JPS5847020B2 - gas sensing element - Google Patents

gas sensing element

Info

Publication number
JPS5847020B2
JPS5847020B2 JP985378A JP985378A JPS5847020B2 JP S5847020 B2 JPS5847020 B2 JP S5847020B2 JP 985378 A JP985378 A JP 985378A JP 985378 A JP985378 A JP 985378A JP S5847020 B2 JPS5847020 B2 JP S5847020B2
Authority
JP
Japan
Prior art keywords
gas
sensitive element
sensitivity
catalyst
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP985378A
Other languages
Japanese (ja)
Other versions
JPS54104396A (en
Inventor
忠夫 金田
正樹 桂
孝 高橋
英夫 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP985378A priority Critical patent/JPS5847020B2/en
Publication of JPS54104396A publication Critical patent/JPS54104396A/en
Publication of JPS5847020B2 publication Critical patent/JPS5847020B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 本発明は感ガス素子に係り、特にガス感応体表面に触媒
層を設け、感度、選択性および経時特性などを向上せし
めた感ガス素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas-sensitive element, and more particularly to a gas-sensitive element in which a catalyst layer is provided on the surface of a gas-sensitive member to improve sensitivity, selectivity, aging characteristics, and the like.

酸化物半導体表面にガスが接触すると、酸化物半導体の
表面の比抵抗が変化することを利用した感ガス素子が知
られている。
Gas-sensitive elements are known that utilize the fact that the specific resistance of the surface of an oxide semiconductor changes when gas comes into contact with the surface of the oxide semiconductor.

例えば、N型半導性を示すZnO2SnO2,Fe2O
3等に還元性ガスが接触すると抵抗値は減少し、また酸
化性ガスが接触すると、抵抗値は増加する。
For example, ZnO2SnO2, Fe2O, which exhibits N-type semiconductivity
When a reducing gas comes into contact with the 3rd grade, the resistance value decreases, and when an oxidizing gas comes into contact with the 3rd grade, the resistance value increases.

またP型半導体を示す酸化物半導体においては抵抗値の
増減が逆の関係を示す。
Further, in an oxide semiconductor that is a P-type semiconductor, the increase and decrease in resistance value exhibits an inverse relationship.

上記のごとき酸化物半導体において、各種ガスとの反応
性すなわち選択性は、半導体表面温度、表面電子レベル
の構造、気孔率および気孔の大きさ等により決まるが、
一般には酸化物半導体のみでは感ガス素子として感度が
小さく、選択性も十分とは言えない。
In the above-mentioned oxide semiconductors, the reactivity or selectivity with various gases is determined by the semiconductor surface temperature, surface electron level structure, porosity, pore size, etc.
Generally, an oxide semiconductor alone has low sensitivity as a gas-sensitive element and cannot be said to have sufficient selectivity.

そこで酸化物半導体にPt、Pdなとの触媒を添加含有
せしめ感度を上げる事が試みられているが以下の如く欠
点を有している。
Therefore, attempts have been made to increase the sensitivity by adding a catalyst such as Pt or Pd to the oxide semiconductor, but these have the following drawbacks.

つまり主成分である酸化物半導体と触媒とは、それぞれ
最適の焼成温度が異なるため、両者の特徴を充分発揮す
る焼成温度を選ぶ事がきわめて難しかった。
In other words, the oxide semiconductor and catalyst, which are the main components, have different optimal firing temperatures, making it extremely difficult to select a firing temperature that fully brings out the characteristics of both.

さらに感ガス素子として、高温条件下で使用する場合(
感ガス素子は感度を上げるため加熱部を設け、酸化物半
導体表面を300℃に保って使用することが好ましい)
触媒が酸化物半導体中に固溶し、感度の低下、経時変化
の増大などの要因となっていた。
Furthermore, when used as a gas-sensitive element under high temperature conditions (
In order to increase the sensitivity of the gas-sensitive element, it is preferable to provide a heating section and use the oxide semiconductor surface at 300°C.)
The catalyst was solidly dissolved in the oxide semiconductor, causing a decrease in sensitivity and an increase in changes over time.

