JPS5846260A - Gear arrangement - Google Patents

Gear arrangement

Info

Publication number
JPS5846260A
JPS5846260A JP14417781A JP14417781A JPS5846260A JP S5846260 A JPS5846260 A JP S5846260A JP 14417781 A JP14417781 A JP 14417781A JP 14417781 A JP14417781 A JP 14417781A JP S5846260 A JPS5846260 A JP S5846260A
Authority
JP
Japan
Prior art keywords
gears
gear
distance
intermeshing
becomes constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14417781A
Other languages
Japanese (ja)
Inventor
Keiichi Komiyama
小宮山 惠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14417781A priority Critical patent/JPS5846260A/en
Publication of JPS5846260A publication Critical patent/JPS5846260A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • F16H55/0806Involute profile
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/08Profiling
    • F16H2055/0893Profiling for parallel shaft arrangement of toothed members

Abstract

PURPOSE:To make it possible to make the distance between axles to coincide with the distance between intermeshing centers and to adjust the quantity of backlash by constructing the gear arrangement so that the variation rate of the quantity of displacement between teeth of a gear of a frustum of a cone becomes constant, and deviating gears in axial direction. CONSTITUTION:Involute plain gears 1 and 2 formed into the shape of a frustrum of a cone are positive shift gears in each of which the quantities of shifts differ between the small-diameter side end and the large diameter side end, and the variation rate m.DELTAs/b of the quantities of shifts between the teeth widths becomes constant. By setting the variation rate m.DELTAx/b at a constant value, the distance (a) between intermeshing centers of both gears 1 and 2 becomes constant at an arbitray position between the teeth widths (b). The distance (a) of the intermeshing centers is a function of only an intermeshing pressure angle alpha0, If the shifting positions of both gears 1 and 2 are set so that the sum (X1X X2) of the shift coefficients of both gears 1 and 2 becomes constant, the intermeshing pressure angle alpha0 becomes constant and the distance (a) of the intermeshing centers becomes constant.

Description

【発明の詳細な説明】 本発明は歯車装置の改良に関する。[Detailed description of the invention] TECHNICAL FIELD The present invention relates to improvements in gear devices.

従来、歯車装置のかみあい中心距離はそのかみあう歯車
のモジュール、歯数、工具圧力角、かみあい正角より算
出されるが、実際(;歯車を支える軸の軸間距離を前記
算出値と完全(ニ一致させるのは製作上不可能である。
Conventionally, the meshing center distance of a gear device is calculated from the module, number of teeth, tool pressure angle, and square meshing angle of the meshing gears. It is impossible to match them due to manufacturing reasons.

しかし歯車装置≦二おいては上記軸間距離(=よってバ
ックラッシュ量が決まってしまい、パブクラッシュ量は
その大小が斯る歯車装置の精度、振動C:大きな影響を
及ば丁ので、適量のパブクラッシュを設定することは非
常C;重要となっている。以上のよう(=歯車装置(”
:、#ける軸間距離の調整は必要不可欠のものであるが
、その調整は該歯車装置の構成部材の手直しやスペーサ
ーの選定など(;よる甚だ手数のかかるものであった。
However, when the gear device is ≦2, the amount of backlash is determined by the distance between the shafts (==), and the amount of pub crush is determined by the size of the gear device. It is very important to set the crash.As mentioned above (= gear mechanism ("
Although it is essential to adjust the distance between the shafts of the gears, such adjustment requires a considerable amount of time and effort, such as modifying the components of the gear device and selecting spacers.

本発明は斯る従来事情(=鑑みてなされたもので、その
目的とする処は歯車を軸方向に僅かずら丁こと6二よっ
て軸間距離がかみあい中心距離Cニ一致され、且つバッ
クラッシュ量を容易(二調整できる歯車装置を提供する
こと(二ある。
The present invention has been made in view of the conventional circumstances, and its purpose is to slightly shift the gears in the axial direction, so that the distance between the shafts is matched to the meshing center distance C, and the amount of backlash is reduced. Providing a gear system that can be easily adjusted (two).

