing downward along the concave inner wall surface of the concave groove 15 is vaporized by the swirl flow X and the squish flow S, and thus a sufficiently vaporized combustible mixture is created around the spark plug 10. We will get together. In this way, even when the engine is operating at low load with a small injection amount, good ignition and subsequent good combustion can be obtained.

一方、機関中高負荷運転時には前述したように排気弁7
が閉弁する少し手前において第2燃籾噴射弁18から燃
料噴射I6□が行われる。この噴射燃料は第6図(D)
の矢印Yで示されるように空気と共に排気弁7と反対側
の給気弁6の開口から燃焼室4内に流入する。このよう
に第2燃料噴射弁18からの燃料噴射1hzは排気弁7
が閉弁する少し手前で行われ、しかも噴射燃料は排気弁
7と反対側の給気弁6の開口を通って燃焼室4内に流入
するので噴射燃料が排気弁7を介して排気ポート13内
にほとんど吹き抜けないことになる。なお、機関中高負
荷運転時には燃料噴射が第2燃料噴射弁18からの燃料
噴射1hzと第1燃料噴射弁14からの燃料噴射■1と
の2回に分かれて噴射されるので第2燃料噴射弁18か
らの噴射燃料I。によって燃焼室4内に形成される混合
気は極めて稀薄な混合気となっている。従ってたとえ混
合気の一部が排気ポート13内に吹き抜けたとしても吹
き抜ける燃料量は極めて少量となる。また燃焼室4内に
は第6図(A)に示すような強力な旋回流Xが発生して
いるので燃焼室4内に流入した噴射燃料は空気と良好に
ミキシングされ、またこのときピストン2はまだ下方に
位置しているので噴射燃料に対して燃料が気化するのに
十分な時間が与えられる。
On the other hand, during engine medium and high load operation, the exhaust valve 7
Fuel injection I6□ is performed from the second fuel injection valve 18 a little before the valve closes. This injected fuel is shown in Figure 6 (D).
As shown by arrow Y, the air flows into the combustion chamber 4 from the opening of the intake valve 6 on the opposite side to the exhaust valve 7. In this way, 1hz of fuel injection from the second fuel injection valve 18 is performed by the exhaust valve 7.
The injected fuel flows into the combustion chamber 4 through the opening of the intake valve 6 on the opposite side from the exhaust valve 7, so the injected fuel flows through the exhaust valve 7 to the exhaust port 13. This means that it will hardly blow through. In addition, during engine medium-high load operation, fuel injection is divided into two times: 1 hz fuel injection from the second fuel injection valve 18 and fuel injection (1) from the first fuel injection valve 14, so the second fuel injection valve Injected fuel I from 18. Therefore, the air-fuel mixture formed in the combustion chamber 4 is an extremely lean air-fuel mixture. Therefore, even if part of the air-fuel mixture blows through into the exhaust port 13, the amount of fuel that blows through is extremely small. Furthermore, since a strong swirling flow X as shown in FIG. 6(A) is generated in the combustion chamber 4, the injected fuel flowing into the combustion chamber 4 is well mixed with air, and at this time, the piston 2 is still located below, giving the injected fuel sufficient time to vaporize.

従って点火栓10による点火が行なわれる以前に燃焼室
4内に均一の混合気が形成されることになる。
Therefore, a uniform air-fuel mixture is formed in the combustion chamber 4 before ignition by the spark plug 10.

なお、燃料噴射が2回に分かれて行われるので上述した
ようにこのとき燃焼室4内に形成される混合気はかなり
稀薄な混合気であり、従って燃焼室4内にはかなり稀薄
な均一混合気が形成されることになる。この混合気は燃
焼室4内に残留する高温の既燃ガスによって加熱される
が混合気が稀薄であるために燃料密度が小さく、従って
この混合気は自己着火するに至らない。即ち、自己着火
して燃焼騒音が発生することもなく、またノッキングが
発生することもない。
Note that since the fuel injection is performed in two steps, the mixture formed in the combustion chamber 4 at this time is a fairly lean mixture as described above, and therefore a fairly lean and uniform mixture is formed in the combustion chamber 4. Qi will be formed. This air-fuel mixture is heated by the high-temperature burnt gas remaining in the combustion chamber 4, but since the air-fuel mixture is lean, the fuel density is low, and therefore this air-fuel mixture does not self-ignite. That is, there is no self-ignition and no combustion noise, and no knocking occurs.