本発明は、上述の従来素子の欠点を改良したもので、一
対の電極と、この電極間に設けられたZnOを99.8
5〜20モル%、MeOを0.1〜50モル%(たたし
、MeはCo 、 Ni 、 Mnのうち少なくとも一
種)およびMe’203を0.05〜30モル%(ただ
し、Me′はGa 、 B 、 In、、 Fe 、
AI。
The present invention improves the drawbacks of the conventional element described above, and includes a pair of electrodes and ZnO provided between the electrodes.
5 to 20 mol%, 0.1 to 50 mol% of MeO (at least one of Co, Ni, and Mn) and 0.05 to 30 mol% of Me'203 (however, Me' is at least one of Co, Ni, and Mn). Ga, B, In,, Fe,
A.I.

Crのうち少なくとも一種)を含むガス感応体と、シリ
カ・アルミナに添加物としてRe、Rhの少なくとも一
方を70原子多以下(0を含まず)含有したPt化合物
を0.01〜10重量★含む触媒層とからなる感ガス素
子で感度およびガスの選択性に優れ特に抵抗値の湿度係
数が小さく、長時間の使用による経時変化の少ない感ガ
ス素子を提供する事を目的とする。
Contains a gas sensitive material containing at least one type of Cr) and a Pt compound containing 70 or less atoms (not including 0) of at least one of Re and Rh as an additive to silica and alumina by 0.01 to 10% by weight★ It is an object of the present invention to provide a gas-sensitive element comprising a catalyst layer, which has excellent sensitivity and gas selectivity, has a particularly low humidity coefficient of resistance value, and has little change over time due to long-term use.

なお本発明における組成範囲は以下の如き理由により限
定された。
Note that the composition range in the present invention was limited for the following reasons.

つまりZnOが99.85モル★を超えた場合、MeO
が0.1モル袈未満の場合、およびM6□03が0.0
5モルφ未満の場合においてはガス吸着による抵抗値変
化が小さく、またZnOが20モルφ未満の場合、Me
Oが50モルφを超えた場合、およびM6□03が30
モル★を超えた場合においてはガス吸着による抵抗値変
化が小さく、さらに、温度に対する抵抗値変化が大きく
なるのでガス感応体の組成は上記の範囲とした。
In other words, if ZnO exceeds 99.85 mol★, MeO
is less than 0.1 mol, and M6□03 is 0.0
When ZnO is less than 5 mol φ, the change in resistance due to gas adsorption is small, and when ZnO is less than 20 mol φ, Me
When O exceeds 50 molφ and M6□03 is 30
If the molar value exceeds ★, the change in resistance due to gas adsorption will be small, and the change in resistance with respect to temperature will be large, so the composition of the gas sensitive material was set within the above range.

ざらにシリカ・アルミナへのRe 、Rhの少なくとも
一種を70原子係以下(ただしOを含まず)含有したP
t化合物の添加量を0.01〜10重量饅としたのは、
o、oi重量φ未満では、ガス吸着による抵抗値変化が
小さくなり10重量饅を超えると経時変化特性の改善が
期待できないためである。
P containing at least 70 atoms (but not including O) of at least one of Re and Rh to silica and alumina
The reason why the amount of the t compound added was 0.01 to 10% by weight was because
This is because if the weight is less than o, oi weight φ, the change in resistance value due to gas adsorption will be small, and if it exceeds 10 weight, no improvement in the aging characteristics can be expected.

またPt化合物中のRe、Rhを70原子饅以下とした
のは70原子優を越えると感度が低下するためこの範囲
とした。
The reason for setting Re and Rh in the Pt compound to be 70 atoms or less is because sensitivity decreases when exceeding 70 atoms.