本発明実施の一例を第1図により説明すれば、本発明の
歯車装置は円錐台形状−二形成されたインポリュー)平
歯車(1)、伐)により構成さnている。
An example of the embodiment of the present invention will be described with reference to FIG. 1. The gear device of the present invention is constituted by a spur gear (1) formed in a truncated conical shape.

該歯車(1)、 (2)は共にその小径側端部と大径側
端部で転位置が異なる正転位歯車とされ、該歯幅(b)
間の転位量の変化率が一定になるように形成される。
The gears (1) and (2) are both normal gears with different rotational positions at the small diameter end and the large diameter end, and the face width (b)
They are formed so that the rate of change in the amount of dislocations between them is constant.

即ち、図中1・ΔIは前記歯車(1)、 (2)の転位
量の変化を示し、該変化率をm・ムx/bと丁れば、m
 −Ax、15が一定とされる。
That is, in the figure, 1·ΔI indicates the change in the amount of dislocation of the gears (1) and (2), and if the rate of change is expressed as m·mu x/b, then m
-Ax, 15 is assumed to be constant.

またm・轟x/bが一定となることによって歯幅(−間
の任意の位置において、両歯車(1)、 (2)のかみ
あい中心距離(a)が一定となる。このかみあい中心距
離(〜は、 2工:歯車U)の歯数 Z3:歯車(2)の歯数 m:歯車(1)およびC)のモジュール(■)a:歯車
(1)と(2)のかみあい中心距離(Ill)α:歯車
(1)および(2)の工具圧力角(dog、)α0:歯
車(1)および(2)のかみあい圧力角(dog、)と
丁れば 2aosα。
Also, by keeping m・Todoroki x/b constant, the meshing center distance (a) of both gears (1) and (2) becomes constant at any position between the face width (-).This meshing center distance ( ~ is 2nd gear: Number of teeth of gear U) Z3: Number of teeth of gear (2) m: Module (■) of gears (1) and C) a: Distance between meshing centers of gears (1) and (2) ( Ill) α: Tool pressure angle (dog,) of gears (1) and (2) α0: Meshing pressure angle (dog, ) of gears (1) and (2) equals 2aosα.

となる。(11式中、モジュール(ml、歯車(1)の
歯数(Zユ)、歯車(2)の歯数(zl)、工具圧加(
α)は歯車の設計により決定する定数であるが、かみあ
い圧力角(0゜)は歯車(1)、(21のかみあい状態
C:よって変化する変数であるので、かみあい中心短路
1alはかみあい圧力角(α。)だけの関数となる。
becomes. (In formula 11, module (ml), number of teeth of gear (1) (Zyu), number of teeth of gear (2) (zl), tool pressure (
α) is a constant determined by the design of the gear, but the meshing pressure angle (0°) is a variable that changes depending on the meshing state C of gears (1) and (21), so the meshing center short path 1al is the meshing pressure angle It becomes a function of only (α.).

次6二かみあい圧力角(α。)は Xよ:歯車(1)の転位係数 x3:歯車(2)の転位係数 f:パックラッシュ瞳(III) と丁れば I□+”m”2amm−α 1rrV(に)=細α           −・・・
(2)2□ +2゜ となる。上記(21式中、工具圧力角−、モジュール(
−1歯車(1)の歯数■、)、歯車(2)の歯数(2,
)は歯車の設計により決定する定数であり、バックラッ
シュ量(f)も該歯車装置の用途と精度に基づき最適値
が示されるので定数と考えることができる。即ち上記c
2)式は歯車(1)、(2)の転位係数の和0□十M、
)だけの関数となる。以上より歯車(1)、(2)(:
おいて、歯車(11,(21の転位係数の和(X□十X
、)が一定C二なるよう(=、両歯車(1)、 (21
の転位量を設定してやれば、かみあい圧力角(α。)が
一定となる。
The following 6 two-mesh pressure angle (α.) is X: Shift coefficient of gear (1) x 3: Shift coefficient of gear (2) f: Packlash pupil (III) So, I□+”m”2am- α 1rrV (ni) = Thin α −...
(2) 2□ +2°. Above (in formula 21, tool pressure angle -, module (
-1 Number of teeth of gear (1) ■, ), Number of teeth of gear (2) (2,
) is a constant determined by the design of the gear, and the amount of backlash (f) can also be considered a constant since the optimum value is indicated based on the purpose and accuracy of the gear device. That is, the above c
2) Equation is the sum of the shift coefficients of gears (1) and (2), 0□10M,
) is the only function. From the above, gears (1), (2) (:
, the sum of the shift coefficients of gears (11, (21)
, ) is constant C2 (=, both gears (1), (21
If the amount of dislocation is set, the meshing pressure angle (α) becomes constant.