次いで第6図(E)に示されるように機関低負荷運転時
に比べてピストン2が低い位置にあるときに第1燃料噴
射弁14からの燃料噴射1 h+が開始される。このと
きには第6図(E)に示されるように第1燃料噴射弁1
4からの噴射軸線Zに沿う噴射燃料は凹溝15の凹状内
壁面上にほぼ垂直に衝突する。このように噴射燃料が凹
溝15の凹状内壁面上にほぼ垂直に衝突すると衝突した
燃料は第6図(F)においてF2で示されるように噴射
軸線Zに沿う噴射燃料の衝突点を中心として凹71!1
5の凹状内壁面上を四方に広がることになる。従ってこ
の場合には衝突した噴射燃料の一部が点火栓1oの下方
に進み、次いで凹所16内に送り込藪れる。このように
噴射量の多い機関中高負荷運転時には噴射燃料の一部が
点火栓100周りに送り込まれるので点火栓10の周り
に形成される混合気は過濃とならず、斯くして点火栓1
0の周りには良好に着火可能な混合気が形成される。ま
た、機関中高負荷運転時には噴射燃料が高温の凹溝15
の凹状内壁面上に広範囲に分散されるので噴射燃料の気
化が促進され、しかも2回に分けて噴射されているため
に凹溝15内に噴射される燃料量が少ないので噴射燃料
は十分に気化せしめられる。従って凹溝15内に噴射さ
れた燃料は十分な空気の存在下で燃焼せしめられるので
スモークが発生することがない。また、機関中高負荷運
転時にも第6図(B)に示すような旋回流Xおよび第6
図(C)に示すようなスキッシュ流Sが発生し、従って
これら旋回流Xおよびスキッシュ流Sによって噴射燃料
1 h+と空気とが十分にミキシングされるのでスモー
クが発生することのない良好な燃焼を得ることができる
Next, as shown in FIG. 6(E), fuel injection 1h+ from the first fuel injection valve 14 is started when the piston 2 is at a lower position than when the engine is operating at low load. At this time, as shown in FIG. 6(E), the first fuel injector 1
The injected fuel along the injection axis Z from 4 impinges on the concave inner wall surface of the concave groove 15 almost perpendicularly. When the injected fuel collides almost perpendicularly onto the concave inner wall surface of the concave groove 15, the collided fuel will move around the collision point of the injected fuel along the injection axis Z, as shown by F2 in FIG. 6(F). Concave 71!1
It spreads in all directions on the concave inner wall surface of 5. Therefore, in this case, a part of the collided injected fuel travels below the ignition plug 1o, and then is sent into the recess 16 and buried therein. In this way, when the engine is operated under medium to high load with a large amount of injection, a portion of the injected fuel is sent around the spark plug 100, so the air-fuel mixture formed around the spark plug 10 does not become too rich.
A mixture that can be ignited well is formed around 0. In addition, during engine medium and high load operation, the injected fuel is heated to the high temperature concave groove 15.
Since the injected fuel is widely dispersed on the concave inner wall surface of the concave groove 15, vaporization of the injected fuel is promoted, and since the fuel is injected in two steps, the amount of fuel injected into the concave groove 15 is small, so the injected fuel is sufficient. Be vaporized. Therefore, the fuel injected into the groove 15 is combusted in the presence of sufficient air, so no smoke is generated. Furthermore, even during medium-high load operation of the engine, the swirling flow X and the
A squish flow S as shown in Figure (C) is generated, and the swirling flow X and squish flow S sufficiently mix the injected fuel 1h+ with air, resulting in good combustion without smoke. Obtainable.