以下本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

まず本発明に係る感ガス素子は例えば第1図に断面的に
示すごとく、筒状絶縁基体1外周面に一対の電極2を有
し、前記筒状絶縁基体1および電極2を被覆するように
ガス感応体3が設けられている。
First, the gas-sensitive element according to the present invention has a pair of electrodes 2 on the outer peripheral surface of a cylindrical insulating base 1, as shown in cross section in FIG. A gas sensitive body 3 is provided.

さらに前記ガス感応体3表面にはPt−Re、Pt−R
h系などのPt化合物を含むシリカ・アルミナからなる
触媒層4が設けられている。
Further, on the surface of the gas sensitive body 3, Pt-Re, Pt-R
A catalyst layer 4 made of silica/alumina containing a Pt compound such as h-based compound is provided.

また前記のように構成された感ガス素子は例えば第2図
に斜視的に示す如くピン足上に組立てられる。
Further, the gas-sensitive element constructed as described above is assembled on a pin leg, for example, as shown perspectively in FIG.

なお、図中5はリード線を6は絶縁板を7はヒーターを
示す。
In the figure, 5 indicates a lead wire, 6 indicates an insulating plate, and 7 indicates a heater.

ヒーター7はガス感応体の感度を向上させるために設け
られたものであり、必要に応じ適宜設けることができる
The heater 7 is provided to improve the sensitivity of the gas sensitive element, and can be provided as appropriate if necessary.

なお触媒層4はガス感応体3表面を必ずしも全面的に被
覆していなくともよい。
Note that the catalyst layer 4 does not necessarily need to completely cover the surface of the gas sensitive body 3.

本発明に係る感ガス素子は例えば以下の如く製造される
The gas-sensitive element according to the present invention is manufactured, for example, as follows.

すなわち、ZnO,MeO(MeはCo。Ni、Mnの
うち少なくとも一種)およびM6203(MeはGa
、 B 、 In 、 Fe、AI 、Crのうち少な
くとも一種)を所定組成比で秤取し、混合したのち水ま
たはバインダーを加えペースト状とし、第1図に示すご
とく一対の電極2を設けた絶縁基板1に塗布し乾燥後6
00〜1000’Cで焼成しガス感応体を形成する。
That is, ZnO, MeO (Me is at least one of Co, Ni, and Mn) and M6203 (Me is Ga)
, B, In, Fe, AI, and Cr) in a predetermined composition ratio, mixed, water or a binder was added to form a paste, and an insulating material with a pair of electrodes 2 as shown in FIG. 1 was prepared. After coating on substrate 1 and drying 6
It is fired at 00 to 1000'C to form a gas sensitive body.

一方500〜1300℃で焼成されたシリカアルミナを
たとえば遊星ミル、ポットミル等の粉砕機で粉砕し、微
粉末とする。
On the other hand, silica alumina calcined at 500 to 1300°C is ground into fine powder using a grinder such as a planetary mill or a pot mill.

次に塩化白金酸なとのPt化合物、Reの化合物、Rh
の化合物などを適宜所定の成分比で秤取し、水を加えて
水溶液とする。
Next, Pt compounds such as chloroplatinic acid, Re compounds, Rh
Weigh out the compound etc. in a predetermined component ratio, and add water to make an aqueous solution.

しかる後上記シリカ・アルミナ微粉末と所定重量比で混
合した後、乾燥工程を施し触媒を得る。
Thereafter, it is mixed with the silica/alumina fine powder in a predetermined weight ratio, and then subjected to a drying process to obtain a catalyst.

なおシリカ・アルミナの出発原料は高温で酸化物となる
ものであれば結晶質、無定形を問わない。
The starting materials for silica and alumina may be crystalline or amorphous as long as they become oxides at high temperatures.

この触媒を前記ガス感応体3上に塗布乾燥し、さらに3
00〜900℃で焼成し感ガス素子を得る。
This catalyst is coated on the gas sensitive member 3 and dried, and then
A gas-sensitive element is obtained by firing at a temperature of 00 to 900°C.

次に本発明に係る感ガス素子の諸特性例を第3図乃至第
10図に示す。
Next, examples of characteristics of the gas-sensitive element according to the present invention are shown in FIGS. 3 to 10.