そして、前述の如くかみあい中心距離(−はかみあい圧
力角口。)だけの関数であるので、歯車(1)、(2)
の転位係数の和(x、+x、)を一定(=設定すること
響=よってかみあい中心距離(&)が一定となる。
As mentioned above, since it is a function only of the meshing center distance (-meshing pressure angle opening), gears (1) and (2)
By setting the sum of the dislocation coefficients (x, +x,) to be constant, the meshing center distance (&) is therefore constant.

歯車(11、(2)の転位係数の和(X□+x、)はm
−xよ:歯車(1)の転位量     (M)m−I工
。二歯車α)の最小転位量   (■)m” Xs :
歯車(2)(D転位量     (wm )m ’ X
so :歯車セ)の最小転位量   (III)m・Δ
X:歯幅(b)間の転位量の変化 (IIB)h  :
歯車α)の小径側端部からの軸方向の距離      
 (■) と丁れば mix、  =  m@x1゜+  −・m・ΔI−x
、= x、。梵・Δx−=・・・・−(3)m@Xll
=m”X、。+ll11八X−b ”m ” x・°・
 xl =x80+ x−r 11m ・ΔN−−−・
−(4)となり、(3)式と(4)式の各辺の和よりI
□+】竪、=Xよ◎+ I麿。+ Δ I  ・・・・
・・   (5)となる、上記(5)式において、歯車
(1)の小端径の転位係数(Xユ。)歯車は)の小端径
の転位係数(X、)は歯車の設計C:より決定する定数
であり、また歯幅(b)間の転位量の変化率型・Δx/
bは一定C:形成してあり、モジュール(m)、歯幅(
b)が定数であるから、歯幅(b1間の転位量の変化を
示す転位係数(ΔX)は当然定数である。以上より、歯
車(1)、(2)の転位係数の和(xl+x、)が一定
となり、かみあい中心距離(a)はそのかみあう歯幅(
b1間の任意の位置c2いて一定となる。
The sum of the shift coefficients (X□+x,) of gear (11, (2)) is m
-x: Amount of dislocation of gear (1) (M)m-I engineering. Minimum shift amount of two gears α) (■)m”Xs:
Gear (2) (D dislocation amount (wm) m'
so: Minimum amount of dislocation of gear (III) m・Δ
X: Change in dislocation amount between face width (b) (IIB) h:
Axial distance from the small diameter end of gear α)
(■) Mix, = m@x1゜+ −・m・ΔI−x
,=x,. Sanskrit・Δx-=・・・・-(3)m@Xll
=m”X,.+ll118X-b “m” x・°・
xl = x80+ x-r 11m ・ΔN----・
−(4), and from the sum of each side of equations (3) and (4), I
□+】Vertical, =X yo◎+ Imaro. +ΔI・・・・・・
... (5) In the above equation (5), the shift coefficient (X, ) of the small end diameter of gear (1) is the shift coefficient (X, ) of the small end diameter of gear (1). : It is a constant determined by the change rate type of dislocation amount between face width (b)・Δx/
b is constant C: formed, module (m), tooth width (
Since b) is a constant, the shift coefficient (ΔX) that indicates the change in shift amount between the tooth width (b1) is naturally a constant. From the above, the sum of the shift coefficients of gears (1) and (2) (xl+x, ) becomes constant, and the meshing center distance (a) is determined by the meshing tooth width (
An arbitrary position c2 between b1 becomes constant.

次に第2実施例を第2図(二より説明子れば、本実施例
では何れか一方の歯車(4)の歯幅ω4)を他方の歯車
(3)の歯幅ω、)より大きくしである。
Next, the second embodiment is shown in FIG. It is.