〔発明の効果] 機関負荷にかかわらずに最適な混合気を点火検層りに形
成することができ、自己着火やノッキングやスモークが
発生しない良好な燃焼を得ることができる。
[Effects of the Invention] An optimal air-fuel mixture can be formed during ignition logging regardless of the engine load, and good combustion without self-ignition, knocking, or smoke can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2サイクル内燃機関の側面断面図、第2図は第
1図のピストンの平面図、第3図は第1図のシリンダヘ
ッドの底面図、第4図は第1図のシリンダヘッドの平面
断面図、第5図は給排気弁の開弁時期および燃料噴射時
期を示す線図、第6図は機関運転中の燃焼室内の様子を
説明するための図である。 2・・・ピストン、    4・・・燃焼室、6・・・
給気弁、     7・・・排気弁、10・・・点火栓
、    14・・・第1燃料噴射弁、15・・・凹溝
、     16・・・凹所、18・・・第2燃料噴射
弁。 第 図 第 図 第 図(A) 第 図 第 図 俸 図CB) 第 図(C) 第 図(E) 第 図(D) 第 図(F)
Figure 1 is a side sectional view of a two-stroke internal combustion engine, Figure 2 is a plan view of the piston in Figure 1, Figure 3 is a bottom view of the cylinder head in Figure 1, and Figure 4 is the cylinder head in Figure 1. FIG. 5 is a diagram showing the opening timing of the intake and exhaust valves and fuel injection timing, and FIG. 6 is a diagram for explaining the inside of the combustion chamber during engine operation. 2...Piston, 4...Combustion chamber, 6...
Air supply valve, 7... Exhaust valve, 10... Spark plug, 14... First fuel injection valve, 15... Concave groove, 16... Recess, 18... Second fuel injection valve. Figure (A) Figure (A) Figure (C) Figure (E) Figure (D) Figure (F)

Claims (1)

【特許請求の範囲】[Claims]  シリンダヘッド内壁面の中心部に点火栓を配置し、シ
リンダヘッド内壁面の周縁部に第1の燃料噴射弁を配置
し、点火栓の下方から第1燃料噴射弁の下方まで延びる
凹溝をピストン頂面上に形成して第1燃料噴射弁から該
凹溝の凹状内壁面に向けて燃料を噴射し、機関高負荷運
転時には噴射軸線に沿う噴射燃料が凹状内壁面にほぼ垂
直に衝突すると共に機関低負荷運転時には凹状内壁面に
衝突した燃料の大部分を点火栓下方の凹状内壁面部分に
向かわさせるべく噴射軸線に沿う噴射燃料が鋭角をなし
て斜めに凹状内壁面に衝突するように凹状内壁面の形状
および第1燃料噴射弁からの噴射時期が定められており
、更に吸気通路内に第2の燃料噴射弁を配置して機関高
負荷運転時には第1燃料噴射弁からの燃料噴射に加えて
第2燃料噴射弁からも燃料を噴射するようにした燃料噴
射式内燃機関。
An ignition plug is arranged at the center of the inner wall surface of the cylinder head, a first fuel injection valve is arranged at the peripheral edge of the inner wall surface of the cylinder head, and a concave groove extending from below the ignition plug to below the first fuel injection valve is connected to the piston. Formed on the top surface, fuel is injected from the first fuel injection valve toward the concave inner wall surface of the groove, and when the engine is operated under high load, the injected fuel along the injection axis collides almost perpendicularly with the concave inner wall surface. In order to direct most of the fuel that collides with the concave inner wall surface to the concave inner wall surface below the spark plug during low-load engine operation, the concave shape is designed such that the injected fuel along the injection axis collides obliquely with the concave inner wall surface at an acute angle. The shape of the inner wall surface and the timing of injection from the first fuel injection valve are determined, and a second fuel injection valve is arranged in the intake passage to control fuel injection from the first fuel injection valve during high engine load operation. A fuel injection type internal combustion engine in which fuel is also injected from a second fuel injection valve.
JP2228451A 1990-08-31 1990-08-31 Fuel injection type internal combustion engine Expired - Fee Related JP2841791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2228451A JP2841791B2 (en) 1990-08-31 1990-08-31 Fuel injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2228451A JP2841791B2 (en) 1990-08-31 1990-08-31 Fuel injection type internal combustion engine