各特性は加熱温度370℃のときの値をとった。The values for each characteristic were taken at a heating temperature of 370°C.

先ず第3図乃至第5図はガス感応体成分のMeO(ただ
し、MeはCo 、 Ni 、 Mnのうち少なくとも
一種)およびMe2O3(たたし、MeはGa、B。
First, FIGS. 3 to 5 show the gas sensitive member components MeO (where Me is at least one of Co, Ni, and Mn) and Me2O3 (Me is Ga and B.

In、Fe、AI、Crのうち少なくとも一種)の量を
変えたときの空気中における抵抗値Roと0.2優のイ
ンブタンガス濃度中での抵抗値Rgとの比により感度(
Ro/Rg)を示したものである。
Sensitivity (at least one of In, Fe, AI, Cr) is determined by the ratio of the resistance Ro in air to the resistance Rg in an inbutane gas concentration of over 0.2.
Ro/Rg).

なお触媒層としては0.2重量優のPt−0,05Re
−0,05R,hを含んた3A1203・2SiO2を
用い、図中曲線1はGa2O3,B2O3,Fe2O3
,Cr2O3の複合添加の場合の抵抗値、曲線2はB2
O3゜I n2032 Cr 203の複合添加の場合
の抵抗値、また曲線3はA l 203 、F e 2
03の複合添加の場合の抵抗値をそれぞれ示し第3図は
Me2OとしてCo01第4図はNi01第5図はMn
O,を用いた場合を表す。
The catalyst layer is Pt-0,05Re with a weight of 0.2%.
Using 3A1203.2SiO2 containing -0,05R,h, curve 1 in the figure is Ga2O3, B2O3, Fe2O3
, resistance value in case of composite addition of Cr2O3, curve 2 is B2
The resistance value in the case of combined addition of O3゜I n2032 Cr 203, and curve 3 is A l 203, Fe 2
Figure 3 shows the resistance values in the case of composite addition of 03. Figure 3 shows Co01 as Me2O1 Figure 4 shows Ni01
This represents the case where O, is used.

また曲線1′、2′および3′は曲線1,2および3に
それぞれ対応する感度を示す。
Curves 1', 2' and 3' show sensitivities corresponding to curves 1, 2 and 3, respectively.

さらに上記第3図曲線3においてMeOの添加量を10
モ/L/%に固定した組成においてPt−Re系、Pt
−Rh系触媒のRe、Rhの含有量に対する感度を測定
し、第6図に示す。
Furthermore, in the curve 3 in Figure 3 above, the amount of MeO added was increased to 10
Pt-Re system, Pt
The sensitivity of the -Rh catalyst to the Re and Rh contents was measured and is shown in FIG.

この結果いずれの場合も70原子斜を越えると感度が低
下する。
As a result, in either case, sensitivity decreases when the 70-atom slope is exceeded.

なおReもしくはR,hにより含有量に対する感度の依
存性が異なるのは、両者の結晶構造の相異によるものと
思われる。
Note that the reason why the sensitivity depends on the content differs depending on Re or R, h is thought to be due to the difference in the crystal structure of the two.

この結果第3図乃至第6図から明らかな如く、本発明に
係る感ガス素子においては常に優れた感度が得られた。
As a result, as is clear from FIGS. 3 to 6, excellent sensitivity was always obtained in the gas-sensitive element according to the present invention.

さらに第7図乃至第9図は、第3図乃至第5図における
曲線1についてMeOの添加量を2モル優に固定し、ま
た触媒層は3A1203・2SiO2に担持されるPt
化合物の量を0.2重量%に固定した場合のRe 、
Rh含有量に対する経時特性を示す。
Furthermore, in FIGS. 7 to 9, the amount of MeO added is fixed at approximately 2 mol for curve 1 in FIGS. 3 to 5, and the catalyst layer is composed of Pt supported on 3A1203.2SiO2.
Re when the amount of compound is fixed at 0.2% by weight,
Figure 2 shows the temporal characteristics of Rh content.

なお測定はio、ooo時間通電後の抵抗値の変化率を
示し、比較例として、Re 、Rh無添加の場合を併せ
て示し第7図はMeOとしてCod、第8図はN i
O、第9図はMnOを用いた場合である。
The measurement shows the rate of change in resistance value after energization for io and ooo times, and as a comparative example, the case without the addition of Re or Rh is also shown. Figure 7 shows Cod as MeO, and Figure 8 shows Ni.
O. FIG. 9 shows the case where MnO is used.

この結果第7図乃至第9図から明らかな如く、本発明に
係る感ガス素子において、長期間の使用に際し高々10
%程度の低下しか見られなかった。
As a result, as is clear from FIGS. 7 to 9, in the gas-sensitive element according to the present invention, when used for a long period of time, the
Only a decrease of about % was observed.

このようにRe、Rhを含有したPt化合物を含むシリ
カ・アルミナからなる触媒層を用いた感ガス素子の経時
変化率が小さいのは次のような理由によるものと考えら
れる。
The reason why the rate of change over time of a gas-sensitive element using a catalyst layer made of silica-alumina containing a Pt compound containing Re and Rh is small is considered to be as follows.

まず、ガス感応体と触媒層とを分離した2層構造により
触媒のRe、Rhの少なくとも一方を含有するPt化合
物がガス感応体の中に固溶しないため、触媒の能力の劣
化が起らないためと考えられる。
First, due to the two-layer structure that separates the gas sensitive material and the catalyst layer, the catalyst's Pt compound containing at least one of Re and Rh does not dissolve in the gas sensitive material, so there is no deterioration of the catalyst's performance. It is thought that this is because of this.

また従来触媒として使用されているPi、Pd等または
その酸化物は、使用されることにより粒成長をおこし触
媒の表面積が小さくなるが本発明の如く耐熱性に優れ、
高温で不活性なシリカ・アルミナを担体として用いるこ
とにより、Pi、RetRhなどが表面積の大きな状態
で維持され、さらにPtより融点の高いRe 、Rhを
含有するためガスセンサ使用温度における触媒のシンタ
リングによる表面積の低下を防止することができるため
と考えられる。
In addition, Pi, Pd, etc. or their oxides, which have been conventionally used as catalysts, cause grain growth and reduce the surface area of the catalyst when used, but as in the present invention, they have excellent heat resistance.
By using silica/alumina, which is inactive at high temperatures, as a carrier, Pi, RetRh, etc. are maintained in a state with a large surface area.Furthermore, since it contains Re and Rh, which have a higher melting point than Pt, it is possible to prevent sintering of the catalyst at the gas sensor usage temperature. This is thought to be because reduction in surface area can be prevented.

担体を用いない場合は、1000時間程度で20%程度
の低下がみられ、10,000時間でも高々10%程度
の低下しかみられなかった本発明の方が優れている。
When no carrier is used, a decrease of about 20% is observed after about 1000 hours, and the present invention is superior, as a decrease of about 10% at most was observed even after 10,000 hours.

第10図は本発明に係る感ガス素子を用いてCo 、
H2、C2H6、C3H8t C4H10のガス濃度に
対する抵抗値の変化率を示し、この結果優れた選択性を
有することは明確である。
FIG. 10 shows Co, using the gas-sensitive element according to the present invention.
It shows the rate of change in resistance value with respect to the gas concentration of H2, C2H6, C3H8t C4H10, and as a result, it is clear that it has excellent selectivity.

以上述べたように、本発明に係る感ガス素子は感度選択
性および経時変化特性に優れており従来にないすぐれた
特長をもったものである。
As described above, the gas-sensitive element according to the present invention has excellent sensitivity selectivity and temporal change characteristics, and has excellent features never seen before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成例を示す断面図、第2図は本発明
に係る感ガス素子を用いる装置例を示す斜視図、第3図
乃至第5図はMeO添加量に対する抵抗値及び感度の関
係を示す曲線図、第6図は触媒中のRe、Rh含有量に
対する感度を示す曲線図、第7図乃至第9図はMeO添
加量を2モル優に固定したときRe、Rh含有量による
経時変化を示す曲線図、第10図は本発明に係る感ガス
素子の選択性を示す曲線図。 2・・・・・・電極、3・・・・・・ガス感応体、4・
・・・・・触媒層。
FIG. 1 is a sectional view showing a configuration example of the present invention, FIG. 2 is a perspective view showing an example of a device using a gas-sensitive element according to the present invention, and FIGS. 3 to 5 are resistance values and sensitivity with respect to the amount of MeO added. Figure 6 is a curve diagram showing the sensitivity to the Re and Rh contents in the catalyst, Figures 7 to 9 are the Re and Rh contents when the amount of MeO added is fixed at well over 2 moles. FIG. 10 is a curve diagram showing the selectivity of the gas-sensitive element according to the present invention. 2... Electrode, 3... Gas sensitive body, 4...
...Catalyst layer.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の電極と、前記電極間に設けられたZnOを9
9.85〜20モル%、MeOを0.1〜50モル%(
たたしMeはCo 、 Ni 、 Mnのうち少くとも
一種)およびM′e203を0.05〜30モル%(た
ぞしMe′はGa 、B、In 、Fe 、AI 、C
rのうち少なくとも一種)を含むガス感応体と前記ガス
感応体表面に設けられたRe、Rhの少なくとも一方を
70原子饅以下(ただしOを含まず)含有したPt化合
物0.01〜10重量饅を含むシリカ、アルミナからな
る触媒層とを具備して戒ることを特徴とする感ガス素子
1 A pair of electrodes and 9 ZnO provided between the electrodes.
9.85-20 mol%, MeO 0.1-50 mol% (
Tazashi Me' is at least one of Co, Ni, Mn) and M'e203 at 0.05 to 30 mol% (Tazashi Me' is Ga, B, In, Fe, AI, C
a gas sensitive body containing at least one of R) and a Pt compound containing 0.01 to 10% by weight of at least one of Re and Rh provided on the surface of the gas sensitive body, containing 70 atoms or less (however, excluding O); What is claimed is: 1. A gas-sensitive element comprising a catalyst layer made of silica and alumina containing
JP985378A 1978-02-02 1978-02-02 gas sensing element Expired JPS5847020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP985378A JPS5847020B2 (en) 1978-02-02 1978-02-02 gas sensing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP985378A JPS5847020B2 (en) 1978-02-02 1978-02-02 gas sensing element

Publications (2)

Publication Number Publication Date
JPS54104396A JPS54104396A (en) 1979-08-16
JPS5847020B2 true JPS5847020B2 (en) 1983-10-20

Family

ID=11731682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP985378A Expired JPS5847020B2 (en) 1978-02-02 1978-02-02 gas sensing element

Country Status (1)

Country Link
JP (1) JPS5847020B2 (en)

Also Published As

Publication number Publication date
JPS54104396A (en) 1979-08-16

Similar Documents

Publication Publication Date Title
JPS6360339B2 (en)
EP0017502B1 (en) Oxygen sensor element
JPS626182B2 (en)
US4459577A (en) Gas sensor
JPS5847020B2 (en) gas sensing element
JPS5847018B2 (en) gas sensing element
JPS5847019B2 (en) gas sensing element
JPS5952781B2 (en) gas sensing element
JPH0444691B2 (en)
JPS5952782B2 (en) gas sensing element
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPS6013142B2 (en) gas sensing element
US5864148A (en) High-temperature gas sensor
JPS6161344B2 (en)
JPS5848056B2 (en) gas sensing element
JP3026523B2 (en) Gas sensor
JPS6122776B2 (en)
JPS58623B2 (en) gas sensing element
JPS6133128B2 (en)
JPH0380257B2 (en)
JPH0322584B2 (en)
JPS58624B2 (en) gas sensing element
JPS6152419B2 (en)
JPS5950352A (en) Detection element for nox
JPS6128937B2 (en)