即ち、前記各歯車(3)、(4)を軸方向嬬二移動させ
た際、歯車(3)が歯幅1lb4)内でかみあうようC
二して伝達強度を高めている。そして歯車(3)の歯幅
(b、)間の転位量の変化率m・ΔI3/′bIと、歯
車(4)の歯幅(b4)の転位量の変化率m・ムxa/
b4を一定にすることによってかみあう歯幅間の転位量
の変化率を一定(:することができ、かみあい中心距離
(a)Y一定にすることができる。
That is, when each of the gears (3) and (4) is moved two degrees in the axial direction, C is set so that the gear (3) meshes within a face width of 1 lb4).
Second, the transmission strength is increased. Then, the rate of change in the amount of dislocation between the face width (b, ) of gear (3) m・ΔI3/′bI and the rate of change in the amount of dislocation between the face width (b4) of gear (4) m・muxa/
By keeping b4 constant, the rate of change in the amount of dislocation between the meshing tooth widths can be made constant (:), and the meshing center distance (a) Y can be made constant.

Claims (1)

【特許請求の範囲】[Claims] 円錐台状C二形成された転位歯車の歯幅間の転位量の変
化率が一定C二形成された歯車よりなる歯車装置。
A gear device comprising a gear in which the change rate of the amount of displacement between the tooth widths of the shifted gear is constant.
JP14417781A 1981-09-12 1981-09-12 Gear arrangement Pending JPS5846260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14417781A JPS5846260A (en) 1981-09-12 1981-09-12 Gear arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14417781A JPS5846260A (en) 1981-09-12 1981-09-12 Gear arrangement

Publications (1)

Publication Number Publication Date
JPS5846260A true JPS5846260A (en) 1983-03-17

Family

ID=15355989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14417781A Pending JPS5846260A (en) 1981-09-12 1981-09-12 Gear arrangement

Country Status (1)

Country Link
JP (1) JPS5846260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110343U (en) * 1986-10-27 1988-07-15
GB2373304A (en) * 2001-02-20 2002-09-18 Bryan Nigel Victor Parsons Tapered involute gear profile
JP2012082893A (en) * 2010-10-12 2012-04-26 Toyota Central R&D Labs Inc Involute gear pair

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110343U (en) * 1986-10-27 1988-07-15
GB2373304A (en) * 2001-02-20 2002-09-18 Bryan Nigel Victor Parsons Tapered involute gear profile
JP2012082893A (en) * 2010-10-12 2012-04-26 Toyota Central R&D Labs Inc Involute gear pair

Similar Documents

Publication Publication Date Title
EP0974016B1 (en) Gear form constructions
Zhang et al. Computerized design of low-noise face-milled spiral bevel gears
EP0217562A1 (en) Geared actuator arrangement
KR102076517B1 (en) Gear pairing for a helical gear unit or a spur gear unit, helical gear unit or spur gear unit with such a gear pairing and use of such a gear pairing in helical gear units and spur gear units
JPS5846260A (en) Gear arrangement
US5182960A (en) Bevel gear drive arrangement
CN110848332B (en) Intersecting-axis non-circular-face gear transmission mechanism
JP2962625B2 (en) Cone type twin screw extruder
Dooner On evolutoids and spatial involutoids to define hypoid flank geometry
US4372176A (en) Tapered tooth helical gear drive train for eliminating the need for end thrust bearings
US7331895B2 (en) Composite planetary device
Sakai et al. An investigation on secondary action on skew gears
US4147072A (en) Compatible angled gear system
US4630497A (en) Tapered worm
JPH0783314A (en) Drive gear
US1647157A (en) Spiral bevel gearing
JPH0733863B2 (en) Concave conical gear
Abadjiev et al. Testing of the kinematic conjugation of the flanks active surfaces of gear-pairs of type spiroid
Yang Kinematics of three dimensional gearing
DE102020121638A1 (en) Wave generator for a reduction gear of a wave gear structure
US5149310A (en) Differential speed reducer
JPS59117951A (en) Speed reduction mechanism by gear
US2731886A (en) Method of making speed-reduction gearing
US7810405B2 (en) Angle drive
JPH04131542A (en) Differential planetary gear device