Publications (2)

Publication Number Publication Date
JPH04112944A true JPH04112944A (en) 1992-04-14
JP2841791B2 JP2841791B2 (en) 1998-12-24

Family

ID=16876701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2228451A Expired - Fee Related JP2841791B2 (en) 1990-08-31 1990-08-31 Fuel injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2841791B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147022A (en) * 1992-11-04 1994-05-27 Mitsubishi Motors Corp Cylinder injection type internal combustion engine
KR19990045298A (en) * 1997-11-14 1999-06-25 제임스 이. 미러 In-cylinder injection type spark ignition engine
USRE36500E (en) * 1992-02-28 2000-01-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Internal combustion engine
JP2003013784A (en) * 2001-06-28 2003-01-15 Nissan Motor Co Ltd Control device of direct injection spark ignition type internal combustion engine
US6659081B2 (en) 2000-03-07 2003-12-09 Daihatsu Motor Co., Ltd. Arrangement for mounting a sparkplug of an internal combustion engine
EP2628916A1 (en) * 2010-10-15 2013-08-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Intake port fuel injection engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36500E (en) * 1992-02-28 2000-01-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Internal combustion engine
JPH06147022A (en) * 1992-11-04 1994-05-27 Mitsubishi Motors Corp Cylinder injection type internal combustion engine
KR19990045298A (en) * 1997-11-14 1999-06-25 제임스 이. 미러 In-cylinder injection type spark ignition engine
US6659081B2 (en) 2000-03-07 2003-12-09 Daihatsu Motor Co., Ltd. Arrangement for mounting a sparkplug of an internal combustion engine
JP2003013784A (en) * 2001-06-28 2003-01-15 Nissan Motor Co Ltd Control device of direct injection spark ignition type internal combustion engine
EP2628916A1 (en) * 2010-10-15 2013-08-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Intake port fuel injection engine
EP2628916A4 (en) * 2010-10-15 2014-04-30 Mitsubishi Motors Corp Intake port fuel injection engine

Also Published As

Publication number Publication date
JP2841791B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US5259348A (en) Direct injection type engine
US5127379A (en) Internal combustion engine
US5140958A (en) Two-stroke engine
US5890466A (en) Device for injecting fuel at the exhaust port of an engine cylinder
US6269790B1 (en) Combustion chamber for DISI engines with exhaust side piston bowl
EP0879943B1 (en) Cylinder direct injection spark-ignition engine
JPH04112944A (en) Fuel injection type internal combustion engine
JPH04166612A (en) Cylinder injection type internal combustion engine
JP2841748B2 (en) In-cylinder two-stroke internal combustion engine
JPH04370319A (en) Cylinder fuel injection type internal combustion engine
JP3689974B2 (en) In-cylinder direct fuel injection internal combustion engine
JPH04224231A (en) Inner cylinder injection type internal combustion engine
JP2940232B2 (en) In-cylinder internal combustion engine
JP2004353463A (en) Control device for internal combustion engine
JPH04112904A (en) Combustion chamber of 2-cycle internal combustion engine
JP2936806B2 (en) In-cylinder internal combustion engine
JP2936798B2 (en) In-cylinder internal combustion engine
JPH082429Y2 (en) Cylinder injection internal combustion engine
JP2936805B2 (en) In-cylinder internal combustion engine
JP2828093B2 (en) In-cylinder internal combustion engine
JPH05179961A (en) Intra-cylinder injection type internal combustion engine
JPH0510137A (en) Cylinder injection type internal combustion engine
JPH0518244A (en) Injection-in-cylinder type internal combustion engine
JP2874689B2 (en) In-cylinder internal combustion engine
JP2906665B2 (en) In-cylinder internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees